
CMPT 450/750: Computer Architecture

Fall 2021

Multithreading

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2021 Alaa Alameldeen and Arrvindh Shriraman

Simultaneous Multithreading

2

Why Multithreading?

• ILP limitations of superscalar processors

➢Many control, data and functional dependences

• Wide superscalar pipelines cannot use all

issue slots

➢Vertical Waste: All issue slots in a cycle are not used

➢Horizontal waste: Some issue slots in a cycle are not

used

• To increase throughput, we need to use

thread-level parallelism (TLP)

3

Issue Slots

C
yc

le
s

Different Types of Multithreading
• Coarse-grained multithreading

➢Switch between threads every few

cycles

• Fine-grained multithreading

➢Switch between threads every cycle

➢Removes vertical waste

➢Still limited by ILP available within

each thread

• Simultaneous multithreading

➢ Issue instructions from multiple

threads simultaneously (in the same

cycle)

➢Addresses both horizontal and vertical

waste

4

ARCH Figure 3.28

Multithreaded Programs

• Thread vs. process

➢Threads in a process share virtual address space

➢Processes have different virtual address spaces

• Design Issues:

➢Each thread needs its own set of registers (register address space is not

shared)

➢Threads cause interference in instruction and data caches

➢Programs need to be parallelizable into multiple threads

➢Synchronization is necessary, may cause some threads to be idle (OS idle loop)

5

Superscalar Processors: Where Have Cycles Gone?

• Issue slots are

utilized only 19%

of the time

• Many causes for

issue stall

cycles (Figure)

• Need aggressive

latency-hiding

techniques

6

Tullsen et al., Figure 2

Commercial Multithreaded Workloads: Lost Cycles

• Threads issue

instructions in a small

percentage of cycles

“executing”

• Threads could issue

cycles but other

threads use all issue

resources “Ready, not

chosen”

• Most of the time,

threads are “Not

Ready”
7

ARCH Figure 3.31

Commercial Workloads: Where Have Cycles Gone?

• Figure shows

percentage of cycles

lost for different

reasons

• “Other” is mainly

“store buffer full” in

TPC-C, “atomic

instructions” in jbb,

both in SPECweb

8

ARCH Figure 3.32

Latency Hiding Techniques

9

Tullsen et al., Table 3

Simultaneous Multithreading Models
• SM: Full Simultaneous Issue

➢Completely flexible model: All threads compete for each of the issue slots every
cycle

➢Disadvantage: Hardware complexity

• SM: Single Issue
➢Each thread can issue at most one instruction every cycle

• SM: Dual Issue and SM: Four Issue
➢Each thread can issue at most two (Dual Issue) or four (Four issue) instructions

every cycle

• SM: Limited Connection
➢Each thread is connected to exactly one of each type of functional unit

➢Limits scheduling choices for functional units to reduce hardware complexity

10

Hardware Complexity of Multithreading Models

11

Tullsen et al., Table 4

SMT Performance
• Fine-grain MT can only

increase throughput by a
factor of 2.1

• SMT has much higher
speedup

• Alternatives to execute 4
instructions per cycle
➢Four issue or full SMT with

3-4 threads

➢Dual issue SMT with 4
threads

➢Limited Connection SMT
with 5 threads

➢Single issue SMT with 6
threads

12
Tullsen et al., Figure 3

SMT Performance: Java and PARSEC benchmarks
• Figure shows speedup

and energy efficiency

(high is better) for Intel

Core i7

➢Uses hyperthreading:

similar to 2-way SMT

• Speedup averages

1.28x for Java and

1.31x for PARSEC

• Energy Efficiency

average 0.99 for Java

and 1.07 for PARSEC
13

ARCH Figure 3.35

SMT Performance Side Effects

• Lowest priority thread runs much slower than high priority thread

• Highest priority thread sees degraded performance as more

threads are added

➢Sharing of resources (e.g., caches, TLB, BP tables)

• Caches are more strained by an MT workload vs. ST workload due

to a decrease in locality

14

Private vs. Shared Caches

15

• Processor caches can be private

(dedicated to specific thread) or

shared (among all threads)

• When would shared caches

perform better?

➢Small number of threads

➢Significant instruction and data

sharing

• When would private caches

perform better?

➢Large number of threads

➢Minimal instruction and data sharing
Tullsen et al., Figure 4

SMT vs. Multiprocessors?

16Tullsen et al., Figure 5

SMT vs. Multiprocessors Discussion

• SMT outperforms multiprocessing for all scenarios considered.

Why?

• Advantages of SMT vs. MP

➢Area efficiency

➢Reducing number of threads (i.e., threads becoming idle) allows other threads

to progress faster in SMT processors, no change in MP

➢Granularity and flexibility of design: Unit of design is a whole processor for MP,

more flexible in SMT

• Disadvantages?

17

SMT Design Issues
• Hardware complexity

➢Scheduling hardware requirements increase with threads

➢Register file size increase

➢May need more ports

• Pipeline depth

➢Bigger structures (e.g., register file) require longer access time

➢Leads to increasing the number of pipeline stages

• Issue policy

➢Fixed thread priority

➢Round-Robin priority

➢ICOUNT

➢Others?

18

Speculative Multithreading

19

Why Speculative Multithreading?

• Multithreading helps performance when workloads have TLP

• What about single-threaded workloads?

➢Traditional OoO superscalar processors can only consider parallelism within an instruction

window

➢Even with large window sizes, many instructions are dependent and need to wait for other

instructions to execute

• Can we use multithreading to improve ST performance?

➢Key idea: Split program into large tasks (with compiler help), issue tasks independently on

different threads

➢ If dependent tasks are correct, SpMT achieves significant performance improvement for ST

workloads using multithreading execution resources

• Speculative Multithreading (also called Thread-Level Speculation “TLS”) uses

speculation with multithreading to improve ST performance

20

Speculative Multithreading
(Thread-Level Speculation)

• Sequential program is divided into tasks

• Each task may have a predecessor task and/or a successor task, defined by

sequential program order

• First task (based on sequential program order) is non-speculative. Following

tasks that are executed speculatively should not violate sequential execution

model

• If violation of sequential model is detected, hardware needs to stop

speculative tasks and restore state to sequential state

• Incorrect speculation is expensive: Wasted work (energy) with no

performance gain

➢Speculative tasks should be based on easy-to-predict branches

21

Hard-to-Predict vs. Easy-to-Predict Branches

• Consider a program’s control flow graph:

• Hard-to-predict branches are included inside a task (thread), i.e., “intra-task

branches”

• Easy-to-predict branches can be used to start new task than can be run

simultaneously with previous tasks, i.e., “inter-task branches”

22

A B C D E

Example Program: Parallel Search

• Program reads a symbol from a

buffer then searches for it in a

linked list

➢ If symbol is present, process it. Otherwise,

add it to list

• Easy to predict branch at the end of

the “for (indx=0…)” loop, so can run

multiple tasks in parallel

• Sometimes parallel executions can

conflict (e.g., searching for symbol

currently being added). So we need

to go back to sequential execution

23

Sohi et al., Figure 3

Multiscalar Programs
• Each task has to specify which registers it creates, how to forward register values, when the

task ends, and which tasks follow it

➢ Information stored in Task Descriptor

• Create Mask

➢ Register values that a task might produce

➢ Conservative definition including all registers that could be produced (even if they are not produced in a particular

instance of the task)

• Forward Bits

➢ One bit associated with every instruction in task

➢ Indicates whether destination register value is the last write by current task to that register, should be forwarded

to subsequent tasks

• Stop Bits

➢ Needs to check if conditions for stopping current task are satisfied at current instruction then task is exited

• Release Instructions

➢ Indicates no further updates to register, can be forwarded to subsequent tasks

24

Multiscalar Programs: Example

• Parallel search program

• Task has two possible targets:

OUTER and OUTERFALLOUT

• Task can create up to 5

registers (4, 8, 17, 20, 23)

➢Program indicates when task can

forward a register and when it can

release it

25Sohi et al., Figure 4

Multiscalar Implementation
• Processing Units (PUs) execute tasks

• Each PU has a processing element,

instruction cache and a register file

• Sequencer assigns tasks to PUs

• After task is assigned, PU fetches

instructions and executes task until

completion

• May need to use multi-version caches

to store multiple versions of same

value simultaneously

• At a high level, Multiscalar could also

use multiple threads in an SMT

processor

26

Sohi et al., Figure 1

SpMT/TLS Implementation Cost
• When speculative tasks violate sequential order, they need to be squashed

➢Consumes power without gaining performance

• Need to support multi-version caches for store values written by speculative tasks

➢Values can only be written to memory from non-speculative tasks

➢Adds complexity to cache design

• Dependence checking across tasks may require complex hardware

• Requires compiler support: Program analysis, creating task descriptors, adding code for

dependence checking

• Adds more instructions or prefix bits to existing instructions

➢ Increases program size

➢Code may not be portable across processor implementations

• Some optimizations have been proposed to reduce energy overhead and hardware cost
27

VLIW Architectures

28

Compiler Optimizations to Improve ILP
• Problem: Short basic blocks (4-6 instructions on average) limit ILP

➢Small pool of instructions, potentially dependent, to issue/execute in parallel

• Loop Unrolling

➢Used to increase number of instructions in a basic block

➢Can be combined with other compiler optimizations to improve performance

➢Adds more static instructions (program size increases)

➢Can reduce dynamic instruction count by combining or removing redundant instructions

• Code motion

➢Move instructions earlier to allow enough time for their dependent instructions to have operands

available

➢Move instructions later to allow sources to be produced

➢Compiler needs knowledge of pipeline and latencies of different operations

➢OK if within basic block; need cleanup code if across branch boundary
29

Loop Unrolling: Example
• Loop adds corresponding elements

of arrays a and b into array a

• Loop executes for 100 iterations

• Loop iterations are independent

30

Source Code:
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

Assembly:
LD R3, #100 ; loop index

LOOP: LD.D F0, 0(R1) ; array a[i] pointer

LD.D F2, 0(R2) ; array b[i] pointer

ADD.D F4, F0, F2 ; add a[i] and b[i]

S.D F4, 0(R1) ; store a[i]

ADD R1, R1, 8 ;move to next element in a

ADD R2, R2, 8 ; move to next element in b

SUB R3, R3, #1 ; decrement loop index

BNE R3, #0, LOOP ; go to start if index>0

Loop Unrolling: Example

31

Source Code:
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

Assembly:
LD R3, #100 ; loop index

LOOP: LD.D F0, 0(R1) ; array a[i] pointer

LD.D F2, 0(R2) ; array b[i] pointer

ADD.D F4, F0, F2 ; add a[i] and b[i]

S.D F4, 0(R1) ; store a[i]

ADD R1, R1, 8 ; move to a[i+1]

ADD R2, R2, 8 ; move to b[i+1]

SUB R3, R3, #1 ; decrement loop index

BNE R3, #0, LOOP ; go to start if index>0

After unrolling:
LD R3, #100

LOOP: LD.D F0, 0(R1)

LD.D F2, 0(R2)

ADD.D F4, F0, F2

S.D F4, 0(R1)

ADD R1, R1, 8

ADD R2, R2, 8

SUB R3, R3, #1

LD.D F0, 0(R1)

LD.D F2, 0(R2)

ADD.D F4, F0, F2

S.D F4, 0(R1)

ADD R1, R1, 8

ADD R2, R2, 8

SUB R3, R3, #1

BNE R3, #0, LOOP

Loop Unrolling: Example

32

Source Code:
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

Assembly:
LD R3, #100 ; loop index

LOOP: LD.D F0, 0(R1) ; array a[i] pointer

LD.D F2, 0(R2) ; array b[i] pointer

ADD.D F4, F0, F2 ; add a[i] and b[i]

S.D F4, 0(R1) ; store a[i]

ADD R1, R1, 8 ; move to a[i+1]

ADD R2, R2, 8 ; move to b[i+1]

SUB R3, R3, #1 ; decrement loop index

BNE R3, #0, LOOP ; go to start if index>0

After removing redundant instructions:
LD R3, #100

LOOP: LD.D F0, 0(R1)

LD.D F2, 0(R2)

ADD.D F4, F0, F2

S.D F4, 0(R1)

ADD R1, R1, 8

ADD R2, R2, 8

SUB R3, R3, #1

LD.D F0, 8(R1)

LD.D F2, 8(R2)

ADD.D F4, F0, F2

S.D F4, 8(R1)

ADD R1, R1, 16

ADD R2, R2, 16

SUB R3, R3, #2

BNE R3, #0, LOOP

Loop Unrolling: Example

33

Source Code:
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

Assembly:
LD R3, #100 ; loop index

LOOP: LD.D F0, 0(R1) ; array a[i] pointer

LD.D F2, 0(R2) ; array b[i] pointer

ADD.D F4, F0, F2 ; add a[i] and b[i]

S.D F4, 0(R1) ; store a[i]

ADD R1, R1, 8 ; move to a[i+1]

ADD R2, R2, 8 ; move to b[i+1]

SUB R3, R3, #1 ; decrement loop index

BNE R3, #0, LOOP ; go to start if index>0

After removing name dependences:
LD R3, #100

LOOP: LD.D F0, 0(R1)

LD.D F2, 0(R2)

ADD.D F4, F0, F2

S.D F4, 0(R1)

LD.D F6, 8(R1)

LD.D F8, 8(R2)

ADD.D F10, F6, F8

S.D F10, 8(R1)

ADD R1, R1, 16

ADD R2, R2, 16

SUB R3, R3, #2

BNE R3, #0, LOOP

Loop Unrolling: Example

34

Source Code:
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

Assembly:
LD R3, #100 ; loop index

LOOP: LD.D F0, 0(R1) ; array a[i] pointer

LD.D F2, 0(R2) ; array b[i] pointer

ADD.D F4, F0, F2 ; add a[i] and b[i]

S.D F4, 0(R1) ; store a[i]

ADD R1, R1, 8 ; move to a[i+1]

ADD R2, R2, 8 ; move to b[i+1]

SUB R3, R3, #1 ; decrement loop index

BNE R3, #0, LOOP ; go to start if index>0

After code motion:
LD R3, #100

LOOP: LD.D F0, 0(R1)

LD.D F2, 0(R2)

LD.D F6, 8(R1)

LD.D F8, 8(R2)

ADD.D F4, F0, F2

ADD.D F10, F6, F8

S.D F4, 0(R1)

S.D F10, 8(R1)

ADD R1, R1, 16

ADD R2, R2, 16

SUB R3, R3, #2

BNE R3, #0, LOOP

Loop Unrolling and Code Scheduling Basics
1. Determine which loops will be useful to unroll: Iterations are mostly

independent except for loop maintenance code

2. Use different registers to avoid name dependences

3. Remove extra test and branch instructions

4. If loads and stores are independent, reorder to reduce dependences

5. Schedule code via code motion to reduce wait time for dependences (but

still preserve original results)

35

Compiler Loop Unrolling: Pitfalls
• Limited benefit from additional unrolling

➢ In previous example, stall cycles mostly removed with unrolling 4 times; further unrolling doesn’t

provide additional benefit

• Code expansion

➢Loop unrolling increases static program size, could lead to increase in instruction cache misses

➢May need “compensation code” when unrolling loops of unknown iteration count

• Limited register file size

➢Using different variables to avoid name dependences increases pressure on register file

➢Compiler register allocation problem gets more complex with additional variables

• Complexities with multiprocessors and memory consistency models

➢Code motion optimizations limited by memory consistency models

➢Need to consider multiple processors reading/writing shared data
36

Designing Multiple Issue Processors
• Superscalar processors issue multiple (independent) instructions per cycle to improve ILP

• Options for multiple issue processors:

1. Statically-scheduled superscalar processors

➢Scheduling is static using compiler optimizations, in-order execution

➢Can issue a variable number of instructions per cycle (based on dependences)

➢Simple hardware for dependence checking

2. Dynamically-scheduled superscalar processors

➢Hardware dynamically schedules independent instructions from instruction window (out-of-order)

➢Can issue a variable number of instructions per cycle (based on dependences)

➢Complex hardware needed for dependence checking and arbitration

3. Very-Large Instruction Word (VLIW) processors

➢Compiler schedules independent instructions as part of a large instruction word

➢Fixed number of available slots per instruction word 37

Comparing Multiple-Issue Processor Designs

38ARCH Figure 3.15

Very Long Instruction Word (VLIW) Architectures

• Basic concept: Compiler extracts parallelism

➢Static scheduling: Unroll loops, identify independent instructions

➢Trace scheduling: Next slide

• Compiler output: Multiple operations to various execution units

grouped together in one very long instruction

• Compiler schedules instructions based on pre-knowledge of

hardware execution units and latencies

• Simple hardware

➢No dependence checks needed in hardware

➢No need for arbitration before instruction issue

39

Trace Scheduling

• Use profiling to identify most frequent traces in

dynamic program

• Compiler schedules as if trace is one big basic block

➢Moves instructions across branches

➢Moves loads above earlier stores

➢Compensation code for early exits from trace

➢NOPs inserted when slots cannot be filled with parallel

operations

➢Compiler schedules for a specific hardware

implementation

• Repeat scheduling the next most frequent trace,

including compensation code

40

VLIW Example
• Start from unrolled loop in previous example

• Assume instruction word can include one FP
operation, two memory operations and two
integer/branch operation

• How would compiler schedule operations in an

instruction word?

41

LD.D F0, 0(R1)

LD.D F2, 0(R2)

LD.D F6, 8(R1)

LD.D F8, 8(R2)

ADD.D F4, F0, F2

ADD.D F10, F6, F8

S.D F4, 0(R1)

S.D F10, 8(R1)

ADD R1, R1, 16

ADD R2, R2, 16

SUB R3, R3, #2

BNE R3, #0, LOOP

VLIW Example

42

FP MEM1 MEM2 INT/BR 1 INT/BR 2
LD.D F0, 0(R1) LD.D F2, 0(R2)

ADD.D F4,F0,F2 LD.D F6, 8(R1) LD.D F8, 8(R2)

ADD.D F10 F6,F8 S.D F4, 0(R1)

S.D F10, 8(R1)

ADD R1 R1,16 ADD R2,R2,16

SUB R3,R3,#2 BNE R3,#0,LOOP

LD.D F0, 0(R1)

LD.D F2, 0(R2)

LD.D F6, 8(R1)

LD.D F8, 8(R2)

ADD.D F4, F0, F2

ADD.D F10, F6, F8

S.D F4, 0(R1)

S.D F10, 8(R1)

ADD R1, R1, 16

ADD R2, R2, 16

SUB R3, R3, #2

BNE R3, #0, LOOP

VLIW Issues (1): Code Expansion

• VLIW leads to much larger code size:

1. Filling up all instruction slots requires aggressive loop unrolling

2. Many issue slots are not used (filled with NOPs) which waste

bits in instruction encoding

3. Adding compensation code further increases code size

• To reduce code expansion, programs could be compressed in
memory and expanded when they get to instruction cache

43

VLIW Issues (2): Binary Compatibility

• Compiled programs have fixed instruction word size

• Compiler requires knowledge about processor microarchitecture:

➢Number of functional units of each type

➢Latency of each functional unit to determine when dependences are satisfied

➢Specific requirements for each unit (e.g., limitations on source registers)

• Requires recompilation for new hardware

➢Code need to be recompiled and migrated to new processor implementation

➢Recompilation needed if number of units is different, or if latencies of functional

units are different

➢Compare to: superscalar processors

44

VLIW Issues (3): Dynamic Execution

• Compiler cannot anticipate dynamic events or account for variable
execution latencies

1. Cache misses
➢Static scheduling assumes cache hits

➢VLIW requires blocking caches so a cache miss blocks issue for future instruction
words, degrading performance

2. Memory disambiguation
➢Pointer references are assumed to be dependent, couldn’t belong to same instruction

word

➢Adds false dependences between loads and stores

3. Branch outcomes
➢Branch mispredictions lead to executing compensation code

45

VLIW Discussion

• VLIW vs. vector architectures
➢Vector architectures preferred for vector operations (such as the code example discussed

earlier)

➢VLIW and other multiple-issue superscalar approaches preferred for general code since they
can extract parallelism from less structured code

• VLIWs need clever Jump mechanisms if instruction word supports multiple
branches

➢N tests, N+1 jump destinations

➢Similar to C’s switch statement

• VLIW compilers need to predict memory properties to determine when a load
comes back from memory and schedule dependent instructions
➢Example: cache hits and misses at different cache levels, memory bank information

➢Very difficult for compiler to predict dynamic behavior

46

EPIC Architectures

• EPIC: Explicitly Parallel Instruction Computing

• Solves some of the issues in VLIW

➢Compiler provides register dependence information and hardware schedules

accordingly

❑Eliminates NOPs

❑Provides backward compatibility

➢Provides hardware mechanisms for events that cannot be predicted by the

compiler

❑Predication for branches

❑Control speculation

❑Data speculation

47

The End?

48

What We Covered In this Course

• Superscalar Processors: OoO execution, dynamic scheduling, issue logic

• Speculative Execution: Branch prediction, memory dependence prediction

• Technology: Trends, impact on architecture, power and energy

• Domain Specific Accelerators, Dataflow, SIMD, Vector Processors

• Memory Hierarchy: Caches, memory-level parallelism, cache prefetching,

replacement and insertion policies, DRAM basics, novel memory

technologies

• Parallel Architectures: Multicore processors, shared-memory and distributed

memory architecture

• Cache Coherence Protocols and Memory Consistency Models

• Multithreading: SMT, SpMT, VLIW architectures

49

Other Important Topics Not Covered In This Course
• Graphics Processors: GPUs, GPGPUs

• Dataflow architectures

• Security

• Reliability

• Virtual Memory implementations

• On-chip interconnection networks (Networks-on-Chip “NoC”)

• Synchronization primitives and lock/barrier implementations

• Architecting warehouse-scale computers

• Embedded Processors

• … and many other topics

50

51

Reading Assignments

• ARCH Chapter 3.2, 3.7, 3.12 (Read)

• D. Tullsen et al., “Simultaneous Multithreading: Maximizing On-

Chip Parallelism,” ISCA 1995 (Read)

• G. Sohi et al., “Multiscalar Processors” (Read)

• J. Renau et al., “Thread-Level Speculation on a CMP Can be

Energy Efficient,” ICS, 2005 (Skim)

