
CMPT 450/750: Computer Architecture

Fall 2022

Memory Hierarchy

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

Revisiting Processor Performance

• Program Execution Time =

(CPU Clock Cycles + Memory Stall Cycles) x Clock Cycle Time

• For each instruction:

CPI = CPI(Perfect Cache) + Memory stall cycles per instruction

• With no caches, all memory requests require accessing main memory

➢Very long latency

• Caches filter out many memory accesses

➢Reduces execution time

➢Reduces memory bandwidth & power

2

Cache Performance

• Memory stall cycles Per Instruction =

Cache Misses per instruction x Miss Penalty

• Processor Performance:

CPI = CPI(Perfect Cache)

+ Misses per instruction x Miss Penalty

• Average Memory Access Time =

Hit Time + Miss rate x Miss penalty

• Cache hierarchies attempt to reduce average memory access

time

3

Cache Performance Metrics
• Hit rate: #hits / #accesses

• Miss rate: #misses / #accesses

• Misses per instruction (or 1000 instructions: MPKI)

➢Misses/Instruction = miss rate x memory accesses / Instruction count

= miss rate x memory accesses per instruction

➢MPKI= 1000 x miss rate x memory accesses per instruction

• Hit time: time from request issued to cache until data is returned to the
processor

➢Depends on cache design parameters

➢Bigger caches, larger associativity, or more ports increase hit time

• Miss penalty: depends on memory hierarchy parameters

• We need a memory hierarchy to reduce the miss penalty

4

Cache Performance Example
Program P running on a processor has an average IPC of 0.5. 40% of program P’s
instructions are loads and stores. P has an L1 miss rate of 10% and an average
miss penalty of 30 cycles. How much faster will P run if all loads and stores are
cache hits?

• CPI = 1/IPC = 2.0; Memory accesses per instruction = 40% = 0.4

• Misses per instruction = memory accesses per instruction x miss rate

= 0.4 x 0.1 = 0.04

• CPI = CPI(Perfect Cache) + misses per instruction x miss penalty

2.0 = CPI(Perfect Cache) + 0.04 x 30

• CPI(Perfect Cache) = 2.0 – 0.04 x 30 = 0.8

• Speedup for perfect cache = CPI/CPI(Perfect Cache) = 2.0/0.8 = 2.5 x

➢Perfect cache is 2.5 x faster (or 150% faster)

5

Miss Rate OR Misses Per Instruction?
• Miss rate used to compute average memory access time (AMAT)

Hit Time + Miss rate x Miss penalty

• Misses Per Instruction (or MPKI) used to compute CPI & Execution Time

CPI = CPI(Perfect Cache) + Misses per instruction x Miss Penalty

Execution Time = Inst/Program x CPI x Cycle Time

• MPKI is more directly related to performance

• Is it possible to have worse performance with a better miss rate?

6

MPKI vs. Miss Rate Example
Programs P1 and P2 run on a processor with a 4GHz frequency, an L1 cache hit
time of 1 ns and an L1 average miss penalty of 30 ns. P1 has a miss rate of 5% and
an MPKI of 25. P2 has a miss rate of 10% and an MPKI of 10. Both programs have a
CPI of 0.5 with a perfect L1 cache. Compare P1 and P2’s AMAT and CPI.

Note: Cycle Time = 1/frequency = 0.25 ns

• AMAT(P1) = Hit Time + Miss Rate(P1) x Miss Penalty = 1 + 0.05 x 30 = 2.5 ns

• AMAT(P2) = Hit Time + Miss Rate(P2) x Miss Penalty = 1 + 0.1 x 30 = 4 ns

• CPI(P1) = CPI(Perfect Cache) + misses per instruction(P1) x miss penalty

= 0.5 + (25/1000) x (30/0.25) = 3.5

• CPI(P2) = CPI(Perfect Cache) + misses per instruction(P2) x miss penalty

= 0.5 + (10/1000) x (30/0.25) = 1.7

• P1 has lower average memory access time but worse performance. Why?

7

Why Do Caches Work?
• Spatial Locality

➢ If data at a certain address is accessed, it is likely that data located at nearby addresses will also

be accessed in the (near) future

➢ Implications:

❑ Cache line (block) size tradeoff

❑ Prefetching brings lines to the cache before they are demanded

• Temporal Locality

➢ If data at a certain address is accessed, it is likely the same data will be accessed in the (near)

future

➢ Implications:

❑ Replacement policies try to predict which lines will be not be accessed (or will be accessed furthest) in the future

❑ Insertion policies prioritize lines that will be accessed sooner

❑ Dead block predictors predict which lines will be dead-on-arrival so they aren’t allocated

• We still need multiple cache levels in the memory hierarchy to bridge the gap

between processor and memory speeds
8

Memory Hierarchy

• First-level caches
➢Usually Split I & D caches

➢Small and fast

• Second-level caches
➢Usually on-die

➢SRAM cells

• Third-level… etc.?

• Main memory
➢DRAM cells

➢ focus on density

• Solid-State Disk

• Hard Disk
➢Usually magnetic device, non-volatile

➢Slow access time

9

Processor

L1I$ L1D$

L2 Cache

Main Memory

Disk

L3/LLC

Memory Hierarchy for a Mobile Device

10

ARCH Figure 2.1(A)

Memory Hierarchy for a Desktop/Laptop

11

ARCH Figure 2.1(B)

Memory Hierarchy for a Server

12

ARCH Figure 2.1(C)

Basic Cache Structure (Review)

• Array of blocks (lines)

➢Each block is usually 32-128 bytes

• Finding a block in cache:

• Offset: byte offset in block

• Index: Which set in the cache is the block located

• Tag: Needs to match address tag in cache

13

Tag Index Offset
Data

Address

Locating a Block in the Cache
• Set associativity

➢Set: Group of blocks corresponding to
same index

➢Each block in the set is called a Way

➢2-way set associative cache: each set
contains two blocks

➢Direct-mapped cache: each set contains
one block

➢Fully-associative cache: the whole cache
is one set

• Need to check all tags in a set to
determine hit/miss status then
select correct block
➢Higher latency for set-associative caches

14

ARCH Figure B.2

Example: Cache Block Placement

• Consider a 4-way, 32KB cache with 64-byte lines

• Where is 48-bit address 0x0000FFFFAB64?

➢Number of lines = cache size / line size = 32K / 64 = 512

➢Each set contains 4 lines  Number of sets = 512/4 = 128 sets

➢Offset bits = log2 (64) = 6: 0x24

➢Index bits = log2 (128) = 7: 0x2D

➢Tag bits = 48-(6+7) = 35: 0x00007FFFD

15

Cache Associativity Example
Program P runs on a processor with a 4 GHz frequency. The average memory access latency

on a cache miss is 40 ns. Which one of these caches gets better performance for P?

1. 64KB direct-mapped cache with miss rate of 3%, hit latency = 3 cycles

2. 64KB 4-way set-associative cache with miss rate of 2%, hit latency = 4 cycles (due to extra

latency of tag match/select)

• Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns

• Hit Time = cycles/hit x cycle_time

• Average memory access time(1) = Hit Time(1) + Miss rate(1) x miss penalty

= 3 x 0.25 + 0.03 x 40 = 1.95 ns

• Average memory access time(2) = Hit Time(2) + Miss rate(1) x miss penalty

= 4 x 0.25 + 0.02 x 40 = 1.8 ns

• Cache 2 (4-way) is better even if hit time is higher.

• What if frequency is lower for set-associative cache?
16

Types of Cache Misses
• Compulsory (cold) misses: First access to a block. Compulsory misses occur

even for infinite size cache

➢Could be reduced by prefetching blocks before they are demanded

• Capacity misses: A cache cannot contain all blocks needed in a program.
some blocks are discarded then later accessed. Capacity misses occur in a
fully-associative cache.

➢Could be reduced with insertion/replacement policies and dead block prediction

• Conflict misses: Blocks mapping to the same set may be discarded (in direct-
mapped and set-associative caches).

➢Could be reduced by increasing associativity or better replacement/insertion
policies

• Coherence misses: Misses due to shared memory accesses

➢Discussed later this course

17

Miss Distribution

18

ARCH Figure B.8

Common Cache Optimizations

• Cache optimizations target reducing average memory access time

Average memory access time = Hit Time + Miss rate x Miss penalty

19ARCH Figure B.18

Virtual vs. Physical Addressing

• Using virtual addresses to access the L1 cache reduces latency

➢Physical addresses need address translation

• Issues with virtually-addressed caches

➢Handing synonyms: multiple VAs mapping to same PA

➢Address translation needed on L1 misses

➢Reverse translation needed for coherence in a multiprocessor system

➢Need to invalidate whole cache on a context switch

• Some L1 caches are “virtually-indexed, physically tagged” to parallelize

cache access with address translation when indexing the cache. PA is still

needed to match tags.

20

Multi-Level Cache Example
Program P with 30% loads/stores runs on a processor with a 4 GHz frequency. A main memory access needs 80 ns.
Consider the following caches:

1. L1 data cache: 32KB 8-way cache with 4-cycle hit latency and a miss rate of 10%

2. L2 cache: 256KB 8-way cache with 10-cycle hit latency and a miss rate of 30%

3. L3 cache: 6MB 24-way cache with 35-cycle average hit latency and a miss rate of 50%

What is the average memory access time for a system with (1) L1 only; (2) L1 and L2; (3) L1,L2 and L3?

• Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns; Hit Time = cycles/hit x cycle_time

• Average memory access time(L1) = Hit Time(L1) + Miss rate(L1) x miss penalty(Memory Access)

= 4 x 0.25 + 0.1 x 80 = 9 ns

• Average memory access time(L1,L2) = Hit Time(L1) + Miss rate(L1) x miss penalty(L2 Access)

• L2 Access Latency = Hit Time (L2) + Miss rate (L2) x miss penalty(Memory Access)

= 10 x 0.25 + 0.3 x 80 = 26.5 ns

• Average memory access time(L1,L2) = 4 x 0.25 + 0.1 x 26.5 = 3.65 ns

• Average memory access time(L1,L2,L3) = Hit Time(L1) + Miss rate(L1) x miss penalty(L2 Access)

= Hit Time(L1) + Miss rate(L1) x (Hit Time (L2) + Miss rate(L2) x (Hit Time(L3) + Miss rate(L3) x Miss Penalty(Memory)))

= 4 x 0.25 + 0.1 x (10 x 0.25 + 0.3 x (35 x 0.25 + 0.5 x 80)) = 2.71 ns

21

Cache Management Policies
• Cache replacement policy:

➢On a cache line fill, which victim line to replace?

➢Only applicable to set-associative caches

❑ Direct-mapped caches have only one line per set

➢Examples: LRU, more advanced policies

➢Discuss stack algorithms

• Cache insertion policy:

➢When a cache line is filled, what would its priority be in the replacement stack?

➢LRU: fill line is inserted in “Most Recently Used” position

➢Other policies: LIP, BIP, DIP

➢Dead block prediction helps determine lines that won’t be reused (either

bypassed or inserted in LRU position)

22

Miss Penalty in Out-of-Order Processors

• Recall:

Memory stall cycles/Instruction = Cache Misses/instruction x miss penalty

• This assumes that the whole miss penalty is observed for all instructions

• In modern OoO processors, miss penalty for a single miss may be overlapped

with other latencies

➢Overlapped with executions of other instructions in the instruction window

➢Overlapped with other memory accesses if cache is non-blocking (called

memory-level parallelism)

• So we only need to include non-overlapped miss penalty:

Memory stall cycles/Instruction

= Cache Misses/instruction x (miss latency – overlapped miss latency)

23

Non-Blocking Cache Hierarchy

• Superscalar processors can reduce average memory latency by overlapping
multiple misses

• Cache hierarchies can simultaneously service multiple memory requests

➢Do not block cache references that do not need the miss data (Called hit-under-
miss optimization)

➢Service multiple miss requests to memory concurrently (Called hit-under-
multiple-miss OR miss-under-miss optimization)
❑Only useful if memory can service multiple requests in parallel

• These caches are called non-blocking (or lockup-free) caches

• Miss penalty with memory-level parallelism (MLP):

Memory stall cycles/Instruction

= Cache Misses/instruction x (miss latency / average outstanding misses)

24

Memory-Level Parallelism Example
Program P has runs on a processor with a 4 GHz frequency. P has 10 billion instructions, and
has a CPI of 0.5 with a perfect cache. The L1 cache is a non-blocking cache that can enable up
to 16 outstanding misses at a time. The average memory access latency on a cache miss is 40
cycles. The L1 cache is a 32KB 8-way set-associative cache with a miss rate of 3%. Compare
P’s execution time when the average number of outstanding misses changes from 1 to 2.

• Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns

• CPI = CPI(Perfect Cache) + miss rate x miss penalty

• For MLP = 1:

CPI = 0.5 + 0.03 x 40 = 1.7

Execution Time = Instructions/Program x CPI x Cycle time = 10B x 1.7 x 0.25 ns = 4.25 seconds

• For MLP = 2:

CPI = 0.5 + 0.03 x 40 / 2 = 1.1

Execution Time = Instructions/Program x CPI x Cycle time = 10B x 1.1 x 0.25 ns = 2.75 seconds
(55% faster)

25

Implementing Non-Blocking Caches

• Caches use Miss Status Holding (Handling) Registers to facilitate

non-blocking memory level parallelism

• MSHRs are used to track address, data, and status for multiple

outstanding cache misses

• Need to provide correct memory ordering, respond to CPU

requests, and maintain cache coherence

• Design details (and names) vary widely between different

processors but basic functions are similar

26

Example MSHR Structure & Operation
• Each MSHR contains the following information

➢ Data address of requested cache block

➢ Block Valid Bit

➢ PC of requesting instruction

➢ For each word in cache line: Valid bit, destination (register where

data will be stored), format bits (e.g., load width, int vs. fp, byte

address bits, whether word is to be sign-extended)

➢ Partial write codes: Indicates which bytes in a word has been

written to the cache

• On a cache miss, one MSHR is assigned

➢ Valid bit set

➢ Data address saved

➢ PC of requesting instruction saved

➢ Appropriate word valid bits set and other cleared

➢ Appropriate destination and format fields set for valid words

➢ Partial write codes cleared

27

Farkas and Jouppi,
“Complexity/Performance Tradeoffs with
Non-Blocking Loads”, ISCA 1994

Reducing Cache Misses
• Cache misses are very costly

• Need multiple cache levels with

➢High associativity or/and victim caches to reduce conflict misses

➢Effective replacement algorithms

➢Insertion policies

➢Data and instruction prefetching

➢Dead block prediction

• Several mechanisms discussed next week

28

29

Reading Assignments

• ARCH Chapter 2.1, 2.2, 2.3, 2.4 (Read)

• ARCH Appendix B (Skim, Covered in 295/Quiz 1)

