
CMPT 450/750: Computer Architecture

Fall 2021

Memory Consistency

& DRAM

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2021 Alaa Alameldeen and Arrvindh Shriraman

Memory Consistency Models

• Formal specification of how the memory system will appear to the

programmer

• Places restrictions on the value that can be returned by a “read” operation in

a shared memory program execution

➢“Read” should return the value of the last “Write” to the same location

➢For uniprocessor, “last” is defined by program order

➢For a multiprocessor, not clear how to define “last write”

• Example (textbook)

2

Why Memory Consistency Models are Important

• Programmability

➢Some memory consistency models are easier to reason about than others

➢With no clear definition of memory consistency, programmers have to be conservative

with shared data

• Performance

➢Strict consistency models don’t allow many performance optimizations in hardware and

system software

➢Conservative programming strategies may inhibit parallelism

• Portability

➢Programs written for one architecture may not work on another architecture with a

different memory consistency model

3

Sequential Consistency
• An extension of uniprocessor “program order”

• A multiprocessor is sequentially consistent if

➢Result of any execution is the same as if the operation of all processors were executed in some

sequential order

➢Operation of each processor appear in this sequence in the order specified by its program

• Two requirements for SC

➢Program order

➢Atomicity for memory operations

• Advantage

➢Simple and intuitive programming model

• Disadvantages

➢Prevents many hardware optimizations (e.g., write buffers)

➢Prevents many compiler optimizations (e.g., code motion)

4

Adve and Gharachorloo, Figure 3:

Programmer’s view of SC

Sequential Consistency: Examples

a) Dekker’s Algorithm for mutual exclusion: Program order needed so both

processors don’t enter critical section simultaneously

b) Atomicity of memory operations needed so writes appear in the same order for all

processors (otherwise P3 may return old value of A) 5

Adve and Gharachorloo, Figure 4

Implementing Sequential Consistency (1)
• SC restricts some common optimizations, even in the absence of caches

6

Adve and Gharachorloo, Figure 5a: Write Buffers

Retiring writes to a write buffer violates the program
order requirement of SC, leading to both processors
entering critical section simultaneously

Implementing Sequential Consistency (2)

7

Adve and Gharachorloo, Figure 5b: Overlapping Writes

Allowing P1’s writes to local memories to finish faster
violates SC, leading to incorrect read order at P2

Implementing Sequential Consistency (3)

8

Adve and Gharachorloo, Figure 5c: Non-blocking Reads

Allowing P2’s read from local memory to finish faster
violates SC, leading to P2 reading new value of Head but
old value of data

Implementing Sequential Consistency (4)

• Architectures with caches

➢Cache coherence represents the mechanism that propagates a newly written value to

the cached copies of the modified location

➢Memory consistency model is the policy that places an early and late bound on when a

new value can be propagated to any given processor

➢How do we detect the completion of a write operation?

9

Implementing SC: Write Atomicity (1)
• Writes to the same location need to be serialized

10

Adve and Gharachorloo, Figure 6

• Assuming a write update protocol and a general interconnection network, writes to A by P1 and P2 can
reach P3 and P4 in different orders, violating the write atomicity condition of SC

• Can be avoided if we guarantee writes to the same location are serialized (e.g,, using write-invalidate
cache coherence protocol)

Implementing SC: Write Atomicity (2)

• With a general interconnection

network, it is possible to violate SC if

P2 gets P1’s update to A before P3,

and P3 gets P2’s update to B before

P1’s update to A

• To avoid this, need to prevent read

from returning new value until all

acknowledgements for write are

received

➢ Again, this is simpler with write-invalidate

coherence protocols

11

Adve and Gharachorloo, Figure 4b

Relaxed Memory Models (1)
• Can relax either:

➢Program order requirement

➢Write atomicity requirement

• Relaxing program order requirement

➢Write to a following read

➢Two writes

➢Read to a following read or write

• Relaxing write atomicity requirement

➢Can a read return the value of another processor’s write before the write is visible to all

processors?

• Relaxing both requirements

➢Can a processor read the value of its own previous write before it is made visible to all other

processors?

12

Adve and Gharachorloo, Figure 7

Relaxed Memory Models (2)

13

Adve and Gharachorloo, Figure 8

Examples of Systems with Relaxed Models

14

Adve and Gharachorloo, Figure 9

Relaxing Write to Read Program Order

• IBM 370

➢Does not enable a processor to read its own write early (SC enables this optimization)

• Total Store Order (TSO), implemented in SPARC V8 and many x86 processors

➢Relaxes Write to read order and enables a processor to read its own write early

➢Enforces order between writes (W -> W)

➢Enforces order between a read and subsequent reads/writes (R -> RW)

• Processor Consistency (PC) (e.g, DASH)

➢Similar to TSO except that it enables reading other writes early

• All techniques allow a read to be reordered wrt previous writes from the same

processor

➢Enable write buffers

• Techniques differ on when to allow a read to return the value of a write

15

Relaxing Write to Read Program Order: Examples

a) Is possible with TSO and PC but not with IBM 370

b) Is possible with PC but not with TSO or IBM 370

16

Adve and Gharachorloo, Figure 10

Relaxing Write to Read & Write to Write Program
Orders

• Example: Partial Store Order (PSO), implemented in SPARC V8

• Writes to different locations from the same processor can be pipelined or

overlapped

➢Writes allowed to reach memory or other caches out of program order

• A processor can read the value of its own write early

• A processor is prohibited from reading another processor’s write until it is

visible to all other processors

17

Relaxing All Program Orders
• Relax program order between all operations to a different location

• A read or write may be reordered wrt a following read or write to a different

location

• Allows non-blocking reads (lockup-free caches, speculative execution)

• Allows almost all compiler optimizations

• Examples

➢Weak Ordering (WO)

➢Release Consistency (RCpc, PCsc)

➢DEC Alpha

➢PowerPC

➢Relaxed Memory Order (RMO) in SPARC V9

18

Weak Ordering (WO)
• Classifies memory operations into two categories

➢Data operations

➢Synchronization operations

• To enforce program order between two operations, programmer needs to

specify synchronization operation

• Intuition: reordering data operations in between synchronization operations

would not affect correctness

• Writes appear atomic to programmer

19

Release Consistency (RC)
• Classifies memory operations into:

➢Ordinary operations

➢Special operations

❑Sync: Synchronization operations

❑Nsync: asynchronous data operations, not used for synchronization

• Sync operations are either

➢Acquire: read operation to gain access to a set of shared locations (e.g., lock, spin for a flag to

be set)

➢Release: write operation to grant permission for accessing set of shared location (e.g., unlock,

set flag)

• Different RC Models provide different program orders among special operations

➢RCsc: acquire → all, all → release, special → special

➢RCpc: RCsc: acquire → all, all → release, special → special except for special write followed by

a special read

20

DRAM Basics

21

DRAM

• Stands for “Dynamic Random Access Memory”

• Volatile memory, used as main memory in most computer systems

• DRAM cells are single-transistor, single-capacitor cells (1T1C)

➢Much higher density than 6T SRAM cells

• Data stored by charging or discharging capacitor

• Reads are destructive: Data needs to be written back to cell after read

• As capacitors lose charge over time, DRAM cells need to be “refreshed” to

restore charge

➢ “Dynamic” RAM requires periodic refreshing while “Static” RAM doesn’t

• Power consumption is mostly from leakage and refresh power

22

DRAM Cell

• Storing “1”: Set Wordline (WL) to high to turn on transistor, set Bitline (BL) to high to charge

capacitor

• Storing “0”: Set Wordline to high to turn on transistor, set Bitline to low to discharge capacitor

• Read cell: Set Wordline to high to turn on transistor, value is read on the Bitline (sensed using a

sense amplifier to amplify change)

➢ Reading disturbs charge stored on capacitor so old value needs to be restored

23

Bitline

Wordline

Compare to: SRAM Cell (6T)

• Storing “1”: Set Wordline to high to turn on access transistors, set Bitline to high and 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 to low to

store “1” at lower inverter output, “0” at upper inverter output

• Storing “0”: Set Wordline to high to turn on access transistors, set Bitline to low and 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 to high to

store “0” at lower inverter output, “1” at upper inverter output

• Read cell: Set Wordline to high to turn on access transistors, value from lower transistor is read on

Bitline and upper inverter is read on 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 (Read is not destructive) 24

𝐵𝑖𝑡𝑙𝑖𝑛𝑒

Wordline

Bitline

DRAM Terminology
• A system has multiple sockets each containing a chip multiprocessor (i.e., a multicore

processor) that interfaces to DRAM using one or more memory channels each controlled by a

memory controller

➢ Single socket systems are common in client systems, multi-socket systems are common for servers

• Each memory channel can interface with one or more DIMMs “Dual Inline Memory Module”

➢ A DIMM is a circuit board with chips on both sides

• Each DIMM is divided into ranks (typically 1 or 2)

• Each Rank has multiple DRAM chips which are further divided into banks. Each bank is

addressable independently of other banks

• Each bank is divided into one or more memory arrays (also called subarrays or tiles). Each

array contains rows and columns

➢ A “xN” DIMM has N memory arrays per bank and can access data from N columns simultaneously

➢ For example, a “x4” DIMM has 4 memory arrays per bank, and can read 4 bits from each bank simultaneously

25

DRAM Hierarchy Example

• Hierarchy: Socket → Channel → DIMM → Rank → Chip → Bank → Array →

Rows and Columns

• Example:

➢A DRAM array contains 8192 rows and 8192 columns (64Mb)

➢A x16 DIMM has 16 arrays per bank (1Gb)

➢ If each DIMM has 2 ranks, each rank has 8 chips, and each chip has 4 banks, then the total

memory capacity per DIMM is 2x8x4x1Gb = 64Gb (8GB)

➢A single socket may have 4 memory channels each interfacing with 2 DIMMs, so total memory

capacity per socket = 4x2x8GB = 64GB

➢A dual-socket system has a maximum DRAM capacity of 2x64GB = 128 GB

26

Memory Controllers

• A memory controller controls a memory channel

➢Sends bank, row & column address to memory on the address bus

➢Sends control bits on the control bus. E.g., Row Address Strobe (RAS), Column Address

Strobe (CAS), output enable, clock and clock enable etc.

➢Sends/receives data on the data bus

➢Selects which ranks need to respond by enabling “Chip Select” bits on the chip-select bus

➢Sends/receives data to/from processor

• Memory controllers decode a data address into chip select bits, bank address

bits and row/column addresses depending on DRAM configuration

• Memory controllers may also handle special functions (e.g., error detection

and correction, prefetching, initiating parallel memory accesses)

27

Memory Array
• A memory cell is at the

intersection of wordline

(horizontal) and bitline (vertical)

• Row decoder decodes row

address bits to enable a single

row wordline

• Sense amplifiers amplify signals

on bitlines

• Column decoder decodes column

address bits to select a few bits

from the data buffer

28

Memory Array

R
o

w
 D

ec
o

d
er

Column Decoder

Sense Amplifiers

In/Out Data Buffers (Row Buffer)

Sense AmplifiersSense AmplifiersSense Amplifiers

Memory ArrayMemory Array

Memory Bank
• Contains multiple arrays

• Figure shows a x4 bank which
contains 4 memory arrays, each with
its own set of sense amplifiers

• For memory reads, data from all
arrays are read into a row buffer, then
column decoder selects which bits to
send out. Row buffer data needs to be
written back after reads to restore
original bit values

• For memory writes, the whole row is
read first to row buffer, selected bits
(based on column address) are
modified, then whole row is written
back

29

R
o

w
 D

ec
o

d
er

Column Decoder

Memory ArrayMemory Array

Sense Amplifiers

In/Out Data Buffers (Row Buffer)

Steps for a Memory Read Operation
1. CPU request misses all cache levels, is sent to memory controller (MC)

2. Request is queued at MC until all prior and higher priority requests are handled

3. MC decodes address into chip select, bank, row and column address bits and sent over to DRAM

4. All bitlines in a bank are precharged (i.e., set to a level in the middle between logic 0 and 1). Row

Precharge Time is referred to as tRP.

5. Appropriate row is activated: Chip select and bank address bits enable bank, RAS signals row

address bits are ready, row decoder enables wordline for selected row. This switches on

transistors so stored value in capacitors can alter charge of precharged bitlines. Row needs to be

active for at least tRAS to ensure data is read and restored before precharging another row.

6. Data from all bitlines within selected row are sent to sense amplifiers which amplify the signal read

from memory cells and store data into row buffer. Column address can be sent to row buffer after

time tRCD (row-address to column-address delay)

7. MC reads column: Chip select and bank address bits enable bank, CAS signals column address

bits are ready, column decoder selects appropriate column, all bits from that column across

different arrays are connected to output drivers which drive data bus. CL is CAS latency: time

between sending a column address and receiving data 30

Row Buffer
• Each bank has a row buffer where the active row is cached following a read

➢DRAM row also called a “page” (different from the page concept in virtual memory)

• Subsequent reads from the same row get data from row buffer (saving RAS and cell

access time). This is called a row buffer hit

• Since reads are destructive, row buffer data needs to be written back to row before

accessing a different row

• Row buffer size depends on number of columns and number of arrays per bank

➢Example: A x8 chip with 8192 rows x 8192 columns has a row buffer size of 8x8192 bits = 8KB

• Open page vs. Closed page policy

➢Open page: Keep data of active row in row buffer. Works well for high spatial locality (multiple row

buffer hits before a row buffer miss)

➢Closed page: Write back row buffer data to row and precharge bitelines to save tRP time when

accessing a different row. Works well for low spatial locality

31

Refresh Operations
• DRAM cells lose charge over time (leakage) so they need to be recharged before bits flip

• If a row is read or written via normal memory controller requests, then it is automatically

refreshed

➢ However, no guarantee that a specific row will be read/written before bits flip

• To avoid errors due to charge loss, rows are periodically refreshed

➢ All rows have to be refreshed within a refresh cycle

➢ Time between refreshes (tREFI) is based on time to flip weakest cells

• Refreshes usually initiated by the memory controller

• Refresh overhead:

➢ Latency: During refresh operations to a bank, no reads or writes can be performed to that bank. tRFC is delay

between a REFRESH command and next valid command to same bank.

➢ Power and Energy: Refresh power is a significant fraction of DRAM power/energy consumption

• Self-refresh mode is performed by DRAM in low power mode when CPU and memory

controller are turned off

32

Other Memory Technologies: Embedded DRAM

33

• eDRAM is a DRAM integrated on the same
die or multi-chip module (MCM) as the CPU

• Uses a logic process instead of a DRAM
process

• Typically used as a large L4 cache

• Compared to DRAM:
➢Pros: Faster, higher bandwidth

➢Cons: More expensive, has lower capacity and
requires more frequent refreshes

• Compared to SRAM:
➢Pros: Denser (larger capacity) and lower cost/bit

➢Cost: Slower and requires additional cost to
manufacture

eDRAM:
• DRAM on a logic process

Faster, higher bandwidth than DRAM
Denser than SRAM

CPU CPU CPU CPU

L3 Cache (SRAM)

eDRAM

Other Memory Technologies: Stacked DRAM

34

• Multi-layer Stack of DRAM chips

• Could be above/below CPU/GPU die or stacked

on a separate die

• Example: High-Bandwidth Memory (HBM)

• Pros: higher bandwidth, potentially faster than

DRAM

➢Single HBM3 stack can have bandwidth higher than

800GB/sec

• Cons: More expensive (higher cost/bit), smaller

capacity

• Could be used with DRAM or other technologies

as part of a multi-level memory system

Stacked DRAM:
• High-Bandwidth Memory (HBM)
• Hybrid Memory Cube (HMC)

Faster, higher bandwidth than DRAM

Other Memory Technologies: Non-Volatile Memory

35

• Typically denser than DRAM

• Non-volatile technology: Stored values persist

past power shutdown

• Example: 3D Xpoint (3DXP), Phase Change

Memory (PCM)

• Pros: higher capacity vs. DRAM, non-volatile

➢Can be used as a persistent memory (PMEM)

• Cons: Slower than DRAM, limited bandwidth,

limited write endurance

• Could also be used with DRAM or other

technologies as part of a multi-level memory

system

Non-Volatile Memory (NVM):
• 3D Xpoint
• Phase-Change Memory (PCM)

Large capacity, non-volatile but slower

3D Xpoint
(Intel, Micron)

FAST Memory

Heterogeneous Memory Systems

36

CPU

SLOW Memory

• Memory outside CPU/GPU die can have multiple

levels of heterogeneous memory technologies

• Different types of memory co-exist:

➢Fast (higher BW and/or lower latency)

➢Slow (lower BW and/or higher latency)

• Systems perform better with higher hit rates in

fast memory

• Fast memory could be organized as:

➢A cache for slow memory; OR

➢Part of a flat memory address space

• When does cache make sense vs. flat address

space?

37

Reading Assignments

• ARCH Chapter 5.6, 5.7 (Read)

• S. Adve and K. Gharachorloo, “Shared Memory Consistency

Models: A Tutorial,” Technical Report, 1995 (Read)

• Jacob, Ng and Wang, “Memory Systems: Cache, DRAM, Disk”

Chapter 7 (Read), Chapter 8 (Skim). Access from SFU Library.

