
CMPT 450/750: Computer Architecture

Fall 2022

Cache Management

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

Recall: Cache Misses are Expensive
• Cache misses result in large performance and energy losses

• Cache Miss Types:

➢Compulsory: Misses in an infinite cache

➢Capacity: Misses in a fully-associative cache

➢Conflict: Misses due to limited number of ways per set

• To reduce cache misses, we can use:

➢High associativity or/and victim caching (conflict misses)

➢Prefetching (compulsory and capacity)

➢Effective replacement algorithms (conflict and capacity misses)

➢Insertion policies (conflict and capacity misses)

➢Dead block prediction (conflict and capacity misses)

2

Impact of Cache Misses
• Why are cache misses expensive?

➢Blocking cache: Severely reduce performance

➢Non-blocking cache: Load stalls in ROB, can prevent instruction issue or fetch

3

0

100

200

300

400

500

600

700

800

900

1000
1

9
8

2

1
9

8
5

1
9

8
9

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
0

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

DRAM Latency (Cycles)

DRAM Latency (Instructions)

Cache Hit Time Tradeoffs
• Cache hit time is important to reduce average memory access time

• However, reducing hit time comes at the expense of higher miss rates or

higher energy consumption

• Cache Size Tradeoff

➢Smaller caches are faster to access

➢However, smaller caches have higher capacity misses

• Associativity Tradeoff

➢Direct-mapped cache: faster access time, more conflict misses

➢Set-associative cache: slower access time, fewer conflict misses

• Tag and Data Access Tradeoff

➢Parallel tag and data access reduces hit time but wastes energy due to extra dynamic power

➢Sequential tag then data access is slower but saves energy

❑ Typically done in L2, L3 etc.

4

Example: 4KB Direct-Mapped Cache with 16B Lines

5

• More recent analysis from SPEC 2006 and SPEC 2017

workloads: “A Reusable Characterization of the

Memory System Behavior of SPEC2017 and SPEC2006”

https://dl.acm.org/doi/fullHtml/10.1145/3446200

Miss rates: Jouppi 1990 Table 2-2

Performance: Jouppi 1990 Figure 2-2

https://dl.acm.org/doi/fullHtml/10.1145/3446200

Many Misses Caused by Conflicts

• In direct-mapped caches,

conflict misses represent

significant percentage

➢Average: 39% for D-cache,

29% for I-cache

6Jouppi 1990 Figure 3-1

First Proposal: Miss Caching

• Miss Cache: Small cache

placed between the L1 and L2

caches

➢Provides additional associativity

without increasing hit time in

common case

➢Fully associative cache

containing 2-5 lines

➢On a miss, data is returned to

both L1 cache and miss cache

7

Jouppi 1990 Figure 3-2

Miss Cache Performance
• More effective when %Conflict

misses is high

• More effective for D-cache than

I-cache. Why?

• Why do we need at least 2

entries?

8

Jouppi 1990 Figure 3-3

Second Proposal: Victim Caching
• Disadvantage of Miss Cache: data

redundancy

➢Fill line inserted in both regular cache

and miss cache

➢Needs at least two lines to be effective

(i.e., increase the associativity of one

cache set from 1-way to 2-way)

• Victim Cache: On a miss,

replacement victim line is placed

in the victim cache

➢Provides additional associativity without

increasing hit time in common case

➢Even a single line can be effective

➢Always an improvement over miss

caching
9

Jouppi 1990 Figure 3-4

Victim Cache Performance

• More effective for D-cache

than I-cache

• Always outperforms Miss

cache

10

Jouppi 1990 Figure 3-5

Victim Cache Performance vs. Cache & Line Size

11Jouppi 1990 Figure 3-6 Jouppi 1990 Figure 3-7

Prefetching

12

Prefetching

• Bringing lines to the cache before being requested

➢Can reduce compulsory and capacity misses

• Requests to next level of memory hierarchy fall into two

categories:

➢Demand miss: Fill request due to cache miss

➢Prefetch: Fill request in anticipation of data request

• Instruction and data access patterns are different (discuss)

13

Prefetching Terminology

• Timeliness: Measures whether the prefetch arrives early enough to avoid a

miss

➢Even if miss is not totally avoided, miss latency is reduced

• Prefetch Hit: Prefetched line that was hit in the cache before being replaced

(miss avoided)

• Prefetch Miss: Prefetched line that was replaced before being accessed

• Prefetch rate: Prefetches per instruction (or 1000 inst.)

• Accuracy: Percentage of prefetch hits to all prefetches

• Coverage: Percentage of misses avoided due to prefetching

➢100 x (Prefetch Hits / (Prefetch Hits + Cache Misses))

14

Classification of Prefetched Lines

• Useful Prefetch

➢Prefetch hit before being replaced

➢Results in avoiding a cache miss

• Useless Prefetch

➢Prefetch is replaced before being accessed (prefetch miss)

➢Downside: Increases demand for cache bandwidth

• Harmful Prefetch

➢Prefetch is replaced before being accessed AND

➢Prefetch replaces a line that is requested later (cache pollution)

➢Results in an additional cache miss

15

Simple Prefetching Alternatives

• Prefetch always

➢Prefetch after every reference

➢Leads to significant demand on resources for next level in memory hierarchy

• Prefetch on miss (Also called one block lookahead)

➢On a miss, we prefetch the next sequential line as well

➢Cuts number of misses in a sequential stream in half

➢We can also implement N-block lookahead

• Tagged Prefetch

➢Each block has a tag status bit associated with it

➢On a prefetch, tag bit set to zero

➢On a hit, tag bit set to 1 (indicating prefetch hit)

➢When a block’s status bit changes from 0 to 1, next block is prefetched

16

Stream Buffers

• Tagged prefetch may not

be timely if cache lines are

consumed faster than they

are prefetched

• Need to start prefetching

before a tag status bit

transition takes place

17

Jouppi 1990 Figure 4-2

Stream Buffer Operation

• On a cache miss

➢Stream buffer prefetches successive lines starting at the miss address

➢As each prefetch is sent out, we allocate an entry in the stream buffer and set available bit to

false

➢When prefetch data returns, it is placed in buffer entry; available bit set to true

➢Prefetch lines are stored in the stream buffer not the cache to avoid cache pollution

• On a cache miss and buffer hit

➢Data loaded from stream buffer in one cycle

➢All buffer entries shift by one, new line prefetched to vacant entry

• On a non-sequential miss

➢Stream buffer flushed

➢Prefetching starts from new miss address (even if miss is present in another stream buffer entry)

18

Stream Buffer Performance

• More successful

for instructions

compared to data.

Why?

19Jouppi 1990 Figure 4-3

Multi-Way Stream Buffer

20Jouppi 1990 Figure 4-4 Jouppi 1990 Figure 4-5

Memory Access Patterns
• For successful prefetching strategies, we need to understand how programs access

memory

1. Scalar / Zero Stride

➢Example: simple variable references; A[i] in a loop indexed by j; A[i,j] in a loop indexed by k

➢Do not require prefetching. References will be in the cache due to temporal locality

2. Streaming

➢Example: Accessing cache lines A, A+1, A+2,…etc. OR A, A-1, A-2,…etc.

➢Can be prefetched using Next-Line Prefetcher or Stream Buffers

3. Constant Stride

➢Example: Accessing cache lines A, A+s, A+2s, …etc.; Accessing array elements A[i] in loop indexed

by i; Accessing A[i,j] or A[j,i] in loop indexed by i or j

4. Complex Access Patterns

➢Any pattern that doesn’t fit the above categories

➢Example: traversing a linked list, traversing a tree, traversing a graph
21

Stride-Based Prefetching (Chen & Baer)
• Goal: Prefetching constant-stride access patterns

• Idea: Detect prefetching patterns based on load/store instruction PC

• Uses a reference prediction table to predict future memory references
➢ Tagged by PC

➢On a hit, compare current address with previous address and match stride

• Lookahead prefetching
➢Used to improve timeliness of prefetches

➢Uses a “lookahead PC”

22

Chen&Baer 1994 Fig 2

Software vs. Hardware Prefetching
• Some simple access patterns are easy to detect in software (e.g.,

streaming, constant stride)

• Some complex access patterns can also be prefetched by software

➢Example: Link list traversal

❑Program can access one element and prefetch element->next

• Software prefetching requires inserting “prefetch” instructions in the

program by the compiler

➢Advantage: Lower complexity in hardware (no prefetching structures)

➢Disadvantage: Larger programs

➢Disadvantage: Prefetches may not be timely so they arrive after demand accesses

• Hardware prefetching can be more responsive due to knowledge of

complex dynamic control flows of a program at runtime

23

Prefetching Complex Patterns: Runahead Execution
• How can we predict which address to prefetch next?

• Intuition: The program dynamic execution is the best predictor

• Idea: When the head of the ROB is a cache miss, checkpoint

architectural state then continue to execute and “pseudo-retire”

instructions

➢This frees up space in the instruction window for more instructions

➢Some of these instructions may be other cache misses, triggering prefetches

➢When initial miss returns, restart the pipeline from checkpoint

➢When the next memory access occurs, the request would be already out and the data

could possibly be in the cache.

• Runahead expands effective instruction window size (more misses-

under-miss, higher MLP)

24

Cache Miss Analysis

25

1400

1500

1600

1700

1800

1900

2000

2100

2200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183

 Retired Uop ID

C
y
c
le

Cycle Allocated

Cycle Executed

UL2 Miss UOP

and dependents

Alloc stalls

Miss Latency
Alloc resumes

ROB size

Slope = f (core pipeline)

Figure from Srinivasan et al.
“Continual Flow Pipelines”
talk at ASPLOS 2004

Runahead Expands instruction window size, so more misses can be issued to
memory simultaneously

Runahead Execution: Hardware

26

Mutlu et al. 2003 Fig 2

Variable Length Delta Prefetcher (VLDP)
• Targets complex memory access patterns

➢Example of repeated strides in real workloads: (-24, +25); (-24, -24, +49); (+2, +3, +4); (-1, +3, -1, +4)

• Idea: Build delta (i.e., stride) histories between successive cache line misses within a

page, then use history to predict accesses in other pages

➢Uses multiple prediction tables that store predictions based on different input history lengths

❑First table uses most recent delta to predict next miss

❑Second table uses most recent two deltas to predict next miss,…etc.

❑VLDP uses table with longest history that has a matching entry to prefetch (similar to TAGE)

27
Shevgoor et al. 2015, Figure 1: VLDP Overview

Shevgoor et al. 2015, Figure 2: Delta History Buffer Entry

Cache Replacement and Insertion
Policies

28

Overview
• Cache replacement policy:

➢On a cache line fill, which victim line to replace?

➢Only applicable to set-associative caches

❑ Direct-mapped caches have only one line per set

➢Example: LRU

• Cache insertion policy:

➢When a cache line is filled, what would be its priority in the replacement stack?

➢LRU: fill line is inserted in “Most Recently Used” position

➢Other policies: LIP, BIP, DIP

➢Dead block prediction helps determine lines that won’t be reused (either

bypassed or inserted in LRU position)

29

Optimal Replacement (OPT): Belady’s Algorithm
• Replace the line that will not be needed for the longest time into the future

• Example (4-way cache)

➢Access order A, B, C, D, E, A, B, D, A, B, D, A, E, B, C

Line C is furthest into the future, so replace C with E

• Requires knowledge of future memory accesses (not practical)

➢Other policies that do not require future knowledge (e.g., LRU) are used in real

systems

➢Some recent research works attempt to predict future references and use them

to approximate Belady’s algorithm

30

A B C DE

Least-Recently Used (LRU) Policy
• Replace the line that was referenced furthest in the past

• Example (4-way cache)

➢Access order A, B, C, D, E, A, B, D, A, B, D, A, E, B, C

LRU Stack Order 3(LRU) 2 1 0 (MRU)

Line A is in LRU position, so replace A with E

• Issues

➢Requires tracking order for each line in the cache

➢Requires updating order on every access to a cache set (many read-modify-

write operations)

➢Poor performance for streaming access patterns that don’t fit in the cache

31

A B C DE

0 (MRU) 3(LRU) 2 1

Other Replacement Policies
• FIFO: Replace oldest allocated line

• Most Recently Used (MRU)
➢Replaces the line that was most recently used

• Least Frequently Used (LFU)
➢Replaces line that has been used less often than others

➢Requires tracking frequency of access via counters (updated on every access)

➢Counters need to decay or lines will remain in cache forever

• Random Replacement (RR)
➢Replace a line in the set at random

➢Helps if recency of use is not a factor in predicting future use

• Pseudo-LRU (PLRU)

➢Replaces “one of the least recently used lines”

➢Requires fewer bits to track and update on every access

➢Explanation of how it works: https://en.wikipedia.org/wiki/Cache_replacement_policies

• …

32

https://en.wikipedia.org/wiki/Cache_replacement_policies

Insertion Policies
• Insertion policy determines where a fill line is inserted in the LRU stack

• Static Insertion Policies use the same policy always for all workloads

1. LRU replacement uses “MRU Insertion Policy”: Insert new line in MRU

position

2. MRU replacement uses “LRU Insertion Policy” (LIP): Insert new line in LRU

position

• Intuition for LIP: For cyclic sequential accesses that exceed number of ways,

new line will be accessed further into the future

➢Example (4-way cache): A,B,C,D,E,A,B,C,D,E,…. (Causes thrashing in LRU)

• LIP Adversarial Case:

➢A,B,C,D,E,A,B,C,D,E,F,G,H,I,J,F,G,H,I,J, F,G,H,I,J, F,G,H,I,J, F,G,H,I,J,…

➢Only 3 hits, all other accesses are misses

33

Bimodal Insertion Policy (BIP)
• Similar to LIP except that it occasionally inserts lines into MRU position with

a small probability

• Bimodal throttle parameter (ε) controls the probability of inserting lines in

MRU position

➢BIP is the same as LRU when ε = 1; same as LIP when ε= 0

• Workloads have different phases with different access patterns, so a more

dynamic policy could be needed
34

Qureshi et al. 2007, Table 3

Dynamic Insertion Policy (DIP)
• Intuition: Some workloads are LRU-friendly while others are BIP-friendly

• DIP: Dynamically determine at runtime which policy is better, then apply the

best policy to the whole cache

• Tracking replacement states used to determine which policy is better

➢Use an auxiliary tag array (ATD) that tracks cache replacement stack

➢ATD keeps track of extra tags that follow either BIP or LRU

➢ATD-BIP keeps track of lines that will be cached using BIP, ATD-LRU keeps track of lines that

will be cached using LRU

➢Use saturating counter PSEL to determine which policy is better:

❑Incremented on LRU miss, decremented on BIP miss

❑Most significant bit determines which policy is better

➢Better policy used in the main tag array (MTD) for the whole cache

35

DIP Implementation
• Track replacement stacks for both

LRU and BIP

• Issues:

➢Tag array increases by 3x

➢Dynamic power increases due to

updating replacement state of all three

tag arrays (MTD, ATD-LRU, ATD-BIP)

• Do we really need to track all sets

to decide which policy is better?

36

Qureshi et al. 2007, Figure 9

DIP with Set Dueling
• Use Dynamic Set Sampling (DSS)

to select a few sample sets

➢Some sample sets use BIP, others LRU

• Best policy determined by set

dueling

➢Only sample sets used to update

counter

➢Remaining cache sets follow best policy

determined by counter

37

Qureshi et al. 2007, Figure 10

Re-Reference Interval Prediction Policy (RRIP)
• Predict when cache lines are going to be re-referenced

➢Each cache line has a “re-reference prediction value” (RRPV) which determines how soon it is is

going to be re-referenced

➢RRPV values are quantized with n-bits (e.g., use 2-bits to quantize into 4 buckets)

➢RRPV=0 indicates near-immediate reuse, RRPV=3 indicates distant reuse

• Idea: Predict new cache lines will not be re-referenced soon

➢ Insert new line with RRPV ≠ 0

➢On hit, RRPV updated to 0

• Problem: Always using the same prediction for all insertions thrashes cache

• Dynamic Re-Reference Interval Prediction (DRRIP)

➢Dynamically inserts new blocks between different RRPV values based on set dueling

➢RRPV = 2n-1 could bypass cache (predicted dead on arrival)

38

39

Announcements

• Reading Assignments

➢N. Jouppi, “Improving Direct-Mapped Performance by the Addition of a Small Fully-Associative

Cache and Prefetch Buffer,” ISCA 1990 (Read)

➢T.F. Chen and J.L Baer, “Effective Hardware-Based Data Prefetching for High-Performance

Processors,” IEEE Transactions on Computers, 1995 (Skim)

➢O. Mutlu et al., "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-

order Processors," HPCA 2003 (Skim)

➢M. Shevgoor et al., “Efficiently Prefetching Complex Address Patterns,” MICRO 2015 (Skim)

➢M. Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,” ISCA 2007 (Read)

➢A. Jaleel et al., “High Performance Cache Replacement Using Re-Reference Interval Prediction

(RRIP),” ISCA 2010 (Skim)

• Assignment 3 out today. Due Oct 31.

• Project timeline: Teams due Oct 24. Proposals due Oct 28.

