
CMPT 450/750: Computer Architecture

Fall 2022

Parallel Architectures

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

Sequential vs. Parallel Execution

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

2

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

OP [operand, …]

Sequential
(single stream of instructions)

Parallel
(multiple independent instruction streams)

• Single-core systems: Goal is to achieve best single-thread performance

• Multi-core (or multi-processor) systems: Goal is to achieve best parallel

performance for all threads

von Neumann Architecture
• Uses the stored-program concept

➢The CPU executes a stored program that specifies a sequence of memory read and write
operations

• Basic design:

➢Memory stores both program and data

➢Program instructions are coded data which instruct the computer on what to do

➢Data: Information to be used by the program

➢CPU gets instructions & data from memory, decodes instructions and then performs them
sequentially

3

LLNL, Introduction to Parallel
Computing Tutorial

Multiprocessor Taxonomy (Flynn)
• Instructions and Data streams can be either single or multiple

• Single Instruction, Single Data (SISD)

➢Serial, non-parallel computer – e.g., single CPU PCs,

workstations and mainframes

• Single Instruction, Multiple Data (SIMD)

➢All processor units execute same instruction on different data

➢Example: Vector processors such as IBM 9000, Cray C90

• Multiple Instruction, Single Data (MISD)

➢Rare (e.g., C.mmp), data operated on by multiple instructions

• Multiple Instruction, Multiple Data (MIMD)

➢Most modern parallel computers

➢Processors may be executing different instructions on different

data streams
4

LLNL, Introduction to Parallel
Computing Tutorial

Memory Architectures

5

Memory

P0 P1 P2

M
em

o
ry

P0 P1 P2

M
em

o
ry

M
em

o
ry

Shared Memory Distributed Memory

Shared Memory Architecture
• All processors can access all memory

• Processors share memory resources, but can operate independently

• One processor’s memory changes are seen by all other processors

• Uniform Memory Access (UMA) Architecture

➢ Example: Symmetric Multiprocessor (SMP) machines

➢ Identical processors with equal access and equal access time to memory

➢ Also called CC-UMA - Cache Coherent UMA. Cache coherent means that if one processor updates a location in

shared memory, all the other processors know about the update

• Non-Uniform Memory Access (NUMA) Architecture

➢ Often made by physically linking two or more SMPs

➢ One processor can directly access memory of another processor

➢ Not all processors have equal access time to all memories

➢ Memory access across link is slower

➢ Called CC-NUMA - Cache Coherent NUMA - if CC is maintained

• Pros and Cons?

6

LLNL, Introduction to Parallel
Computing Tutorial

Distributed Memory Architecture

• Require a communication network to connect inter-processor memory

• Processors have their own local memory

➢Memory addresses in one processor do not map to another processor

➢ No concept of global address space across all processors.

• Each processor operates independently, changes to its local memory have no effect on the

memory of other processors

➢Cache coherence does not apply

• Programs explicitly define how and when data is communicated and how tasks are

synchronized

• Pros and cons?
7

LLNL, Introduction to Parallel
Computing Tutorial

Hybrid Distributed-Shared Memory Architecture

• Shared memory component is usually a CC SMP

➢Processors on a given SMP can address that machine's memory as global memory

• Distributed memory component is the networking of multiple SMPs

➢SMPs know only about their own memory

➢Network communications needed to move data between SMPs

• Largest, fastest computers share this architecture

8

LLNL, Introduction to Parallel
Computing Tutorial

Sequential vs. Parallel Execution

1 withdraw(int account_id, int amount) {

2 balance = get_balance(account_id);

3 if(balance >= amount) {

4 set_balance(account_id, balance - amount);

5 eject(amount);

6 }

7 }

9

withdraw(5, 900);

2 balance = 1000

3 balance >= 900

4 balance = 100

withdraw(5, 700);

2 balance = 1000

3 balance >= 700

4 balance = -600

Tim
e

Parallel Programming Models
• Parallel programming models:

➢Shared Memory

➢Threads

➢Message Passing

➢Data Parallel

➢Hybrid

• Parallel programming models exist as an abstraction above hardware and memory architectures

• Models not specific to certain types of memory architecture or machine

➢Shared memory can be implemented on a distributed memory architecture

➢Message passing can be implemented on a shared memory architecture (e.g., SGI Origin)

10

LLNL, Introduction to Parallel
Computing Tutorial

Shared Memory Model
• Tasks share a common address space, which they

read and write asynchronously

• Various mechanisms such as locks / semaphores

may be used to control access to the shared

memory

• Relatively simple programming model

➢No notion of data "ownership“

➢No need to specify explicit communication of data between

tasks

• But it’s more difficult to understand and manage

data locality

➢We don’t know OR we can’t take advantage of memory being

physically closer to a particular process

11

LLNL, Introduction to Parallel
Computing Tutorial

Threads Model
• Single process can have multiple, concurrent execution paths

• Analogy: a single program that includes a number of subroutines

➢ Program creates a number of tasks (threads) that can be scheduled and run by
the operating system concurrently

• Each thread has local data, but also shares all resources of the
program (e.g., memory space)

• Threads communicate with each other through global memory by
updating address locations

➢ This requires synchronization constructs to ensure that more than one thread is

not updating the same global address at the same time

• Threads are commonly associated with shared memory architectures
and operating systems

• Implementation standards

➢ POSIX threads (Pthreads): Library-based, available in C

❑ Tutorial: https://computing.llnl.gov/tutorials/pthreads/

➢ OpenMP: Compiler-directive-based
❑ Tutorial: https://computing.llnl.gov/tutorials/openMP/

12

LLNL, Introduction to Parallel
Computing Tutorial

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/openMP/

Message Passing Model

• Tasks use their own local memory during computation

• Multiple tasks can run on the same physical machine OR

across an arbitrary number of machines

• Tasks exchange data through communications by sending

and receiving messages

➢Requires cooperative operations by each process, e.g., a send operation must have a matching
receive operation

• Implementations

➢ Library of subroutines that are embedded in source code. The programmer is responsible for determining
all parallelism.

➢Message Passing Interface (MPI) is the current industry standard for message passing
❑ Tutorial: https://computing.llnl.gov/tutorials/mpi/

➢ For shared memory architectures, MPI implementations use shared memory (memory copies) for task
communications

13

LLNL, Introduction to Parallel
Computing Tutorial

https://computing.llnl.gov/tutorials/mpi/

Data Parallel Model
• Most parallel work focuses on performing operations on a

data set

➢Data set is typically organized into a common structure, such as an

array or cube

• Each task works on a different partition of the same data

structure, all tasks work collectively on the structure

• Tasks perform the same operation on their partition of work,

e.g., "add 4 to every array element"

• On shared memory architectures, all tasks may have access

to the data structure through global memory

• On distributed memory architectures the data structure is

split up and resides as "chunks" in the local memory of each

task

14

LLNL, Introduction to Parallel
Computing Tutorial

Designing Parallel Programs: Partitioning
• Breaking the problem into discrete "chunks" of

work that can be distributed to multiple tasks

➢Two main types: domain decomposition and functional

decomposition

• Domain Decomposition

➢Data is decomposed, each task works on portion of data

➢Different ways to partition data

• Functional Decomposition

➢The problem is decomposed according to the work that

must be done, each task performs a portion of the

overall work

• Programmer can combine both types

15

LLNL, Introduction to Parallel
Computing Tutorial

Designing Parallel Programs: Communication

• Some problems can be decomposed and executed in parallel with virtually no data sharing,

called embarrassingly parallel problems

➢Example: image processing operation where every pixel in a black and white image needs to

have its color reversed. The image data can easily be distributed to multiple tasks that then act

independently of each other to do their portion of the work

• Most parallel applications are not quite so simple, and do require data sharing between tasks

• Issues to consider when writing a program that needs communications

➢Cost of communications

➢ Latency vs. bandwidth

➢ Visibility of communications

➢ Synchronous vs. asynchronous communications

➢ Scope of communications

➢ Efficiency of communications

➢Overhead and complexity

16

LLNL, Introduction to Parallel
Computing Tutorial

Designing Parallel Programs: Synchronization
• Barrier (all tasks)

➢ Each task performs its work until it reaches the barrier then stops (blocks)

➢When the last task reaches the barrier, all tasks are synchronized

➢ Tasks can then continue or serial work is done

• Lock / semaphore (any number of tasks)

➢ Typically used to serialize (protect) access to global data or a section of code

➢Only one task at a time may own the lock / semaphore / flag.

➢ The first task to acquire the lock "sets" it and then it can then safely (serially) access the protected data or

code

➢Other tasks can attempt to acquire the lock but must wait until the task that owns the lock releases it

➢Can be blocking or non-blocking

• Synchronous communication operations (tasks performing communication operation)

➢Coordination is required with the other task(s) participating in the communication, e.g., before a task can

perform a “send” operation, it must receive an acknowledgment from the receiving task that it is OK to

send.

17

Designing Parallel Programs: Data Dependencies
• A dependence exists between program statements when the order of statement execution

affects the results of the program

• A data dependence results from multiple use of the same location(s) in storage by different

tasks

• Dependencies are one of the primary inhibitors to parallelism

• Loop carried dependencies are particularly important since loops are possibly the most

common target of parallelization efforts

for (i = 1; i < N; i++)

A[i] = A[i-1]*2;

• How to handle data dependencies

➢Distributed memory architectures: communicate required data at synchronization points

➢ Shared memory architectures: synchronize read/write operations between tasks

18

19

Designing Parallel Programs: Load Balancing
• Load balancing refers to distributing work among

tasks so that all tasks are kept busy all the time

➢Minimize idle time

• Important for performance

➢If tasks are synchronized by a barrier, slowest task

determines the overall performance

• How to achieve load balancing

➢Equally partition the work each task receives

➢Dynamic work assignment
LLNL, Introduction to Parallel

Computing Tutorial

20

Designing Parallel Programs: Granularity
• Granularity is a qualitative measure of the ratio of computation to

communication

• Periods of computation are typically separated from periods of

communication by synchronization events.

• Fine-grain Parallelism

➢ Relatively small amounts of computational work are done between communication

events, low computation to communication ratio

➢ Facilitates load balancing

➢ High communication overhead, less opportunity to improve performance

➢ Overhead required for communications and synchronization between tasks can be

longer than the computation

• Coarse-grain Parallelism

➢ Relatively large amounts of computational work are done between

communication/synchronization events

➢ High computation to communication ratio

➢ Implies more opportunity for performance improvement

➢ Harder to load balance efficiently

LLNL, Introduction to Parallel
Computing Tutorial

Parallel Programs: Examples

21

Monte Carlo Simulation
• Allows using randomness as a feature to

solve problems that might be deterministic

in nature (but don’t have closed form solutions)

• Key insight: With a large enough sample size,

the sample mean is a good approximation of the

true mean

• Determine Area inside closed curve f

• We need a function to determine whether a point is inside f

• Simulation Steps:
➢Generate n pairs of random numbers (xi, yi) i=1...n such that xi’s are uniformly distributed

in [X0,X1] and yi’s are uniformly distributed in [Y0, Y1]

➢Determine total number of points m inside f

➢Approximate area

A =
𝑚

𝑛
× (𝑌1 − 𝑌0)(𝑋1 − 𝑋0)

➢Approximation is more accurate when n is large
22

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

23

circle_count = 0;
for (uint i = 0; i < n; i++) {

x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++circle_count;
}
pi_value = 4.0 * circle_count / n;

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

24

circle_count = 0;
create T threads
for each thread in parallel {

for (uint i = 0; i < approx(n/T); i++) {
x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++circle_count;
}

}
pi_value = 4.0 * circle_count / n;

Need to use thread-
safe random number
generator function

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

25

circle_count = 0;
create T threads
for each thread in parallel {

for (uint i = 0; i < approx(n/T); i++) {
x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++circle_count;
}

}
pi_value = 4.0 * circle_count / n;

shared variable

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

26

circle_count = 0;
create T threads
for each thread in parallel {

for (uint i = 0; i < approx(n/T); i++) {
x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle) {

lock();
++circle_count;
unlock();

}
}

}
pi_value = 4.0 * circle_count / n;

Monte Carlo 𝜋 Estimation

27

circle_count = 0;
create T threads
for each thread in parallel {

for (uint i = 0; i < approx(n/T); i++) {
x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle) {

lock();
++circle_count;
unlock();

}
}

}
pi_value = 4.0 * circle_count / n;

serial code

𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

28

circle_count = 0;
create T threads
for each thread in parallel {

local_circle_count = 0;
for (uint i = 0; i < approx(n/T); i++) {

x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++local_circle_count;
}
lock();
circle_count += local_circle_count;
unlock();

}
pi_value = 4.0 * circle_count / n;

circle_count = 0;
create T threads
for each thread in parallel {

local_circle_count = 0;
for (uint i = 0; i < approx(n/T); i++) {

x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++local_circle_count;
}
lock();
circle_count += local_circle_count;
unlock();

}
pi_value = 4.0 * circle_count / n;

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

29

use atomics
to eliminate

locks

Monte Carlo 𝜋 Estimation 𝐴 𝑐𝑖𝑟𝑐𝑙𝑒

𝐴 𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2

4𝑟2

30

check out
Fetch and

Add,
Compare
and Swap

CAS: https://en.wikipedia.org/wiki/Compare-and-swap
FAA: https://en.wikipedia.org/wiki/Fetch-and-add

C++11 std::atomic: https://en.cppreference.com/w/cpp/atomic

circle_count = 0;
create T threads
for each thread in parallel {

local_circle_count = 0;
for (uint i = 0; i < approx(n/T); i++) {

x = get_random(0, 1);
y = get_random(0, 1);
if ((x, y) inside circle)

++local_circle_count;
}
atomic_add(circle_count, local_circle_count);

}
pi_value = 4.0 * circle_count / n;

https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Fetch-and-add
https://en.cppreference.com/w/cpp/atomic

Heat Transfer Problem

31

LLNL Parallel Computing Tutorial

Serial Program:
float U[maxX][maxY];
// initialize U
for (int t = 1; t<= MAX_TIME; t++) {

for (int x=0; x < maxX; x++) {
for (int y = 0; y < maxY; y++) {

U[x][y] = U[x][y]
+ Cx * (U[x+1][y] + U[x-1][y] – 2*U[x][y])
+ Cy * (U[x][y+1] + U[x][y-1] – 2*U[x][y]);

} // for y
} // for x

} // for t

32

Some U values read from current iteration;
others read from previous iterations: Incorrect

Heat Transfer Problem

Serial Program:

float U1[maxX][maxY]; // values for previous time step
float U2[maxX][maxY]; // values for current time step
for (int t = 1; t<= MAX_TIME; t++) {

for (int x=0; x < maxX; x++) {
for (int y = 0; y < maxY; y++) {

U2[x][y] = U1[x][y]
+ Cx * (U1[x+1][y] + U1[x-1][y] – 2*U1[x][y])
+ Cy * (U1[x][y+1] + U1[x][y-1] – 2*U1[x][y]);

} // for y
} // for x
// Swap U1, U2;

} // for t

33

parallelize

Heat Transfer Problem

Parallel Program:

float U1[maxX][maxY]; // values for previous time step
float U2[maxX][maxY]; // values for current time step
create T threads
for each thread in parallel

for (int t = 1; t<= MAX_TIME; t++) {
for (x in subset(tid)) {

for (int y = 0; y < maxY; y++) {
U2[x][y] = U1[x][y]
+ Cx * (U1[x+1][y] + U1[x-1][y] – 2*U1[x][y])
+ Cy * (U1[x][y+1] + U1[x][y-1] – 2*U1[x][y]);

} // for y
} // for x
// Swap U1, U2;

} // for t
}

34

Still Safe? Think
Boundary elements

Who does this?

Heat Transfer Problem

Parallel Program:

float U1[maxX][maxY]; // values for previous time step
float U2[maxX][maxY]; // values for current time step
create T threads
for each thread in parallel

for (int t = 1; t<= MAX_TIME; t++) {
for (x in subset(tid)) {

for (int y = 0; y < maxY; y++) {
U2[x][y] = U1[x][y]
+ Cx * (U1[x+1][y] + U1[x-1][y] – 2*U1[x][y])
+ Cy * (U1[x][y+1] + U1[x][y-1] – 2*U1[x][y]);

} // for y
} // for x
barrier();
if (tid==0) // Swap U1, U2;
else // wait till U2 and U1 are swapped

} // for t
}

35

Barrier: https://en.wikipedia.org/wiki/Barrier_(computer_science)

Heat Transfer Problem

https://en.wikipedia.org/wiki/Barrier_(computer_science)

Parallel Architectures:
Performance Metrics and Limits

36

Measuring Performance
• Latency: How fast does a job compute? Elapsed time

➢Time for computation + communication + synchronization

• Throughput: How many jobs complete in a given time?

• Scalability: How well does the system scale?

➢Strong Scaling: How the solution time varies with the number of processors

(or compute nodes) for a fixed total problem size?

➢Weak Scaling: How the solution time varies with the number of processors

(or compute nodes) for a fixed problem size per processor?

37

Weak v/s strong scaling: https://en.wikipedia.org/wiki/Scalability#Weak_versus_strong_scaling

https://en.wikipedia.org/wiki/Scalability#Weak_versus_strong_scaling

Performance Metrics

• Speedup, Sp =
Execution time on 1− processor system (T1)

Execution time on p−processor system (Tp)

• Alternatively, Sp =
Throughput on p processors (X

p
)

Throughput on 1 processor (X
1
)

• Efficiency =
Sp

p
(higher is better)

38

Amdahl’s Law [1967, Gene Amdahl]

• F = fraction of problem that is parallel

➢(1 – F) = fraction of problem that is sequential

• Time on 1 processor =
𝟏−𝑭

𝟏
+

𝑭

𝟏
= 𝟏

• Time on p processors =
𝟏−𝑭

𝟏
+

𝑭

𝒑

• Speedup with p processors:

𝐒𝒑 =
𝟏

𝟏−𝐅 +
𝑭

𝒑

• Fastest parallel time, 𝐓𝐩 = 𝐓𝟏𝐱 (𝟏 − 𝐅 +
𝐅

𝐏
)

39

(Serial)

(parallel)

Program Phases

Implications of Amdahl’s Law

1. As the parallel part increases, Speedup also increases: Sp  as F 

➢ Implies that programmers should focus on parallelizing as much of the program as

possible

40

Parallel Speedup

41

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256

Sp
e

e
d

u
p

of cores

0.5 0.9 0.99

Implications of Amdahl’s Law

1. As the parallel part increases, Speedup also increases: Sp  as F 

➢ Implies that programmers should focus on parallelizing as much of the program as

possible

2. Gives an upper bound on parallel speedup

Only fraction F can be concurrently run by p processors

➢ Increasing p cannot speed up fraction 1-F

• Speedup with p processors, 𝐒𝒑 =
𝟏

𝟏−𝐅 +
𝑭

𝒑

• Upper bound on speedup at S∞ =
1

𝟏−𝐅

• Example: If F = 0.67:

➢Speedup for 4 cores = 2

➢Speedup for ∞ processors = 3

42

Parallel Speedup

43

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256

Sp
e

e
d

u
p

of cores

0.5 0.9 0.99

90% Parallel
9.7x speedup

50% Parallel
1.99x speedup

99% Parallel
72x speedup

Amdahl’s Law for Multicores

[Hill and Marty, 2008]

Multicore Chip partitioned into
multiple cores (includes L1 cache)

uncore (Intel terminology for Shared L2 cache, L3)

Resources per-chip bounded
Area, Power, $, or a combination

Bound of total N resources per-chip.

How many cores ? How big is each core ?

44

L1$

Shared
L2$

L1$ L1$ L1$

Mem.
Controller

C0 C1 C2 C3

Core Types
• Single-core performance can be improved using same

resource: out-of-order execution, multiple pipelines

(superscalar processors), larger caches, etc.
Becoming increasingly hard to do in a power-efficient way

• Small (Wimpy) Core :
➢Consumes 1 BCE (Base Core Equivalent: measure of core resources)
➢Performance = 1

• Large Core:
➢Consumes R BCEs
➢Performance = perf(R)

45

Large Cores

• If Perf (R) >= R ; always use large cores

➢Speeds up everything

• Unfortunately, Perf (R) < R typically

• Assume Perf (R) = 𝑹
➢Microprocessor examples seem to indicate this is a reasonable assumption

• How to design a core for specific Perf (R)?
➢Basic idea: Execute many instructions in parallel

46

Multicores under consideration

47

Symmetric

Asymmetric

Dynamic
(Morphing)

Symmetric Multicores

How many cores ? How big is each core ?

Chip is bounded to N BCEs

Each core has R BCEs

Number of cores per chip = N/R

For example, assume N = 16

48

R = 1 R = 4 R = 16

Symmetric Multicore : Performance

Serial Phase (1-F) runs on 1 thread on 1 core

performance  Perf (R)

Execution time = (1-F) / Perf (R)

Parallel Phase uses all N/R cores. Core @ Perf (R)

Execution time = F / [Perf (R) * N/R]

49

Speedup (F, N, R) =
𝟏

𝟏−𝑭

𝑷𝒆𝒓𝒇(𝑹)
+

𝑭∗𝑹

𝑷𝒆𝒓𝒇 𝑹 ∗𝑵

Parallel Phase
More cores!

Serial Phase
Perf(R)

Symmetric Multicore (Chip = 16 BCEs)

50

Hill & Marty 2008

Symmetric Multicore (Chip = 256 BCEs)

51

Hill & Marty 2008

Model-bias towards parallelism
Remember Perf (R) when scaling up CPU: Perf(R) = 𝑹

Lets say 1st generation 1 BCE system = 1 BCE

Now consider 2nd gen 4 BCE system
Four 1BCE cores or One 4BCE core?

When F=0.999; always pick Four 1CU cores

• Even parallel fraction not perfectly parallel

➢ Synchronization, Contention, Locks etc.

➢ Need Parallel Software: Perf(R) (depends on application)

52

Speedup = 2
F=0.999
Speedup ~4

Multicore Moore’s Law
Since 1970s Technology Moore’s Law

Double transistors every 2 years.

Should possibly continue....

Microarchitect’s Moore’s Law
Double single-thread performance every 2 years

Stopped due to power wall

Multicore’s Moore’s Law
2x cores every 2 years

Need to double software threads every two years

Need HW to enable 2x threads every two years

53

Cost-Effective Multicore Computing

• Even if Speedup (N cores) < N, a multicore system could still be

cost-effective, depending on cost of adding cores

➢$$$, Power

➢Cost-ratio = Cost (Ncores) / Cost (1)

• If cost is proportional to chip budget, Cost-ratio << N.

➢Much of multicore cost outside core: Caches, Memory Controller, SSD etc.

• If cost is proportional to power, cost-ratio can approach N

• Multicore computing effective if Cost-ratio < Speedup

➢Example: 6-core costs $1600; 10-core costs $2000

➢If 10-core speedup >1.25x 6-core, then cost-effective

54

Asymmetric Multicores

• Enhance some cores to improve performance for serial

phase.

• Total chip resources = N BCEs

• Assume two-types of cores on-chip
➢One core = R BCE, N-R 1 BCE cores

➢Total cores = N-R+1

55

Asymmetric Cores : Performance

56

(Serial)

(parallel)

Program Phases

Speedup (F, N, R) =
𝟏

𝟏−𝑭

𝑷𝒆𝒓𝒇(𝑹)
+

𝑭

𝑷𝒆𝒓𝒇 𝑹 +𝑵−𝑹

Speedups with 1 large core:

Serial Phase = (1-F)/Perf(R)

Parallel Phase = F/(Perf(R)+N-R)

Asymmetric Multicore (Chip = 256 BCEs)
Asymmetric cores offer great potential

with 1 large core, speedup increases significantly

57

Hill & Marty 2008

Asymmetric Multicores : Challenges

• Task Management:

➢How to schedule Computation

➢How to determine which tasks go to large cores vs. small cores

• Locality:

➢How to keep data closer to task

➢Also a challenge for symmetric multicore

• Coordination:

➢How to synchronize data

➢Harder when cores are not the same

58

Dynamic (Morphing) Multicores

Chip consists of N 1BCE cores

Efficient for parallel phase

At runtime glue R 1BCE cores to create R BCE core

Improves performance for serial phase

How to dynamically glue cores ?

Research still needed

59

Dynamic Multicores : Performance

N 1BCE cores, from which R 1BCE cores glued

Serial phase uses R BCE core at Perf (R)

execution time = (1-F)/Perf(R)

Parallel phases uses N cores

execution time = F/N

60

Speedup (F, N, R) =
𝟏

𝟏−𝑭

𝑷𝒆𝒓𝒇(𝑹)
+
𝑭

𝑵

Dynamic Multicore (Chip = 256 BCEs)

61

Hill & Marty 2008

Summary: Multicore Amdahl’s Law

62

Symmetric

Asymmetric

Dynamic

𝟏

𝟏 − 𝑭
𝑷𝒆𝒓𝒇(𝑹)

+
𝑭 ∗ 𝑹

𝑷𝒆𝒓𝒇 𝑹 ∗ 𝑵

𝟏

𝟏 − 𝑭
𝑷𝒆𝒓𝒇(𝑹)

+
𝑭

𝑷𝒆𝒓𝒇 𝑹 + 𝑵− 𝑹

𝟏

𝟏 − 𝑭
𝑷𝒆𝒓𝒇(𝑹)

+
𝑭
𝑵

Shared Memory Multiprocessors &
Cache Coherence Protocols

63

Shared Memory Multiprocessors

• All processors can access all memory

• Processors share memory resources, but can operate independently

• One processor’s memory changes are seen by all other processors

• Easier to program

➢Communication through shared memory

➢Synchronization through locks stored in shared memory

• Need cache coherence in hardware

• Need interconnection network between all processors and all memory

• Two Types:
➢Uniform Memory Architectures (UMA): e.g., Symmetric Multiprocessors

➢Non-Uniform Memory Architectures (NUMA): Access & latency to memory is different

64

Interconnection Networks

• In a shared memory MP, we need to connect different processors and

memory modules

• Types of interconnect:

➢Shared bus

➢Crossbar: Fully connected

➢Ring

➢Mesh

➢2-D Torus

➢Hypercube

• Number of hops vs. number of links: Compare N processors and M memory

modules

65

Shared Memory Multiprocessors: Memory Hierarchy

• Problem: sharing memory means more than one processor can send

requests to memory

➢High memory bandwidth required

• To avoid sending lots of memory requests, processors use caches to:

➢Filter out many memory requests

➢Reduce average memory latency

➢Reduce memory bandwidth requirements

• Typically more than one level of caches is used

➢L1 caches: Usually Split I & D caches, small and fast

➢L2 caches: Usually on die, composed of SRAM cells

➢L3 caches: On-die or off-die, SRAM or eDRAM cells

66

Cache Coherence

• Problem: Using caches means multiple copies of the same memory location

may exist

➢Updates to the same location may lead to bugs

• Example:

Processor 1 reads A

Processor 2 reads A

Processor 1 writes to A

Now, processor 2’s cache contains stale data

• Cache coherence need to be implemented in hardware using a cache

coherence protocol

67

Conditions for Cache Coherence

• Program Order. A read by processor P to location A that follows a write by P

to A, with no writes to A by another processor in between, should always

return the value of A written by P

• Coherent View of Memory. A read by processor P1 to location A that follows a

write by another processor P2 to location A should return the written value by

P2 if:

➢The read and write are sufficiently separated in time

➢No other writes to A by another processor occur between the read and the write

• Write Serialization. Writes to the same location are serialized: Two writes to

the same location by any two processors are seen in the same order by all

processors

68

Cache Coherence Protocol Classification

• Cache coherence defines behavior of reads and writes to the same memory

location

• Compared to: Memory consistency models define the behavior of reads and

writes with respect to accesses to other memory locations

• Two main types of cache coherence protocols:

➢Snooping

❑Caches keep track of the sharing status of all blocks

❑No centralized state is kept

❑Cache controllers snoop shared interconnect to know when a requested block exists in the

cache

➢Directory

❑Sharing status of any block in memory is kept in one location

69

Very Simple Coherence Protocol

• MI protocol

➢Two states: M (Modified) and I (Invalid)

➢Only one cache contains a copy of a certain memory location

➢When another cache requests a block, the cache currently containing the block invalidates it

➢Protocol limits sharing and degrades performance

• Optimization: MSI protocol allows read sharing

70

Cache Request

Bus Request

71

Announcements

• Reading Assignments

➢Lawrence Livermore National Lab, “Introduction to Parallel Computing,”

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial (Skim)

➢M. Hill and M. Marty, “Amdahl Law in the Multicore Era,” IEEE Computer 2008

(Read)

➢ARCH Chapter 5.1, 5.2 (Read)

• Exam 2 Wednesday (Same logistics as Exam 1)

• Project proposals due Friday

• Assignment 3 due Monday

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

