SFU

GCMPT 490/790: Computer Architecture
Fall 2021
Domain-Specific Architecture |
How did we get here 2
What are they ?

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2021 Alaa Alameldeen and Arrvindh Shriraman

Hardware Microbrewery ? SFU

Out-of-Order Processors

iron Triangle of Hardware

Abstractions/IR
i.e., Does algorithm/kernel/app even have branches?

Technology Architecture

i.e., How many ns for table of size 1KB? i.e., What branch-predictor?

What is the energy? How to organize tables?
3

Domain Pattern

The experiment is performed in a 4m x 6m room
which includes:

- 2 rectangle boxes as obslacles

- A robot car

One obstacle is static, while the other obstacle
is constanly moved by a person.

Obstacles are tracked and localized with a Vicon system. Their
positions are sent to an FPGA in order to compute a new value
function.

Google's TPU-DSAs In 2019

- 8-bit precision
(Intel 8008 1980)

- Systolic array
(first paper: 1970s)

- 24MB Buffer
(No cache)

)

14 GiB/s

N

14 GiB/s

L o g

PCle
Interface

~——

[CJoff-Chip I/0
[JData Buffer

[JComputation
Control

Not to Scale

()

Host
Interface

SFU

14 GiB/s [

Interfaces

DDR3

)25

Weight FIFO
(Weight Fetcher)

J

i)

)
(=

[

Unified Buffer

(Local

Activation
Storage)

\

\f

A

Systolic
Array
Control

~

ﬂ 30 GiB/s

165
GiB/s|
=

Matrix
Muttipty Unit
(64K per cycle)

J

& 165 GiB/s

Accumulators

Activation

g
&=

<

Normalize/Pool

3.5X on-chip memory vs GPU

| 80x energy efficiency vs CPU
130x better performance vs CPU

SFU

Information lost necessitating more complex hardware

np.add(arrl, arr2) for(i = 0;i < n;i++) .Loop:

. . o | 5, 0(a2 # *(arrl+i
res[i] = arrl[i] + arr2[il] & Zaoﬁigi #g:z::;

add a0, a5, a6

sw a0, 0(a4)

Bump pointers.
addi a2,a2,4
addi a3, a3,4
addi a4, a4,4
addi al,al,1
bne al, a3, loop

Information lost necessitating more complex hardware

SFU

PYTHON C/C++

for(i = 0:1i < n3;i++)

np.add(arrl, arr2)
arrl[i] + arr2[il

res[i]

Load/Store
Queues

.Loop:

lw
lw

SW

addi
addi
addi
addi

a5, 0(a2)
a6, 0(a3)
abGlobal reg
a0, 0(a4)

Bump pointers.

az2,a2, 4

a3, a3, 4

a4, a4, 4

al,al, 1

add

*(arrl+i)
*(arr2+i)

Branch

bne al, a3, loop

Predictor to

find loop paralleism

40% 39% 38%
35%
30%
25% |
20%
15% -
10% |

5% -

PERLBEN
BZIP2
GCC
MCF
GOBMK
HMMER
SJENG
LIBQUANTUM
H264REF
OMNETPP
ASTAR
XALANCBMK

https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext

Why ISAs suck ?

#pragma clang unroll count(10)
for(int i = 9;i < 10;i++)
res[i] = arrl[i] + arr2[i];

}

res[@] = arrl[@] + arr2[0];
res[1] = arrl[1l] + arr2[1];
Fé;[9] = arrl[9] + arr2[9];

SFU

lw a6, 0(a0)
lw a4, 0(al)
lw a5, 4(a0)
lw a3, 4(al)
add a4, a4, a6
sw a4, 0(a2)
add a6, a3, a5
lw a7, 8(a0)
lw a5, 8(al)
lw a3, 12(a0)
lw a4, 12(al)
sw a6, 4(a2)
add a5, a5, a7
sw a5, 8(a2)
add a6, a4, a3
lw a7, 16(a0)
lw a5, 16(al)
lw a3, 20(a0)
lw a4, 20(al)

10

Why ISAs suck 2

Register naming introduced dependencies

Need register lw (26, 0(a0)
#pragma clang unroll count(10) renaming hardware Iw|a4,/0(al)
for(int i = 0;i < 10;i++) lw [a5,/4(a0)

res[i] = arrl[i] + arr2[i]; lw [a3,4(al)
} add|a4,|a4, a6

sw a4, 0(a2)
add|a6,|a3,|a5

res[@] = arrl[@] + arr2[e]; Iw a7, 8(a0)

lw |a5,|8(al)
res[1] = arrl[1l] + arr2[1]; Iw12(a0)

lw a4, 12(al)
sw a6, 4(a2)

add a5, a5, a7
sw a5, 8(a2)

add a6, a4, a3
lw a7, 16(a0)
lw a5, 16(al)
lw a3, 20(a0)
lw a4, 20(al)

Fé;[Q] = arrl[9] + arr2[9];

11

Why 000s suck.

IS technology scaling dead/dying 2

Are DSAs/Accelerators The Solution?

Why 000s suck.

We had it all figured out!
ISCA 2002 Session I

The Optimum Pipeline Depth for a Microprocessor
IBM (22-36 pipeline stages)

The Optimal Logic Depth Per Pipeline Stage is 6 to
8 FO4 Inverter Delays (~40 pipeline stages)

Dec/Compaq/HP

Increasing Processor Performance by Implementing
Deeper Pipelines (~50-60 stages)

Intel

15

1000

100

Watts/cm

[y
[—]

Power doubles every 4 years
S-year projection: 200W total, 125 W/cm? !

ﬁ

Pentium® 4

Pentium® 111
Pentium® 11

Pentium® Pro

Pentium®@®

1.5n 1n 0.7p 0.5p 0.35u 0.25pn 0.18u 0.13p 0.1p 0.07u

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”

— Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

16

AN |, mul $2,$3,$4

v add $6 $5 $2

B

Bl

=

Register File

What's great about superscalar microprocessors? -
Fast low-latency tightly-coupled networks
(0-1 cycles of latency, no occupancy)

Area and Frequency Scalability
~N2 ~N

NN g

X

Bypass Net

1=
Without I
modification, freq decreases linearly or worse.

Bypass Net

iy

-E*%JPEJ &

==

="Enk

PPro/P3:
12 stages

P4+<th4 e r) . REGULAT S)
es || (Gt \ B
P4lorescott: | SRl g B
ges

21

PPro/P3:
12 stages

P4+<h4 paper): | REGTATE e r: |
P4lorescott: | Sle— 1 €35
%ges ‘

ldea 1: Make operand routing local

Idea 1: Make operand routing local

[e [

X X X X

IEEE
ZIEEE
'E ﬂiﬂi x)

Operand Latency

Time for operand to travel between instructions mapped to
different ALUs.

Non-local ~N ~ N7z
Placement

Locality- ~ ~1
Driven
Placement

Latency bonus if we map communicating instructions
nearby so communication is local. 26

More Scalability Problems

T
‘

28

)

to multicore

Tiles (precursor

*Complexity-effective superscalar processors,Subbarao Palacharla, Norman P Jouppi, and J
E Smith In PROC of the 24th ISCA, Technical report , 1997.

*HP Clustered Processors https://www.hpl.hp.com/techreports/98/HPL-98-204 .pdf

*Scalar Operand Networks,
by Michael B Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
IEEE Transactions on Parallel and Distributed Systems, February 2005

30

https://www.cs.sfu.ca/~alaa/courses/cmpt450/fall2022/papers/palacharla-isca-1997.pdf
https://www.hpl.hp.com/techreports/98/HPL-98-204.pdf

= m.- WI W

=

lIill -I ll
s m- r- w-
e

w3 llIi-I-illIi

what was practical)

B_HE HE_HE__
(AN AN WASAN A
a S |slalglse8let 8
S CEEE T
R A I e
@ Blelegleg 8len 8

(

Multicore

32

The Scaling Promise of Multicore

4 cores 8 cores 16 cores
1.8 GHz >=1.8 GHz >= 1.8 GHz

=

»

65 nm 45 nm 32 nm

2X cores per generation,
flat or slightly growing frequency

33

More cores on a chip
Each core ; = 0.25x Power l

Overall Performance = 4 cores * O.6x/core = 2.4x

CoO C1 C2 C3
‘r"“ﬁ’ ‘ﬁ"'? %‘" w"
L13 L13 L1$ L13

Mem.

Shared L2% Controller

But actually,
that's not what's happening

4 cores 8 cores

1.8 GHz >= 1.8 GHz

65 Nnm 45 nm 32 nm \
1.4x cores per generation, Dark or Dim

flat or slightly growing frequency Silicon (“uncore”

35

IS technology scaling dead/dying 2

101: Moore's Law

9 65 45 32 22 16 11 &8

® > > >e >e > > e >

—

= — =~14x

37

1

0
istors scale as 32

1
Trans

90 nm

64 cores

2X
Transistors = 4x

S =

180 nm

16 cores

38

Advanced Scaling:

IfS=14x ... Scale by S3 = 2.8x”

Design of lon-Implanted MOSFETs with Very Small Dimensions
Dennard et al, 1974

1

39

Advanced Scaling:

IfS=14x ... Scale by S3 = 2.8x”
S2
S2=2x
More Transistors
S
1

T - -y .
Dennard: “Gomputing Gapahilities
[| 40

Advanced Scaling:

IfS=14x ... Scale by S3 = 2.8x”
S3
S=14x
Faster Transistors
S2
S2=2x
More Transistors

Advanced Scaling:

IfS=1.4x ... Scale by S3 = 2.8x”
S3
S = 1.4x
Faster Transistors
But wait: switching 2.8x times S2
S2=2x as many transistors
More Transistors per unit time —
what about power?? S

B 9y
‘6 Call KEEGN NOWET consumpuon constan
42

Dennard:
S3
S =1.4x S = 1.4x
Faster Transistors Lower Capacitance
S2
S2=2x
More Transistors S
|

B 9y
‘6 Call KEEGN NOWET consumpuon constan
43

Dennard:
S3
S =1.4x S = 1.4x
Faster Transistors Lower Capacitance
S2
STax Scale Vdd by S=1.4x
More Transistors Q2= 7y

N yy
W6 GCAll Kee) POWer consumpuon constan
44

Fast forward to 2005:

S3
S =1.4x S =1.4x
Faster Transistors Lower Capacitance
S2
e : . dd by S=1.4x
More Transistors
DY)
|

Leakage Prevents Us From Scaling Voltage -

UI
[
:

>

J13d9vuna

46

Weve HitThe Utilization Wall

Utilization Wall: With each successive process generation, the percentage of a chip that can actively
switch drops exponentially due to power constraints.

20)0)e) 20714 2020

45n$m 220m 19 nm

Torzl| S |

Power 1
/Si
%
Usable 100%

Si

Transistors vs Power

Nanometers

200
180
160
140
120
100
80
60
40
20
0

—— Technology (hm) —=—Power/nm?

Relative Power per nm?

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext

16

Scaling
B~ N D

Credit: Babak Falsafi and Niko Hardavellas

16
==Moore's Law
<@=Power/Transistor 80 8
84
N
2
| | | | 1
O 4} Q &) © O
Q Q N & &y &
S S

==Moore's Law
“<=Pin Banawidth /
0 4 Q &) © O
Q Q N N & &
2SI M A S S

Relative Performance

25 -

20 - /

10_ ‘

0 I I I I

SFU

-&-Speedup under
Moore's Law

& Speedup under
Physical Constraints

Credit: Babak Falsafi and Niko Hardavellas

2004 2007 2010 2013 2016 2019

Year of Technology Introduction

50

Venkatesh [ASPLOS’ 20101 - Utilization Wall

m Scaling theory

— Transistor and power budgets are no
longer balanced

— Exponentially increasing problem!

m Experimental results

— Replicated a small datapath
— More "dark silicon" than active

m Observations in the wild
— Flat frequency curve
— "Turbo Mode"
— Increasing cache/processor ratio

0.04

0.03

0.02

0.01

Utilization @ 40 mm?, 3 W

5.0%

\

\

\ 2X
1.8%
l \0.9%
90 nm 45 nm 32 nm
TSMC TSMC ITRS
Ganesh et al:

Conservation cores: reducing the
energy of mature
computations. ASPLOS 2010: 205-218

51

https://dblp.uni-trier.de/pid/58/3393.html
https://dblp.uni-trier.de/db/conf/asplos/asplos2010.html

Multicore hits the Utilization Wall

4x4 cores @ .9 GHz

Spectrum of tradeoffs ; (GPUs of future?)

between # of cores and '

frequency 2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

Example:

65 nm - 32 nm (S = 2)

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

[Goulding, IEEE Micro 2011]
[Esmaeilzadeh ISCA 2011]
[
[

65 nm 32 nm Skadron IEEE Micro 2011]

Hardavellas, IEEE Mbzro 2011]

Spectrum of tradeoffs
between # of cores and
frequen

Exa

4 cores @ 1.8 GHz

65 nm

65 The utilization wall will change the way
everyone builds chips. |

Hz
m)

4 cores @ 2x1.8 GHz

(12 cores dark)

32 nm

53

64bit ADD
(12pJ)

Wire:
1pj/mm
per-byte

20mm

40nm technology

54

N
U
O

50
E 200
T
- 150
]
N
=< 100
£
© 50
Z

0

B Data Movement
B Data Access

Registers LI

L2

L3 DRAM

55

\Yele
Double prec.
64 bit FMA

8KB SRAM
(64bit read)

Wire energy
(64 bits)

2017

(High Vdd)

2017
(Low Vdd)

0.65

>0p) 8.7p) 6.5p] (8x)
| 4p] 2.4p) |.8p) (7%)
64p] 40p] 30p) (2x)

56

Lesson 1:3!018 all about the software

.

Validation

240

160

Cost (M)

80

e Need application, not chip

65nm 45/40nm 28nm
(90M) (130M) (180M)
Feature Dimension (Transistor Count)

Verification —

20nm
(240M)

Architecture

IP Qualification

16/14nm
(310M)

57

Lesson 2: Hardware design Is hard SFU

Transistors,
log scale Cost ($M)
107 100

=== Transistors per chip, ‘000 . Design Cost

=== TOtal HW Cost . Verification Cost. o

10° 75

i 25

10-1 | 1 I I 1 | I 1 I I | I I I I | 1 I I | — 0
1980 85 90 95 2000 05 10 15

Technology Node 180 130 65 45 32 22 14

Credit: Michael Taylor
Univ. of Washington

Proprietary Code
500K-->13 people & $1B

Python
Django

Memcached
Postgres/SQL

Redis
Apache
Linux
GNU *
GCC

Your Secret Sauce

Where are the stdlibs ?

What are the APIs?

What are the
abstractions?

60

Goal 1: Always keep the software-to-hardware flow

Goal 2: How do we lower the barrier to energy efficient chips?

Goal 3: Enable iterative HW exploration

Goal 4: Full Application (multiple IPs)

61

Understanding the sources of inefficiency

62

Where energy consumeds

FabScalar OpenSPARC

W 39.8%

m14.8%

Actual execution consumes only a fraction of energy

Data is from “Power balanced pipelines” Sartori et al. in HPCA 2012

63

Multicore Energy Breakdown

For HD H.264 encoder

« 2.8GHz Pentium 4 is 500x worse in energy*
» Four processor Tensilica based CMP is also 500x worse in energy*

M Instruction Fetch
M Register File
HALU

WD

W Pipeline Registers

m Control

Assume everything but functional unit is overhead
« Only 20x improvement in efficiency

* Chen, T.-C., et al., "Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder," Circuits and Systems for
Video Technology, IEEE Transactions on, vol.16, no.6, pp. 673-688, June 2006. 64

Need basic ops that are extremely low-energy

« Function units have overheads over raw operations

» 8-16 bit operations have energy of sub pJ
 Function unit energy for RISC was around 5pJ

And then don’t mess it up
« “No” communication energy / op
* This includes register and memory fetch
« Merging of many simple operations into mega ops
 Eliminate the need to store / communicate intermediate results

65
Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA 2010

- SFU
Multicore vs. ASIC

Huge efficiency gap Manycore doesn’t help
» 4-proc CMP 250x slower « Energy/frame remains same
« 500x extra energy « Performance improves

A I = A

800

700 -

600 -

500 -

400 -

m Perf Gap

300 - ®m Enrgy Gap

200 -

100 -

0 -
IME FME 1P CABAC

66

Opt 1: SIMD, VLIW and
Horizontal Fusion

SIMD
« Up to 18-way SIMD in reduced precision

16x8 bit

—_
4+ 4+t o+ o+ 4+ JEPI
1ttt ottt o D D D D 1612 it

accumulator

VLIW

 Up to 3-slot VLIW Load |1 1 1 1 A K

oed IABEODED o, A¢ BEBEDED

add I 2 1 I 2 Load [l 1 1B I [[[
ade [2 I 0 2

67

Energy/Frame (ul)

10000000

1000000

100000 -

10000 -

1000 -

100 -
IME FME IP CABAC Total

B RISC ™ +SIMD +VLIW mASIC

Order of magnitude improvement in performance, energy
* For data parallel algorithms

« But ASIC still better by roughly 2 orders of magnitude .

Ont 2: Op Fusion

(uis)

Add(39)

Load(18)
A D
N —

Chainsaw: Von-Neumann Accelerators, Amirali et al., MICRO 2016 69

@
T

1000

7

;

Opt 2: Op Fusion
100

*Inter-Chain *|Intra-Chain

80

60

gzip bzip2 mcf2k Ibm parser dwt53

Reduces 40% of data movement energy

70

Ont 2: Op Fusion

10000000

1000000

100000

10000

1000

100

Energy/Frame (ul)

IME FME IP CABAC
BRISC ™ +SIMD +VLIW ® +OpFus MASIC

50x less energy efficient and 25x slower ASIC

Total

71

summary: 0PT-1and 2

Great for data parallel applications
* Improve energy efficiency by 10x over CPU
* Serial phases largely unaffected

Overheads still dominate
* Basic operations are very low-energy
e Even with 15-20 operations per instruction, get 90% overhead
e Data movement dominates computation

To get ASIC efficiency need more compute/overhead
* Find functions with large compute/low communication
* Aggregate work in large chunks to create highly optimized FUs
 Merge data-storage and data-path structures

72

73

Create specialized data storage structures

« Require modest memory bandwidth to keep full
 |nternal data motion is hard wired

« Use all the local data for computation

Arbitrary new low-power compute operations Large effect on energy

efficiency and performance

74

sum = sum + abs(Xef — Xcur)

Looking for the difference between two images

 Hundreds of SAD calculations to get one image difference

e Need to test many different position to find the best

e Data for each calculation is nearly the same

Candidate

/,/
£

— Search

Center

— Block

~~._ Candidate
Motion

Vector

75

SIMD implementation

L /
* Limited to 16 operations per cycle {
« Horizontal data-reuse requires many shift operations B 22?;‘;?

* No vertical data reuse means wasted cache energy]
» Significant register file access energy

Magic — Serial in, parallel out structure

* Enables 256 SADs/cycle which reduces fetch energy

» Vertical data-reuse results in reduced DCache energy

* Dedicated paths to compute reduce register access energy

76

128-Bit Load 128-Bit Load
16 Pixels —> 16 Pixels
16 Pixels —> 16 Pixels
16 Pixels —> 16 Pixels
I I
[I
1 I
1 I
1 I
1]
16 Pixels —> 16 Pixels
Ref Pixel Regist .

Horizontal and vertical shift with

parallel access to all rows

—> Four 4x1 SAD Units €<—

—> Four 4x1 SAD Units €<—

—> Four 4x1 SAD Units €<—

—> Four 4x1 SAD Units <—

256 SAD Units

Optimization strategy similar across all algorithms
* Closely couple data storage and data path structures

 Maximize data reuse inside the datapath

Commonly used hardware structures and techniques
» Shift registers with parallel access to internal values
* Direct computation of the desired output

e Eliminate the generation (and storage) of
intermediate results

Hundreds of extremely low-power ops per instruction
Works well for both data parallel and sequential algorithms

Pushing the Limits of Accelerator Efficiency While Retaining H&P Book

Programmability, HPCA 2016

DSA Cﬁapter 8

Magic Instructions - Energy

10000000

1000000

100000

10000

1000

100

Energy/Frame (ul)

IME FME IP CABAC Total

BRISC ®m +SIMD+VLIW W +OpFus M +Magic mASIC

Efficiency orders of magnitude better than GP
Within 3X of ASIC energy efficiency

78

Processor Energy Breakdown

1000

100 -

==
= W RISC
§ 10 - m +SIMD+VLIW
Q
c M +Op Fus
(§E]
1 m+MAGIC

IF D-$ Pip Ctl RF FU

Over 35% energy now in ALU
« Overheads are well-amortized — up to 256 ops / instruction
* More data re-use within the data-path

: .. : 79
Most of the code involves magic instructions

Are DSAs/Accelerators The Solution?

N\

ik

82

Low ILP Low ILP Low ILP High ILP
CPU ¢ l Accelerator
Instructions No Fetch
Branches i ll No Control

Hardware ILP

.-wh——m_ e

.-ﬂ

Software ILP

[Intel Harp, IBM CAPI, ARM Big-Little, BERET, DYSER, CCORE]

83

* Hope! Large acceleratable program regions

Low ILP Data parallel High ILP

O’

NS

/\/ \J\/

84

10000

1000

100+

10

Pre-Moore

= Performance / Performance of 386
¢+ FO4 0of 386/ FO4

Architecture

. 1
n : i "
— i o . 1
i1 =" il
: " ! . i
I! I ?
P Technology
o ! ‘e
. : ot '
? Danowitz et al., CACM 04/2012, Figure 1

10 068 0.50 035 025 0.18 0.13 0.90 0.065 00450032
Feature Size [um]

~50% every two years

000 x

100x

10X 1

1xX-

Post-Moore

== Performance ={I= Chip-Specialization Return

[Accelerator Wall, HPCA'19]

~20% every two years
after initial 100x

85

307.4x%

1.7%

Big Small
Cores Cores

Shared Resources
GPU/DS Memory
P Interface

How to decompose applications into accelerators? # Flexibility
How to rapidly design lots of accelerators? ¥ Design Cost
How to design and manage the shared resources? ' Programmability

* Applications execute in phases

Applications follow 90-10 rule
* 10% of code-region contributes to 90% of run time

Creating specialization for such code-regions amortizes the overheads

Removing instructions from main pipeline
* Less use of Instruction Queue, ROB, Register File
 Effectively larger instruction window

Decoupled Execution
* Concurrency between main processor and CGRA
 Many FUs -> High Potential ILP

Benefits of Vectorization
* Fewer memory access instructions
* Explicit pipelining of CGRA

87

*Challenge 1: Find acceleratable programs regions

Control not supported (need SW help)

Mem. ops not supported (self prophecy?)

e Challenge 2: Identifying accelerator types

r-----

SIMD

88

How can software define accelerators R

* Challenge 3: How to compose accelerators?

89

FPGA

GPUs

Accelerator Granularity

Algorithm

Threads

Onchip-FPGA

Loop
Accelerators

SIMD

Extended Basic Blocks
Program loops

Instructions

90

Memory regularity

---->

Types of Accelerators?

Control regularity

-------)

Manycore

Data Parallel region

SIMD

06 606 606

Irregular

OO0 CPU

Dynamic ILP region
SRR
]

/ \

AL

91

92

Our History

MICRO’16
ISCA'15

2016

Lets accelerate
something

93

Our History

MICRO’16 HPCA’17

ISCA'15 lISWC’17
HPCA'18

Mem
2017 Ordering

2016

Lets accelerate What should
something we accelerate?

Compiler front-end work
for FPGA toolchains

94

Our History

MICRO’16 HPCA’17

ISCA'15 lISWC’17
HPCA'18

Mem
2017 Ordering

2016

Lets accelerate What should
something we accelerate?

Compiler front-end work
for FPGA toolchains

Community moving
towards DSLs

95

Our History

MICRO’16 HPCA’17 VICRO’ 18
ISCA’15 IISWC’17
HPCA’18
Mem
2016 2017 Ordering 2018

Lets accelerate What should
something we accelerate?

Let’s generate
parallel accelerators

Compiler front-end work Cilk to FPGA
for FPGA toolchains Modular HLS

96

Our History

MICRO’16 HPCA’17
ISCA'15 lISWC’17

MICRO’18 MICRO’19
HPCA'18

Mem
2016 2017 QOrdering 2018 2019
Lets accelerate What should Let’s generate Can we generate
something we accelerate? accelerators iteratively?
. . MR
Compiler front-end work Cilk to FPGA Modular HW
for FPGA toolchains High-Level-Synthesis ocua

Libraries

97

Architecture Tempiate 1(Dataflow]}

R ‘}R“ ﬁ * Target: Line-rate processing
I FU I I * Spatial Dataflow
! E N

* Instruction grain - ALU ops
FU FU
H \\H \\H * Stateless fabric
5 >d: 1S *(no register file)
* Logically single line-buffer

Related:
Academia: CGRA-ME, Dyser, CGRA-express,
Industry: Xilinx CGRA overlays, Wireless baseband? o4

FU

*No control (e.g.,branches, loops)

Template 2 (CGRA-based)

* Target: Image-Processing,
Memory Hierarchy Machine Learnlng, DNN,

e Spatio-Temporal Dataflow
* Rich control (if-else, loops,
* nested loops)

* Kernel Grain

* Stateful fabric
* Rich register hierarchy

* Multiple line-buffers

Industry: https://ieeexplore-ieee-org/stamp/stamp.jsp?tp=&arnumber=7818353

Intel early-CGRA (https://arxiv.org/pdf/1711.07606.pdf)

Xilinx Versal (DSP/Vector Processor Fabric: https://www.xilinx.com/support/documentation/data sheets/ds950-versal-overview.pdf)
Eyeriss/MIT: https://arxiv.org/pdf/1807.07928.pdf

Sambanova and Spatial (https://www.sambanovasystems.com/news/) 99

https://ieeexplore-ieee-org/stamp/stamp.jsp?tp=&arnumber=7818353
https://arxiv.org/pdf/1711.07606.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://arxiv.org/pdf/1807.07928.pdf
https://www.sambanovasystems.com/news/

Execution Model: Decoupled Access/Execute Model

 Memory access instructions Config
execute in processor pipeline D O
* Address Calculation, Loads, and
()

Stores

* Configure
 Send Data

e Recv Data ®» G
* Loop control Q)
()

 Computation executes

100

* Implement dynamic scheduling
* Every component communicates via a pair of handshake signals

* The data is propagated from component to component as soon as
memory and control dependencies are resolved

4) 4)

valid >

\AS RN

Component 1 [ready Component 2

\O/ - J

- Dataflow by nature has write-once semantics

- Each arc (token) represents a data value

- An arc (token) gets transformed by a dataflow node into a new arc (token)
No persistent state...

Eliminates per instruction overheads
No fetch, decode etc.,

No expensive register reads etc.,
High performance itself leads to energy savings
No additional power-hungry structures

102

parallel_for(i1 = @ until n)
parallel_for(j = 0 until n)

c[1][]] = 0[1][J] + b[1]1[]];

Hierarchical Data + Control Dynamic Graph

for_1

? |
¢Spawn Sync '/ GEP A[il[j] GEP BIi][]
! {

’ Load A[i][j] Load B[i][j]

for_j ! N

Q | *
body | ...

* C to intermediate graph representation
* LLVM compiler framework for (1 = 0; i < 100; i++) {

a[x[1]] = a[x[i]] * w[i];

}

Basic
block

1. TAPAS: Generating Parallel Accelerators from Parallel Programs .Steven Margerm, Amirali Sharifian, Apala Guha, Gilles Pokam and Arrvindh Shriraman., MICRO, 2018.
2. uIR -An intermediate representation for transforming and optimizing the microarchitecture of application accelerators . Amirali Sharifian, Reza Hojabr, Navid Rahimis, Sihao

Liu, Apala Guha, Tony Nowatzki and Arrvindh Shriraman. MICRO, 2019.
3. Dynamically Scheduled High-level Synthesis Josipovi¢, Ghosal, and lenne.. FPGA 2018

http://www.cs.sfu.ca/~ashriram/papers/2018_MICRO_TAPAS.pdf
http://www.cs.sfu.ca/~ashriram/papers/2019_MICRO_MUIR.pdf

» Constructing the datapath

LD x[i]

LD w(i]

LD a[x[i]]

{
*

4 stages

y

ST a[x[i]]

«— 2

6
comb.

for (i = 0; 1 < 100; i++) {
a[x[i]] = a[x[1]] * w[i];

}

r

Each operator corresponds to
a functional unit

~\

Start: i=0

!

Mg

LD x[i]

LD w(i]

LD a[x[i]]

{
*

4 stages

y

ST a[x[i]]

«— 2

for (i = 0; 1 < 100; i++) {
a[x[i]] = a[x[1]] * w[i];

}

r

A Merge for each variable
entering the BB

~\

synthesizing Dataflow Circuits

|
Mg
1
LD x(i] @ o
comb.
LD w(i]
N
LD a[x[i]] y
4
*
4 stages Br
ST a[x[i]] l

Exit: i=N

for (i = 0; 1 < 100; i++) {
a[x[i]] = a[x[1]] * w[i];

}

r

A Branch for each variable
exiting the BB

~\

Start: i=0

!

Mg

Fork

LD x[i]

Fork

Ll

LD w(i]

LD a[x[i]]

{
*

4 stages

ST a[x[i]]

«— 2

comb.

Fork

Br

Exit: i=N

for (i = 0; 1 < 100; i++) {
a[x[i]] = a[x[1]] * w[i];

}

r

A Fork after every node with
multiple successors

~\

Start: i=0
!
Mg
v
Buff
v
Fork
\
v
LD x(i]
v ,
Fork LD wii]
LD a[x[i]]
4
*
4 stages
ST a[x([i]]

« 2

comb.

Fork

Br

Exit: i=N

for (1 = 0; 1< 100; i++) {

}

a[x[1]] = a[x[i]] * w[i];

Use buffers to break
combinational loops

Synthesizing Dataflow Circuits
Sta6i>=0

Mg \
v
(} for (i = 0; i < 100; i++) {
/ i alx[1]] = a[x[i]] * w[i];
| Fark }
> L 1
of
LD Xfil ‘l
¢ comb.
Fork LD w(i] Fork

« 2

i)

I LD a[x[i]]
4
%
4 stages Br

ST a[x([i]] : 'tl' \
xit: i=

scheduling 101

|dealistic DDDG

Resource Activity

. MEM] [MEM
Acc Design Parameters: - Foeeeeei Ve T
v' Memory BW <=2 T
v' 1 Adder MEM
v Cycle

111

scheduling 101

Spatio-Temporal Dataflow

Resource Activity

Acc Design Parameters:
v Memory BW <=4
v' 2 Adders

112

struct vec {
float x, y, z;
float q;
}
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
dot[i]=A[1].x*B[i].x
+A[i].y*B[i].y
+A[i].z*B[1i].z;

113

CGRA Vector Interface

How do we
/ get this access pattern?
Ilteration 2 — ——
I[teration 1 >
v v v

struct vec {

float x, vy, z;

float q; X X X
}
vec A[], B[];
float *a = A, *b = B; + +
float dot[];

for(int 1 =0; i < LEN; i+=1) {
dot[i]=A[1].x*B[i].x
+A[i].y*B[i].y
+A[1].z*B[1i].z;

} v ¥ v

Ports shown only for a[] 114

115

SFU
Gompiler Intermediate Representation

* Makes it easier to optimize for target architecture

* A suitable IR should
* Model the architecture, accurately if possible
* Capture the dependencies between the operations
* Generate code for the architecture with ease

116

GCompilation Tasks

Identify code-regions/loops to specialize

Construct AEPDG
 Access PDG

 Execute PDG

Perform Vectorization/ Optimizations

Schedule
 Execute PDG to CGRA
 Access PDG to core

Identification &
Construct AEPDG

=

Vectorization
Optimization

117

egion Illlillliﬁ(:illillllm

* Identify code-regions to specialize
* Path Profiling
 Utilize Loops

Region Identification * Need Single-Entry / Single Exit Region

Vectorization
Optimization

A A

Scheduling

Specialization
Region

118

onstruct AEPDG m

* Build Program Dependence Graph
* Separate memory access from
computation.

* Loads/Stores and all dependent
computation are access.

Address Calc: @ @ @
Vectorization Loads: @ @

[Optlmlzatlo

Schedullng °
Store: @

Region Identification

119

= Build Program Dependence Graph

= Separate memory access from computation.

Region Identification = Loads/Stores and all dependent computation
are access.

Address Calc:

[Vectorization Loads:
Optlmlzatlo

Scheduhng

£y

Store:

Region Identification

Vectorization
Optlmlzatlo

Scheduhng

£y

onstruct AEPDG m

= Build Program Dependence Graph

= Separate memory access from
computation.

= Loads/Stores and all dependent
computation are access.

Address Calc:

Loads: G (bl

Store:

121

==

Region Identification

5

Vectorization
Optimization

V

[

Scheduling

£y

onstruct AEPDG m

= Build Program Dependence Graph

= Separate memory access from
computation.

= Loads/Stores and all dependent
computation are access.

Address Calc:

Loads: G (bl
— N
Execute _
Subregion e

Store:

122

Vectorization -y

e Similar to SIMD Techniques, loops
must have:
— Independent Iterations

— Must be no Store/Load Aliasing
 Memory Access: No gather/scatter

* Perform Loop Control
— Modify trip count/peel scalar loop

Vectorization
Optimization

Region Identification

[

V

Scheduling

£y

123

Vectorization -y

e Similar to SIMD Techniques, loops
must have:
— Independent Iterations

— Must be no Store/Load Aliasing
 Memory Access: No gather/scatter

* Perform Loop Control
— Modify trip count/peel scalar loop

Vectorization
Optimization

Region Identification

[

V

Scheduling

£y

Data is
pipelined
through CGRA

124

Scheduling -y

 Map Execute Subregion
— Sort nodes in data flow
order
— Greedily place each node to

% minimize the total routes

Vectorization
Optlmlzatlo

Region Identification

Scheduhng

£y kP

125

Scheduling

 Map Execute Subregion to
CGRA

— Sort nodes in data flow order

— Greedily place each node to
minimize the total routes

Region Identification

[Vectorization
Optlmlzatlo X +

Scheduhng

£y

Scheduling

* Map Execute Subregion
— Sort nodes in data flow order

Region Identification

— Greedily place each node to

% minimize the total routes

Vectorization
I +
heduhng

£y

JaN

127

Scheduling

* Map Execute Subregion
— Sort nodes in data flow order

Region Identification

— Greedily place each node to

% minimize the total routes

Vectorization

A4
Scheduling \
~~ +] || [

128

Scheduling -y

 Map Execute Subregion to
CGRA

— Sort nodes in data flow order
— Greedily place each node to

i % minimize the total routes

Vectorization

Region Identification

Scheduling

129

The MicroArchitectural IR (pIR) Flow

Problem
Algorithm
Application
Extensible
software
and hardware
intermediate representation
(Microarchitecture |
| Logic Design J

L Transistors, etc. |

130

1D Gonvolution Hardware

welghts input - output
CITI-) X I ITITT7J 7 CCITIT1
cilk for (i=0; i < (M-W); i++) {
cilk_reduce (j = 0; j < W; j++) {
output[i] += input[i+j]x
weight[j];

1D Gonvolution Hardware

1: Register promotion

— @

— — —

—

= §)

I—I 3
<T——

GEMM

i

3: Parallelism

DRAM
DRAM

DRAM

GEMM
BE*H

132

n
o
=4
S
)
q
®

I

Performance

Energy Efficiency

133

We have avision SFU

n
o
=4
S
)
q
®

MO

Performance

Energy Efficiency

We have avision SFU

Best Hardware

n
o
=4
S
)
q
®

Performance

Energy Efficiency

We have avision SFU

Best Hardware

n
o
=4
S
)
q
®

1. Algorithm
2. Schedule

3. Structure

I

Performance

Energy Efficiency

Iron Law of Hardware

5% Algorithm

Banking? FU?
Fabric?

Schedule Parallelism
Locality

137

