
CMPT 450/750: Computer Architecture

Fall 2022

Branch Prediction &

Precise Interrupts

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

Why Branch Prediction? Branch Penalty
• Example: Processor has a 15-stage 6-wide pipeline. An incorrectly predicted

branch leads to pipeline flush (15-cycle penalty). Program retires an average
of 4 instructions per cycle if all branches are predicted correctly. Program has
1 million instructions including 100,000 conditional branches.

• Comparing different branch prediction scenarios:
➢Perfect BP: IPC = 4.00 Execution Time = 1,000,000/4 = 250,000 cycles

➢90% BP accuracy: 1/10 branches incorrectly predicted

❑ IPC = 1,000,000/(250,000 + 0.1x100,000x15) = 2.5 (60% slower)

➢95% BP accuracy: 1/20 branches incorrectly predicted

❑ IPC = 1,000,000/(250,000 + 0.05x100,000x15) = 3.08 (30% slower)

➢99% BP accuracy: 1/100 branches incorrectly predicted

❑ IPC = 1,000,000/(250,000 + 0.01x100,000x15) = 3.77 (6% slower)

➢No BP: Fetch stalled until branch is resolved (4 pipeline stages)

❑ IPC = 1,000,000/(250,000 + 100,000x4) = 1.53 (160% slower)

➢70% BP accuracy: 3/10 branches incorrectly predicted

❑ IPC = 1,000,000/(250,000 + 0.3x100,000x15) = 1.43 (180% slower)
2

Reducing Branch Cost with Hardware Prediction

• Branch prediction basics:

➢We need to predict conditional branch outcome to select the address for next

instruction fetch

❑PC + 4 (assuming each instruction is 4B like in RISC architectures)

❑Or branch target address

➢Also we need to quickly determine the branch target address

❑Direct branches

❑Register indirect branches

❑Returns

3

Predicting Conditional Branch Outcomes
• Static branch prediction: Use profile

information (from previous runs, or from

compiler) to predict the same outcome for

each branch

➢Disadvantage: Many branches aren’t highly biased,

leading to high misprediction rate

• Simplest dynamic branch prediction

scheme uses a branch-prediction buffer or

branch history table

➢Small memory indexed by the lower portion of the

branch address

➢Stores previous branch outcomes to predict next

outcome

➢Table is not tagged: Prediction may have been put in

the entry by a different branch (Aliasing)
4

Predicting Conditional Branch Outcomes

• 1-bit prediction buffer stores the last executed branch outcome,

and uses it to predict the next outcome

➢If bit = 1, branch is predicted taken

➢If bit = 0, branch is predicted not-taken

• A simple 1-bit scheme may not perform well

➢Example: Below is a series of branch outcomes and corresponding predictions

outcomes 1111011110111101

predictions 111101111011110

mispredictions 111101111011110

(60% accurate)

5

Predicting Conditional Branch Outcomes:
Bimodal Predictor

• 2-bit saturating counter often used

➢Branch taken ==> increment state

❑Max state “11” stays at “11” when incremented

➢Branch not-taken ==> decrement state

❑Min state “00” stays at “00” when decremented

➢“11” and “10” are predict taken states

➢“00” and “01” are predict not-taken states

6

2-bit Saturating Counter State Machine

ARCH Figure C.18

7Note: Some advanced predictors use perceptrons instead of 2-bit saturating counters to

predict future branches

Predicting Conditional Branch Outcomes

• Assuming initial state to be “11”, i.e., 3, branch outcomes and

corresponding predictions (bimodal predictor) are:

outcomes 1111011110111101

BP state 333323333233332

predictions 111111111111111

mispredictions 111111111111111

(80% accurate)

• Key idea for conditional branch predictors: Use branch outcomes

to “train” predictor; then use predictor to predict future outcomes

8

Correlating Branch Predictors

• 2-bit prediction schemes use the recent behavior of a single branch to predict
the future behavior of that branch

• Behavior of longer sequence of branch execution history often provides more
accurate prediction outcome

• Behavior of other branches rather than just the branch we are trying to
predict is sometimes important
➢Because outcomes of different branches often correlate

➢Global branch history

• For some branches, prior history execution of the same branch is important
➢Because of loops

➢Local branch history

9

Correlating Branch Predictors: Code Example

if (aa == 2)

aa = 0;

if (bb == 2)

bb = 0; BNEZ R3,L2

if (aa != bb) {

10

Outcome depends on b1 and b2

Global History Predictor
• Can be used to capture correlating

branches from different branch
addresses

• Prediction is based on global branch
history, i.e., outcome (taken/not taken) of
previous branches from all PCs
➢History stored in a global history register (GHR),

shifted for each new branch

• Key parameter: length of global history
(size of GHR)
➢Long history reduces aliasing, but requires large

branch prediction table

➢Short history is more space-efficient, but less
precise due to aliasing

11

Global History
Register (GHR)

Counts

Prediction

Local History Predictor
• Uses history of the current

branch PC to predict branch
outcome
➢Local History Table stores outcome of

the last N instances of each branch
PC (subject to aliasing)

➢Local history used to index into global
prediction table which stores counts
corresponding to that history

• Key parameters:
➢Number of history bits per Branch PC

(determines size of Global Prediction
Table)

➢Number of bits used for Branch PC
(determines size of Local History
Table)

12

Branch PC

Local History Table

Prediction

Global Prediction Table

PC [2:11]

Combining Local and
Global Histories:
Correlating Branch
Predictor with 2-bit Global
History Register

13

Combining Global and Local History:
Global History Predictor with Index Selection

• We can combine a few bits from

(local) branch PC and a few bits

from the Global History Register

to index into prediction table

➢Size of table depends on GHR size

and #bits selected from branch PC

+ Less interference between global and

local histories

- Requires large prediction table to be

accurate

• Key parameters:

➢GHR size

➢Number of bits used from Branch PC

14

Branch PC

Prediction

Global Prediction
Table (Counts)

n bits

Global History
Register (GHR)

m bits

m + n bits

Combining Global and Local History:
Global History Predictor with Index Sharing (GShare)

• We can XOR a few bits from

(local) branch PC and a few bits

from the Global History Register

to index into prediction table

➢Size of table depends on # bits from

Branch PC (typically less than or

equal to GHR size)

+ Space-efficient: Good accuracy with

smaller table sizes.

- More aliasing: Different PC & GHR

combinations map to same entry

15

Branch PC

Prediction

Global Prediction
Table (Counts)

n bits

Global History
Register (GHR)

m bits

n bits

Tournament Predictor:
Adaptively Combining Branch Predictors

• Some branches are predicted more accurately with global predictors

• Other branches are predicted better with local predictors

• It is possible to combine both types of predictors, and dynamically select the

right predictor for the right branch

• The selector is yet another predictor with state machine per entry

16

Figure from R.E. Kessler, “The Alpha

21264 Processor,” IEEE Micro, 1999

TAGE Branch Predictor
• TAgged GEometric history length

branch prediction (Seznec &
Michaud,JILP 2006)

• More features published in 2007,
2011, 2014, 2016)
➢Variations of TAGE won the last four

branch prediction championships (CBP)

• History is tagged
➢Avoids aliasing (branch predicted using

another branch’s history)

• History length is geometric
➢Hard-to-predict branches use longer

history than more predictable branches

➢Uses a base predictor and four other
predictors with geometrically increasing
history lengths

17

Figure from A. Seznec, “The L-TAGE

Branch Predictor,” JILP, 2007.

Other Components of Branch Prediction:
Branch Target Buffer (BTB)

• A cache that stores branch targets

• Accessed by the PC of the instruction currently being fetched

• Allows branch target to be read in the IF stage

➢When a branch is predicted taken (and also for unconditional branches), the

fetch of the instruction at the branch target address can proceed immediately in

the next cycle

➢Saves stall cycles that would have been needed to wait for the decoding of the

branch and the computation of the target

18

Branch Target Buffer

19

Predicting Indirect Branches

• Indirect branches have multiple potential targets

➢Target address comes from a register, which can have many possible values

• Branch target buffers could be used for indirect branch target

prediction

➢However, many mispredictions can happen because the BTB can store only one

target per branch

• Most indirect branches come from return instructions

20

Predicting Return Addresses: Return Address Stack

• Return Address Stack (RAS) is a small address buffer organized

as a stack

• When a Call is encountered, the Return address (which is Call

address + 4) is pushed onto the RAS

• When a Return instruction is encountered, the address from the

top of the RAS is popped and used as the target

21

Dynamic Instruction Scheduling

22

Dynamic Scheduling in Out-of-Order Processors
• To overcome data hazards and enable OoO execution, processors

dynamically schedule instructions that are ready to execute
➢ Instructions are scheduled even if older instructions haven’t completed

➢ Instructions are scheduled if their dependences are satisfied, and there is a functional unit
available

• Key ideas for dynamic scheduling
➢Tracking data dependences (to ensure data hazards are avoided)

➢Checking for structural hazards

➢Register renaming (to avoid WAR and WAW, i.e., name dependences) – discussed last week

• The Instruction Decode (ID) stage in the simple 5-stage pipeline can be split
into 3 stages:
➢Decode: Identify instruction type, source and destination registers

➢ Issue: Check for structural hazards and data hazards then send instruction to functional unit

➢Read Operands: Read input operands from register file

23

Dynamic Scheduling using Tomasulo’s Algorithm
• Invented by Robert Tomasulo. First used in the IBM 360/91 floating point unit

➢ IBM 360/91 had long memory access latencies and long floating point delays

➢Tomasulo’s algorithm aims at speeding up runtime by allowing out-of-order execution

• Tomasulo’s algorithm features:

➢Distributed hazard detection logic (across reservation stations and Common Data Bus). Tracks

when input operands of instructions are available (to avoid RAW hazards)

➢ Implements register renaming in hardware (to avoid WAR and WAW hazards)

• Reservation stations

➢Buffer operands of instructions waiting to issue

➢Fetch and buffer operands as soon as they are available

➢Pending instructions designate the reservation station that will provide their input

➢When instructions issue, register specifiers for input operands are renamed to the designated

reservation station (effectively implementing register renaming)

24

Tomasulo’s Algorithm

25ARCH Figure 3.6

• Instructions sent from the instruction unit
into the instruction queue (issued in FIFO
order).

• The reservation stations include the
operation, operands, and info used to detect
and resolve hazards

• Load buffers: (1) hold components of
effective address; (2) track outstanding
loads waiting for memory, and (3) hold the
results of completed loads waiting for the
CDB.

• Store buffers: (1) hold components of the
effective address, (2) hold destination
memory addresses of outstanding stores
and (3) hold the address and value to store
until memory is available.

• All results from FP units & load unit are put
on the CDB, which goes to the FP register
file, reservation stations and store buffers.

Tomasulo’s Algorithm: Instruction Execution Steps
1. Issue (Dispatch)

➢Get the next instruction from the head of the instruction queue (FIFO order)

➢ If there is a matching and empty reservation station, issue the instruction to the station with the
operand values (if they are available in registers). If the operands are not in registers, keep track of
the functional units that will produce the operands

➢ If there are no empty reservation stations, then the instruction stalls until one is available

➢Effectively, the issue step renames registers (eliminating name dependences)

2. Execute

➢ If one or more of the operands is not yet available, monitor the common data bus.

➢When an operand becomes available, it is placed into any reservation station awaiting it.

➢When all operands are available, instruction can be executed at the functional unit.

3. Write Result

➢When the result is available, write it on the CDB and then to registers and any reservation stations or
store buffers waiting for it

➢Stores are buffered in the store buffer until both the value to be stored and the store address are
available, then written to memory when available

26

Tomasulo’s Algorithm: RS & RF
• Each reservation station (RS) has the following fields:

➢Op: Operation (e.g., add, multiply,…) to perform on source operands S1 and S2

➢Q1, Q2: Source reservation stations that will produce S1 and S2, respectively

❑If operand value is available then corresponding Q value is zero

➢V1, V2: Value of source operands S1 and S2, respectively

❑For each operand, only one of Q or V is valid

➢A: Info needed for memory address calculation for loads and stores

➢Busy: True if reservation station is occupied, false if it’s free

• Each register in the register file (RF) has a field “Qi” indicating the number of

the reservation station that will produce the value to be written into this

register

• Examples in textbook Section 3.5 illustrate in detail how Tomasulo’s

algorithm works

27

Tomasulo’s
Algorithm: Example

• What is the state of
hardware structures
after first load writes
its result?

• Note: Instruction
status is not a
hardware structure

28
ARCH Figure 3.7

• What is the state of
hardware structures
when MUL is ready to
write its result?

• Note: Instruction
status is not a
hardware structure

29
ARCH Figure 3.8

Tomasulo’s
Algorithm: Example

Precise Interrupts in Superscalar
Processors

30

Precise Interrupts

• Process state consists of program counter, registers and memory

• An interrupt or exception is precise if the saved process state is consistent

with the sequential architectural model

1. All instructions preceding interrupted instruction have been executed and modified

state correctly

2. All instructions following interrupted instruction are unexecuted and haven’t modified

state

3. If interrupt is caused by exception due to an instruction in the program, the saved PC

points to the interrupted instruction

• Providing precise state can be difficult on pipelined processors that allow out

of order execution

31

Precise Interrupts: Example

32

• I1 results in a page fault (top) or

floating point exception (bottom)

• I1 takes longer to run than I2

• By the time exception happens, I2 has

already completed execution, and R4

has already been modified

➢Architectural state at time of exception is

imprecise

I1: LOAD [ADDR]→R1
I2: ADD R2, R3 → R4

I1: FDIV F2, F3 → F1
I2: ADD R2, R3 → R4

Why is Precise State Needed?
• With speculative execution, precise state must be maintained to recover from

mispredictions and exceptions

➢Exceptions, e.g., page faults, occur without warning, but infrequently

➢Branch mispredictions occur in predictable locations, but happen frequently

• Precise state is necessary and/or desirable

➢I/O and timer interrupts: makes restarting possible

➢Allows restart after page fault (virtual memory systems)

➢Software debugging: isolate instruction causing bug

➢Graceful recovery from arithmetic exceptions by software

➢Implementing unimplemented op-codes in software

➢Precise interrupts from privileged instructions are necessary to implement virtual

machines

33

Solution: In-Order Execution
• We could avoid the problem completely by disallowing out of order completion at the

expense of performance

• Result shift register (RSR) can be used for instructions to reserve write back cycles to the

register file

• Instructions that conflict with earlier instructions marked in the RSR stall at the issue stage

34

Figure from J. Smith and A. Pleszkun,

“Implementing Precise Interrupts in Pipelined

Processors,” IEEE Trans. Computers, 1988

Precise Interrupts in Out-of-Order Processors

• The general approach:

➢ Maintain copies of the speculative state and the precise state

➢Important to implement efficiently (to quickly recover from branch mispredictions

and handle exceptions)

• Register buffering methods

➢Checkpoint repair

➢Reorder buffer

➢History Buffer

➢Future file

35

Checkpoint Repair
• Multiple copies of the register file provide multiple logical spaces, organized

as a stack

• A single logical space is active at any given time

• Periodically, the active logical space's architecture state is pushed onto the
stack as a backup or checkpoint

• An exception or mispredicted branch causes the following:
➢The backup copy is made safe by allowing all instructions before the branch or exception to

complete

➢The state is recovered from the backup copy

➢The backup copy used depends on: (1) the location of the exception or branch; and (2) the time

backups were taken

• Disadvantage
➢Requires a lot of storage and overhead to create and store backups

➢This is especially bad for branch recovery, since a backup at every branch is needed

36

Reorder Buffer (ROB)
• The reorder buffer FIFO is used to hold the speculative state while the

register file holds the in-order (precise) state

➢The architectural state is obtained by taking the most recent entry for a register from either the

register file or the reorder buffer

• When an instruction is decoded, an entry is allocated on the top of the

reorder buffer to hold the result of the instruction

• ROB includes the following fields:

➢ Instruction Type: Whether the instruction is a branch (no destination), store (memory address

destination) or a register operation (any other ALU instruction with register destination)

➢Destination: Location where results should be written. Either register number (for ALU

operations or loads) or memory address (for stores)

➢Value: Holds the value of the instruction result until the instruction commits and writes result to

destination

➢Ready: True if the instruction has completed execution, i.e. Value is valid. .

37

Reorder Buffer Operation
• When a value reaches the head of the ROB

➢If the associated instruction is not complete, the slot remains there until it completes

❑Instructions can continue to be decoded until the reorder buffer is full

❑ROB size can limit performance since it can throttle instruction decode

➢If there is a fault associated with the value, the ROB is discarded, and the in-order state
of the register file is used

➢If there is no fault, the value is written to the register file and the entry removed from the
ROB

• The in-order (precise) state is always available in the register file, thus
it is restored immediately

• ROB is the single site that completely records the program order of all
instructions
➢Note that register writes and memory accesses need to complete in program order for

correctness (not just for precise interrupts)

38

Reorder Buffer

• ROB is added for all instructions

• ROB takes over the function of store

buffer for store instructions

• For a wide superscalar, CDB is wider

to allow multiple instructions to

complete every cycle

• For fast execution, need to bypass RF

and read data directly from ROB

➢High overhead to enable reads from

multiple ROB entries in parallel

39ARCH Figure 3.11

Instruction Execution Steps with Reorder Buffer
1. Issue (Dispatch)

➢Get the next instruction from the head of the instruction queue (FIFO order)

➢ If there is an empty RS and an available ROB entry, issue the instruction to the station with the
operand values, if they are available in registers or ROB. The number of ROB entry allocated to
instruction is sent to RS to tag the result when written to the CDB

➢ If there is no empty RS or ROB is full, then the instruction stalls

2. Execute

➢ If one or more of the operands is not yet available, monitor the CDB till they are written there

➢When all operands are available in the RS, instruction can be executed at the functional unit

3. Write Result

➢When the result is available, write it on the CDB (with ROB tag) and then to ROB and any reservation
stations waiting for it

➢For stores: If value is available then it’s written into the ROB entry value field; otherwise CDB is
monitored until value is available

4. Commit (Retire): In order, only from head of the ROB

➢ALU (store) instruction reaches head of the ROB: If value is available then value is written to register
(memory) and ROB entry is removed

➢Branch instruction reaches head of the ROB: If branch prediction is correct, ROB entry is removed. If
branch is incorrectly predicted, ROB is flushed and execution restarts at the correct branch target

40

ROB Example

• Latencies:
➢ADD: 2 cycles

➢MUL: 6 cycles

➢DIV: 12 cycles

• What is the state of
different structures
when MUL is ready
to commit?

41

ROB Alternative 1: History Buffer
• Register file stores the architectural state, while a history buffer holds old values of

registers (to be restored if needed)

• When an instruction is decoded:

➢The value in its destination register is pushed into the history buffer

➢The oldest value in the history buffer is discarded

❑ If the oldest value's corresponding instruction has not completed, the decode process stalls until it does

• When an exception or misprediction occurs:

➢Decoding is suspended

➢All pending instructions are allowed to complete

➢Register values are popped off the history buffer stack until the in-order state prior to the problem

instruction has been restored

• Disadvantage

➢Many cycles are required to restore in-order state in the event of a fault

➢This is especially bad for branch mispredictions since they occur frequently

42

ROB Alternative 2: Future File
• The Future File acts like a normal register file

➢The “architectural” register file (RF) holds precise state while Future File holds latest register state

❑During decode, all operands are read from either the RF or the future file, whichever is current

❑The value read from the future file could be a tag if producing instruction has not yet completed

➢The ROB manages lookahead state for eventual retirement to the RF

➢When non-faulting instructions reach the head of the ROB, their results are written to the RF

➢When a faulting instruction reaches the head of the ROB, the Future File and the ROB are cleared

• When an instruction completes:

➢ It writes its result to the ROB.

➢Also writes to Future File if it’s the last decoded instruction to write register

• Advantages:

➢Reading operands from the ROB is not required

➢Recovering to precise state is fast (unlike history buffer)

43

44

Announcements

• Reading Assignments

➢ARCH “Hennessy & Patterson”

❑Appendix C.2 starting from Branch Prediction (Read)

❑Chapter 3.3, 3.4, 3.5, 3.6 (Read)

❑Chapter 3.7, 3.8 (Skim)

➢(750 Students) A. Seznec, “The L-TAGE Branch Predictor,” Journal of Instruction

Level Parallelism, 2007. https://jilp.org/vol9/v9paper6.pdf (Read)

• You need to complete gem5 tutorial (deadline: Sep 15). Not

graded

• Assignment 1 due Sept 26

https://jilp.org/vol9/v9paper6.pdf

45

Exam Logistics

• Exam 1 is on Wednesday during class time (12:30-1:20 PM)

• Open book, notes, calculator

• Exam will be available on the course canvas page. Link active during

class time

• You need to have a laptop with internet connection even if you are

attending in the classroom

• If you want to attend the exam remotely, you need to join the zoom

link and turn your camera on

➢Zoom link will be sent on Piazza the day of the exam

• Attendance will be taken on exam days. You need to be in the

classroom or on zoom for your exam to count.

