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Recall: Cache Misses are Expensive
• Cache misses result in large performance and energy losses

• Cache Miss Types:

➢Compulsory: Misses in an infinite cache

➢Capacity: Misses in a fully-associative cache

➢Conflict: Misses due to limited number of ways per set

• To reduce cache misses, we can use:

➢High associativity or/and victim caching (conflict misses)

➢Prefetching (compulsory and capacity) 

➢Effective replacement algorithms (conflict and capacity misses)

➢Insertion policies (conflict and capacity misses)

➢Dead block prediction (conflict and capacity misses)
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Impact of Cache Misses
• Why are cache misses expensive?

➢Blocking cache: Severely reduce performance

➢Non-blocking cache: Load stalls in ROB, can prevent instruction issue or fetch
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Cache Hit Time Tradeoffs
• Cache hit time is important to reduce average memory access time

• However, reducing hit time comes at the expense of higher miss rates or 

higher energy consumption

• Cache Size Tradeoff

➢Smaller caches are faster to access

➢However, smaller caches have higher capacity misses

• Associativity Tradeoff

➢Direct-mapped cache: faster access time, more conflict misses

➢Set-associative cache: slower access time, fewer conflict misses

• Tag and Data Access Tradeoff

➢Parallel tag and data access reduces hit time but wastes energy due to extra dynamic power

➢Sequential tag then data access is slower but saves energy

❑ Typically done in L2, L3 etc. 
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Example: 4KB Direct-Mapped Cache with 16B Lines
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• More recent analysis from SPEC 2006 and SPEC 2017 

workloads: “A Reusable Characterization of the 

Memory System Behavior of SPEC2017 and SPEC2006”  

https://dl.acm.org/doi/fullHtml/10.1145/3446200

Miss rates: Jouppi 1990 Table 2-2

Performance: Jouppi 1990 Figure 2-2

https://dl.acm.org/doi/fullHtml/10.1145/3446200


Many Misses Caused by Conflicts

• In direct-mapped caches, 

conflict misses represent 

significant percentage

➢Average: 39% for D-cache, 

29% for I-cache

6Jouppi 1990 Figure 3-1



First Proposal: Miss Caching

• Miss Cache: Small cache 

placed between the L1 and L2 

caches

➢Provides additional associativity 

without increasing hit time in 

common case

➢Fully associative cache 

containing 2-5 lines

➢On a miss, data is returned to 

both L1 cache and miss cache
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Jouppi 1990 Figure 3-2



Miss Cache Performance
• More effective when %Conflict 

misses is high

• More effective for D-cache than 

I-cache. Why?

• Why do we need at least 2 

entries?
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Jouppi 1990 Figure 3-3



Second Proposal: Victim Caching
• Disadvantage of Miss Cache: data 

redundancy

➢Fill line inserted in both regular cache 

and miss cache

➢Needs at least two lines to be effective 

(i.e., increase the associativity of one 

cache set from 1-way to 2-way)

• Victim Cache: On a miss, 

replacement victim line is placed 

in the victim cache

➢Provides additional associativity without 

increasing hit time in common case

➢Even a single line can be effective

➢Always an improvement over miss 

caching
9

Jouppi 1990 Figure 3-4



Victim Cache Performance

• More effective for D-cache 

than I-cache

• Always outperforms Miss 

cache
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Jouppi 1990 Figure 3-5



Victim Cache Performance vs. Cache & Line Size

11Jouppi 1990 Figure 3-6 Jouppi 1990 Figure 3-7



Prefetching
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Prefetching

• Bringing lines to the cache before being requested

➢Can reduce compulsory and capacity misses

• Requests to next level of memory hierarchy fall into two 

categories:

➢Demand miss: Fill request due to cache miss

➢Prefetch: Fill request in anticipation of data request

• Instruction and data access patterns are different (discuss)
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Prefetching Terminology

• Timeliness: Measures whether the prefetch arrives early enough to avoid a 

miss

➢Even if miss is not totally avoided, miss latency is reduced

• Prefetch Hit: Prefetched line that was hit in the cache before being replaced 

(miss avoided)

• Prefetch Miss: Prefetched line that was replaced before being accessed

• Prefetch rate: Prefetches per instruction (or 1000 inst.)

• Accuracy: Percentage of prefetch hits to all prefetches

• Coverage: Percentage of misses avoided due to prefetching

➢100 x (Prefetch Hits / (Prefetch Hits + Cache Misses))
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Classification of Prefetched Lines

• Useful Prefetch

➢Prefetch hit before being replaced

➢Results in avoiding a cache miss

• Useless Prefetch

➢Prefetch is replaced before being accessed (prefetch miss)

➢Downside: Increases demand for cache bandwidth

• Harmful Prefetch

➢Prefetch is replaced before being accessed AND

➢Prefetch replaces a line that is requested later (cache pollution)

➢Results in an additional cache miss
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Simple Prefetching Alternatives

• Prefetch always

➢Prefetch after every reference

➢Leads to significant demand on resources for next level in memory hierarchy

• Prefetch on miss (Also called one block lookahead)

➢On a miss, we prefetch the next sequential line as well

➢Cuts number of misses in a sequential stream in half

➢We can also implement N-block lookahead

• Tagged Prefetch

➢Each block has a tag status bit associated with it

➢On a prefetch, tag bit set to zero

➢On a hit, tag bit set to 1 (indicating prefetch hit)

➢When a block’s status bit changes from 0 to 1, next block is prefetched
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Stream Buffers

• Tagged prefetch may not 

be timely if cache lines are 

consumed faster than they 

are prefetched

• Need to start prefetching 

before a tag status bit 

transition takes place
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Jouppi 1990 Figure 4-2



Stream Buffer Operation

• On a cache miss

➢Stream buffer prefetches successive lines starting at the miss address

➢As each prefetch is sent out, we allocate an entry in the stream buffer and set available bit to 

false

➢When prefetch data returns, it is placed in buffer entry; available bit set to true

➢Prefetch lines are stored in the stream buffer not the cache to avoid cache pollution

• On a cache miss and buffer hit

➢Data loaded from stream buffer in one cycle

➢All buffer entries shift by one, new line prefetched to vacant entry

• On a non-sequential miss

➢Stream buffer flushed

➢Prefetching starts from new miss address (even if miss is present in another stream buffer entry)
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Stream Buffer Performance

• More successful 

for instructions 

compared to data. 

Why?

19Jouppi 1990 Figure 4-3



Multi-Way Stream Buffer

20Jouppi 1990 Figure 4-4 Jouppi 1990 Figure 4-5



Memory Access Patterns
• For successful prefetching strategies, we need to understand how programs access 

memory

1. Scalar / Zero Stride

➢Example: simple variable references; A[i] in a loop indexed by j; A[i,j] in a loop indexed by k

➢Do not require prefetching. References will be in the cache due to temporal locality

2. Streaming

➢Example: Accessing cache lines A, A+1, A+2,…etc. OR A, A-1, A-2,…etc.

➢Can be prefetched using Next-Line Prefetcher or Stream Buffers

3. Constant Stride

➢Example: Accessing cache lines A, A+s, A+2s, …etc.; Accessing array elements A[i] in loop indexed 

by i; Accessing A[i,j] or A[j,i] in loop indexed by i or j

4. Complex Access Patterns

➢Any pattern that doesn’t fit the above categories

➢Example: traversing a linked list, traversing a tree, traversing a graph
21



Stride-Based Prefetching (Chen & Baer)
• Goal: Prefetching constant-stride access patterns

• Idea: Detect prefetching patterns based on load/store instruction PC

• Uses a reference prediction table to predict future memory references
➢ Tagged by PC

➢On a hit, compare current address with previous address and match stride

• Lookahead prefetching
➢Used to improve timeliness of prefetches

➢Uses a “lookahead PC”

22

Chen&Baer 1994 Fig 2



Software vs. Hardware Prefetching
• Some simple access patterns are easy to detect in software (e.g., 

streaming, constant stride)

• Some complex access patterns can also be prefetched by software

➢Example: Link list traversal 

❑Program can access one element and prefetch element->next

• Software prefetching requires inserting “prefetch” instructions in the 

program by the compiler

➢Advantage: Lower complexity in hardware (no prefetching structures)

➢Disadvantage: Larger programs

➢Disadvantage: Prefetches may not be timely so they arrive after demand accesses

• Hardware prefetching can be more responsive due to knowledge of 

complex dynamic control flows of a program at runtime
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Prefetching Complex Patterns: Runahead Execution
• How can we predict which address to prefetch next?

• Intuition: The program dynamic execution is the best predictor

• Idea: When the head of the ROB is a cache miss, checkpoint 

architectural state then continue to execute and “pseudo-retire” 

instructions 

➢This frees up space in the instruction window for more instructions

➢Some of these instructions may be other cache misses, triggering prefetches

➢When initial miss returns, restart the pipeline from checkpoint

➢When the next memory access occurs, the request would be already out and the data 

could possibly be in the cache. 

• Runahead expands effective instruction window size (more misses-

under-miss, higher MLP)
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Cache Miss Analysis
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Runahead Execution: Hardware
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Mutlu et al. 2003 Fig 2



Variable Length Delta Prefetcher (VLDP)
• Targets complex memory access patterns 

➢Example of repeated strides in real workloads: (-24, +25); (-24, -24, +49); (+2, +3, +4); (-1, +3, -1, +4)

• Idea: Build delta (i.e., stride) histories between successive cache line misses within a 

page, then use history to predict accesses in other pages 

➢Uses multiple prediction tables that store predictions based on different input history lengths

❑First table uses most recent delta to predict next miss

❑Second table uses most recent two deltas to predict next miss,…etc.

❑VLDP uses table with longest history that has a matching entry to prefetch (similar to TAGE)

27
Shevgoor et al. 2015, Figure 1: VLDP Overview

Shevgoor et al. 2015, Figure 2: Delta History Buffer Entry



Cache Replacement and Insertion 
Policies
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Overview
• Cache replacement policy:

➢On a cache line fill, which victim line to replace?

➢Only applicable to set-associative caches 

❑ Direct-mapped caches have only one line per set

➢Example: LRU

• Cache insertion policy:

➢When a cache line is filled, what would be its priority in the replacement stack?

➢LRU: fill line is inserted in “Most Recently Used” position

➢Other policies: LIP, BIP, DIP

➢Dead block prediction helps determine lines that won’t be reused (either 

bypassed or inserted in LRU position)
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Optimal Replacement (OPT): Belady’s Algorithm
• Replace the line that will not be needed for the longest time into the future

• Example  (4-way cache)

➢Access order   A, B, C, D, E, A, B, D, A, B, D, A, E, B, C

Line C is furthest into the future, so replace C with E

• Requires knowledge of future memory accesses (not practical)

➢Other policies that do not require future knowledge (e.g., LRU) are used in real 

systems

➢Some recent research works attempt to predict future references and use them 

to approximate Belady’s algorithm

30
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Least-Recently Used (LRU) Policy
• Replace the line that was referenced furthest in the past

• Example  (4-way cache)

➢Access order   A, B, C, D, E, A, B, D, A, B, D, A, E, B, C

LRU Stack Order 3(LRU) 2 1 0 (MRU)

Line A is in LRU position, so replace A with E

• Issues

➢Requires tracking order for each line in the cache

➢Requires updating order on every access to a cache set (many read-modify-

write operations)

➢Poor performance for streaming access patterns that don’t fit in the cache

31

A B C DE

0 (MRU)        3(LRU)           2                1       



Other Replacement Policies
• FIFO: Replace oldest allocated line

• Most Recently Used (MRU)
➢Replaces the line that was most recently used

• Least Frequently Used (LFU)
➢Replaces line that has been used less often than others

➢Requires tracking frequency of access via counters (updated on every access)

➢Counters need to decay or lines will remain in cache forever

• Random Replacement (RR)
➢Replace a line in the set at random

➢Helps if recency of use is not a factor in predicting future use

• Pseudo-LRU (PLRU)

➢Replaces “one of the least recently used lines” 

➢Requires fewer bits to track and update on every access

➢Explanation of how it works: https://en.wikipedia.org/wiki/Cache_replacement_policies

• …
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https://en.wikipedia.org/wiki/Cache_replacement_policies


Insertion Policies
• Insertion policy determines where a fill line is inserted in the LRU stack

• Static Insertion Policies use the same policy always for all workloads

1. LRU replacement uses “MRU Insertion Policy”: Insert new line in MRU 

position

2. MRU replacement uses “LRU Insertion Policy” (LIP): Insert new line in LRU 

position

• Intuition for LIP: For cyclic sequential accesses that exceed number of ways, 

new line will be accessed further into the future

➢Example (4-way cache): A,B,C,D,E,A,B,C,D,E,….  (Causes thrashing in LRU)

• LIP Adversarial Case:

➢A,B,C,D,E,A,B,C,D,E,F,G,H,I,J,F,G,H,I,J, F,G,H,I,J, F,G,H,I,J, F,G,H,I,J,… 

➢Only 3 hits, all other accesses are misses
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Bimodal Insertion Policy (BIP)
• Similar to LIP except that it occasionally inserts lines into MRU position with 

a small probability

• Bimodal throttle parameter (ε) controls the probability of inserting lines in 

MRU position

➢BIP is the same as LRU when ε = 1; same as LIP when ε= 0

• Workloads have different phases with different access patterns, so a more 

dynamic policy could be needed
34

Qureshi et al. 2007, Table 3



Dynamic Insertion Policy (DIP)
• Intuition: Some workloads are LRU-friendly while others are BIP-friendly

• DIP: Dynamically determine at runtime which policy is better, then apply the 

best policy to the whole cache

• Tracking replacement states used to determine which policy is better

➢Use an auxiliary tag array (ATD) that tracks cache replacement stack

➢ATD keeps track of extra tags that follow either BIP or LRU 

➢ATD-BIP keeps track of lines that will be cached using BIP, ATD-LRU keeps track of lines that 

will be cached using LRU

➢Use saturating counter PSEL to determine which policy is better: 

❑Incremented on LRU miss, decremented on BIP miss

❑Most significant bit determines which policy is better

➢Better policy used in the main tag array (MTD) for the whole cache
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DIP Implementation
• Track replacement stacks for both 

LRU and BIP

• Issues:

➢Tag array increases by 3x

➢Dynamic power increases due to 

updating replacement state of all three 

tag arrays (MTD, ATD-LRU, ATD-BIP)

• Do we really need to track all sets 

to decide which policy is better?

36

Qureshi et al. 2007, Figure 9



DIP with Set Dueling
• Use Dynamic Set Sampling (DSS)

to select a few sample sets

➢Some sample sets use BIP, others LRU

• Best policy determined by set 

dueling

➢Only sample sets used to update 

counter

➢Remaining cache sets follow best policy 

determined by counter

37

Qureshi et al. 2007, Figure 10



Re-Reference Interval  Prediction Policy (RRIP)
• Predict when cache lines are going to be re-referenced

➢Each cache line has a “re-reference prediction value” (RRPV) which determines how soon it is is

going to be re-referenced

➢RRPV values are quantized with n-bits (e.g., use 2-bits to quantize into 4 buckets)

➢RRPV=0 indicates near-immediate reuse, RRPV=3 indicates distant reuse

• Idea: Predict new cache lines will not be re-referenced soon

➢ Insert new line with RRPV ≠ 0

➢On hit, RRPV updated to 0

• Problem: Always using the same prediction for all insertions thrashes cache

• Dynamic Re-Reference Interval Prediction (DRRIP)

➢Dynamically inserts new blocks between different RRPV values based on set dueling

➢RRPV = 2n-1 could bypass cache (predicted dead on arrival) 

38
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Announcements

• Reading Assignments

➢N. Jouppi, “Improving Direct-Mapped Performance by the Addition of a Small Fully-Associative 

Cache and Prefetch Buffer,” ISCA 1990  (Read)

➢T.F. Chen and J.L Baer, “Effective Hardware-Based Data Prefetching for High-Performance 

Processors,” IEEE Transactions on Computers, 1995 (Skim)

➢O. Mutlu et al., "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-

order Processors," HPCA 2003 (Skim)

➢M. Shevgoor et al., “Efficiently Prefetching Complex Address Patterns,” MICRO 2015 (Skim)

➢M. Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,” ISCA 2007 (Read)

➢A. Jaleel et al., “High Performance Cache Replacement Using Re-Reference Interval Prediction 

(RRIP),” ISCA 2010 (Skim)

• Assignment 3 out today. Due Oct 31. 

• Project timeline: Teams due Oct 24. Proposals due Oct 28. 


