
CMPT 450/750: Computer Architecture

Fall 2022

Pipeline Complexity &

Memory Ordering

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

Dynamic Instruction Scheduling (Review)

• After instructions are fetched, decoded and renamed, they are

placed in instruction buffers where they wait until issue

• An instruction can be issued when its input operands are ready,

and there is a functional unit available

• All out-of-order issue methods must handle the same basic steps

➢Identify all instructions that are ready to issue

➢Select among ready instructions to issue as many as possible

➢Issue the selected instructions, e.g., pass operands and other information to the

functional units

➢Reclaim instruction window storage used by the now issued instructions

2

Methods of Organizing Instruction Issue Buffers
1. Single shared queue

➢Only for in-order issue

2. Multiple queues, one

per instruction type

3. Multiple reservation

stations, one per

instruction type

4. Single central

reservation stations

buffer

➢Combines functions of RS

and ROB. Allocation and

removal in FIFO order.

3
Smith & Sohi 1995, Figure 9

Tradeoffs in Pipeline Design
• Tradeoff between complexity and speed

➢Pipeline consists of many stages with different functions

4

Palacharla et al., 1997, Figure 1

Tradeoffs in Pipeline Design
• Clock speed (i.e., Frequency) is determined by slowest, most

complex stage

➢Unless stage is split or work is redistributed to other stages

➢A good design is balanced: No single stage is the only bottleneck

• To achieve high IPC, we need larger instruction window which

increases complexity

➢Remember execution time equation:

Time = Instructions/Program x Cycles/Inst x Time/Cycle = Inst x CPI / Frequency

➢To reduce execution time, we need to decrease CPI and increase frequency

➢Decreasing CPI (i.e., increasing IPC) requires more complex wide superscalar

processors that can fetch, decode, issue, execute and retire multiple instructions

every cycle

➢Complexity increases work per pipe stage, which decreases clock speed 5

Which Structures Have High Complexity?

• Some structures that get more complex with larger issue width or

larger instruction window

➢Register Rename Logic

❑Translates logical registers to physical registers

➢Wakeup Logic

❑Wakes up instructions waiting for their source operands

➢Selection Logic

❑Selects instructions for execution from pool of ready instructions

➢Bypass Logic

❑Bypass operand values from instructions that finished execution but not write back to

subsequent instructions

6

Register Rename Logic
• Translates logical to physical

registers by accessing a map

table indexed by logical register

• Map table is multi-ported

➢Multiple instructions (each with one or

more register operands) need renaming

every cycle

• Dependence check logic needed

➢Detects whether logical register being renamed is written by an earlier

instruction in the current group being renamed

➢Sets up output MUXes to select appropriate physical registers

7

Palacharla et al., 1997, Figure 2

Register Rename Logic Implementations
• RAM (Random Access Memory) Scheme (e.g., MIPS R10000)

➢Logical register used to index table, corresponding entry contains current physical

register mapping

➢Number of entries = number of logical registers

• CAM (Content-Addressable Memory) Scheme (e.g., DEC 21264)

➢Number of entries = number of physical registers

➢Each entry contains current logical register mapped to this physical register, and a valid bit

➢Renaming done by CAM matching on logical register field

• Dependence check logic done in parallel and has lower latency

➢Only map access is on the critical path

8

Rename Delay vs. Issue Width
• RAM scheme acts like a random

access memory:
➢Address decoders drive wordlines

➢Accessed lines discharge on bitlines

➢Bitline changes are sensed by a
sense amplifier which produces output

• Components of Rename delay
(RAM):

1. Decoder delay

2. Wordline delay

3. Bitline delay

4. Sense amplifier delay

• First three components are
linear with issue width

9Palacharla et al., 1997, Figure 3

Wakeup Logic
• Responsible for updating source dependences for

instructions in issue window waiting for source

operands to become available

• Operation

➢When a result is produced, result tag is broadcast to all

instructions in issue window

➢Each instruction compares tag to its source operands

➢ If match, the operand is marked as available by setting

appropriate flag (rdyL or rdyR)

➢Once both operands of an instruction are available, the

ready flag is set (instruction is ready to execute)

• Issue width is a CAM, buffers drive the result tags

• Each CAM entry has 2xIW comparators to compare

each of the result tags against the two operand tags

of the entry
10

Palacharla et al., 1997, Figure 4

Wakeup Logic Delay

• Delay = Ttagdrive + Ttagmatch + TmatchOR

• All components are quadratic with issue width, Ttagdrive also quadratic with window size

11

Palacharla et al., 1997, Figure 5 Palacharla et al., 1997, Figure 6

Selection Logic
• Responsible for choosing instructions for

execution from the pool of ready
instructions

• Inputs: request signals, one per instruction
that is set when wakeup logic detects all
operands are ready

• Outputs: grant signals, one per request
signal that allows the instruction to be
issued to the functional unit

• Selection policy decides which requesting
instruction to grant (e.g., oldest first)

• Structure: Tree of arbiters operating in two
phases:

1. Request signals propagate up the tree, root
detects if any instruction is ready, root
grants functional unit to one of its children

2. Grant signal propagates down the tree to
the selected instruction 12

Palacharla et al., 1997, Figure 7

Selection Logic Delay
• Root delay fixed.

• Propagation delays proportional

to height of arbitration tree

➢Height ~ log4(Window size)

➢ Independent of issue width

13

Window Size
Palacharla et al., 1997, Figure 8

Data Bypass Logic

14

Palacharla et al., 1997, Figure 9

• Responsible for forwarding

results from completing

instructions to dependent

instructions, bypassing register

file

• Number of bypass paths depends

on pipeline depth and issue width

➢Assuming 2-input functional units, IW

issue width, S pipe stages after first

result-producing stage, we need:

2 x IW2 x S paths

• Two components of data bypass

logic: Datapath and control

Data Bypass Logic Components
• Datapath:

➢Result busses used to broadcast bypass values from each functional unit source to all possible
destinations

➢Buffers used to drive bypass values on result busses

• Control logic:
➢Controls operand MUXes

➢Compares tags of result values with tags of source value required at each functional unit

➢Sets appropriate MUX control signals on match

• Delay is dominated by datapath not control

• Bypass delays Table:

15

Palacharla et al., 1997, Table 1

Comparing All Delay Components

16
Palacharla et al., 1997, Table 2

Memory Ordering

17

Handling Memory Operations

• Some instructions (loads, stores) have memory operands, and need to
access the memory hierarchy
➢Accesses performed in the “memory” stage of the superscalar processor pipeline

• To maximize ILP, loads/stores may execute out of order

• Memory operations require special handling

➢Recall that Register dependences are identified at decode time

❑Allows early renaming to remove false dependences

❑Maximizes ILP

➢But Memory dependences cannot be determined before execution since memory
addresses need to be computed first

➢False dependences exist in memory execution stream

❑For example, multiple stores to the same bytes (WAW)

❑Frequent due to stack pushes and pops

18

How Processors Execute Memory Operations
• Functions that a processor has to do for memory operations:

➢Enforcing memory dependences among loads and stores

➢Stores/Writes to memory need to be ordered and non-speculative

➢Stores issue to the data cache after retirement

• Loads and stores ordering is enforced using load and store buffers while allowing

out of order execution

• Stores consist of address and data uops. Store addresses are buffered in a queue

• Store addresses remain buffered until:

➢Store data is available AND Store instruction is committed in the reorder buffer

• New load addresses are checked with the waiting store addresses. If there is a

match:

➢The load waits OR Store data is bypassed to the matching load
19

Load and Store Buffers

20
Smith & Sohi 1995, Figure 11

Store Buffer

• Store addresses are buffered in a queue

➢Entries allocated in program order at rename

• Store addresses remain buffered until:

➢Store data is available

➢Store instruction is retired in the reorder buffer

• New load addresses are checked with the waiting older store addresses

➢If there is a match:

❑The load waits OR

❑Store data is bypassed to the matching load

➢If there is no match:

❑Load can execute speculatively OR

❑Load waits till all prior store addresses are computed

21

Store Buffer Operation

• To match loads with store addresses, the store buffer is typically organized

as a fully-associative queue (could also be set-associative)

➢An address comparator in each buffer entry compares each store address to the

address of a load issued to the data cache

➢Multiple stores to same address may be present

➢Load-store address match is qualified with “age” information to match a load to the last

preceding store in program order

❑Age is typically checked by attaching the number of the preceding store entry to each load at

rename

❑Effectively provides a form of “memory renaming”

22

Load Buffer

• Loads can speculatively issue to the data cache out-of-order

• But load issue may stall

➢Unavailable resources/ports in the data cache

➢Unknown store addresses

➢Delayed store data execution

➢Memory mapped I/O

➢Lock operations

➢Misaligned loads

23

Load Buffer Operation

• Load buffer is provided for stalled loads to wait

• Load entries are allocated in program order at rename

• A stalled load simply waits in its buffer entry until stall condition is

removed

➢Scheduling logic checks for awakened loads and re-issues them to the data

cache, typically in program order

24

Load-Store Dependence Speculation

• Load buffers are sometimes used for load-store dependence
speculation
➢When a load issues ahead of a preceding store, it is impossible to perform

address match

➢Option 1: Stall the load until all prior store addresses are computed
❑Significant performance impact in machines with deep, wide pipelines

➢Option 2: Speculate that the load does not depend on the previous unknown
stores
❑Needs misprediction detection and recovery mechanism

• One detection mechanism is to make the load buffer a fully
associative queue
➢Store addresses are checked against all previously issued load addresses

➢Only younger loads need to be checked

25

Memory Consistency

• Load buffer snoops other processors’ stores to maintain memory

consistency on some processors

• Stores from other threads on the same processor need to be snooped in the

load buffer to maintain memory consistency

• Memory consistency models define ordering requirements of loads and

stores to different addresses and from multiple processors

➢Discussed later in the course

• Examples for memory consistency models

➢Sequential Consistency (SC)

➢Total Store Order (TSO)

26

Memory Dependence Prediction

• Memory Order Violation: A load is executed before an older store,

reads the wrong value

• False Dependence: Loads wait unnecessarily for stores to

different addresses

• Goals of Memory Dependence Prediction:

➢Predict the load instructions that would cause a memory-order violation

➢Delay execution of these loads only as long as necessary to avoid violations

27

Memory Dependence Prediction

• Memory misprediction recovery is expensive

➢Requires a pipeline flush if a store address matches a younger issued load

➢Compare to branch mispredictions

• Memory dependence prediction minimizes such mispredictions

➢Issue younger loads if predictor predicts “no dependence”

➢Stall younger loads if predictor predicts “dependence”

➢With a good predictor, this approach minimizes unnecessary stalls (false dependences)

as well as pipeline flushes from mispredictions

28

Alternatives to Memory Dependence Prediction
• No Speculation

➢Issue for any load waits till prior stores

have issued

• Naïve Speculation

➢Always issue and execute loads when

their register dependences are satisfied,

regardless of memory dependences

• Statistics for some benchmarks:

29
Chrysos&Emer, 1998, Table 3.1

Perfect Memory Dependence Prediction

• Does not cause memory order violations

• Avoids all false dependences

30

Chrysos&Emer, 1998, Figure 3.1

Store Sets
• Based on the assumption that future dependences can be

predicted from past behavior

• Each load has a store set consisting of all stores upon which it
has ever depended
➢Store is identified by its PC

• When program starts, all loads have empty store sets

• When a memory order violation happens, store is added to load’s
store set

31

Store Set Example
PC Inst

0 Store C

4 Store A

8 Store B

12 Store C

…

28 Load B SS = {PC 8}

32 Load D SS = { }

36 Load C SS = {PC 0, PC 12}

40 Load A SS = {PC 4}

32

Store Set Performance
• Infinite SS configuration (#sets, #elements/set are not limited)

• Each dynamic load is classified as:
➢Not predicted (loads with empty store sets)
➢Correctly predicted
➢False dependence (unnecessary wait)
➢Memory order violation (dependence not predicted)

33

Chrysos&Emer, 1998, Figure 5.2

More Practical Store Set Performance
• Hardware resources are not infinite, so we cannot allow infinitely

large store sets per load

• Results when limiting store sets:
➢At most one load can depend on any store

➢Each load depends on at most one store

34

Chrysos&Emer, 1998, Figure 5.1

Reducing False Dependences
• With infinite SS, a store dependence remains in a load’s store set forever, even if some

dynamic instances of the load are independent

• To reduce false dependences, we can use 2-bit saturating counters

➢ Set to max value (3) on a memory order violation

➢ Decremented if real dependence doesn’t exist, incremented if real dependence exists

➢ Counter values of 2 or 3 cause load to wait; otherwise no dependence is assumed

35

Chrysos&Emer, 1998, Figure 5.3

Store Set Comparison to Perfect Prediction

• Infinite SS with 2-bit saturating counters are very close to perfect
memory dependence prediction

36

Chrysos&Emer, 1998, Figure 5.4

Practical Store Set Implementation
• Store Set Identifier Table (SSIT): PC-indexed, maintains store sets

• Last Fetched Store Table (LFST) maintains dynamic inst. count about most recently fetched

store for each store set

• Limitations:

➢ Store PCs exist in one store set at a time

➢ Two loads depending on the same store can share a store set

➢ All stores in a store set are executed in order
37

Chrysos&Emer, 1998, Figure 6.1

Implementation Details
• Recently fetched loads

➢Access SSIT based on their PC, get their SSID

➢If SSID is valid, LFST is accessed to get most recent store in the load’s store set

• Recently fetched stores

➢Access SSIT based on their PC

➢If SSID is valid, then store belongs to a valid store set

❑Access LFST to get most recently fetched store information in its store set

❑Update LFST inserting its own dynamic inst. count since it is now the last fetched store in
that store set

❑After store is issued, it invalidates the LFST entry if it refers to itself to ensure loads & stores
are only dependent on stores that haven’t been issued

38

Store Set Interference

• Destructive interference happens because stores can belong to only one
store set

Example:

Load PC 1 → Store Set 1 { Store PC X, Store PC Y, Store PC Z }

Load PC 2 → Store Set 2 { Store PC J, Store PC K }

• Assume that Load PC 1 has a memory order violation with Store PC J
➢Each store can exist in one SS, so we need to remove Store PC J from SS 2 and add it to SS 1

➢But this causes future memory order violation between Load PC 2 and Store PC J

• Store set merging avoids the problem

39

Store Set Merging
• When a store-load pair causes a memory order violation:

➢ If neither has been assigned a store set, a store set is allocated and assigned to both
instructions

➢ If load has been assigned a store set but the store hasn’t, the store is assigned the load’s store
set

➢ If store has been assigned a store set but the load hasn’t, the load is assigned the store’s load
set

➢ If both have store sets, one of them is declared the winner, and the instruction belonging to the
loser’s store set is assigned the winner’s store set

40

Chrysos&Emer, 1998, Figure 6.2

Store Set Performance

• For the practical SS implementation, cyclic clearing of valid bits (every ~1M
cycles) is almost the same as 2-bit saturating counters

• With sufficiently large structures, performance very close to perfect
prediction

41

Chrysos&Emer, 1998, Figure 6.3

42

Reading Assignments

• S. Palacharla, et al., “Complexity-Effective Superscalar

Processors,” ISCA 1997.

• G.Z. Chrysos and J.S. Emer, “Memory Dependence Prediction

using Store Sets,” ISCA 1998.

