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* Program Execution Time =
(CPU Clock Cycles + Memory Stall Cycles) x Clock Cycle Time

* For each instruction:
CPI = CPI(Perfect Cache) + Memory stall cycles per instruction

 With no caches, all memory requests require accessing main memory
» Very long latency

« Caches filter out many memory accesses
» Reduces execution time
» Reduces memory bandwidth & power



 Memory stall cycles Per Instruction =
Cache Misses per instruction x Miss Penalty

* Processor Performance:
CPI = CPI(Perfect Cache)
+ Misses per instruction x Miss Penalty

* Average Memory Access Time =
Hit Time + Miss rate x Miss penalty

« Cache hierarchies attempt to reduce average memory access
time



e Hit rate: #hits / #accesses
« Miss rate: #misses / #accesses

« Misses per instruction (or 1000 instructions: MPKI)
»Misses/Instruction = miss rate x memory accesses / Instruction count
= MISS rate X memory accesses per instruction
»MPKI= 1000 x miss rate X memory accesses per instruction

« Hit time: time from request issued to cache until data is returned to the
processor

»Depends on cache design parameters
»Bigger caches, larger associativity, or more ports increase hit time

* Miss penalty: depends on memory hierarchy parameters
 We need a memory hierarchy to reduce the miss penalty



Program P running on a processor has an average IPC of 0.5. 40% of program P’s
Instructions are loads and stores. P has an L1 miss rate of 10% and an average
miss penalty of 30 cycles. How much faster will P run if all loads and stores are
cache hits?

« CPI =1/IPC = 2.0; Memory accesses per instruction =40% =0.4
Misses per instruction = memory accesses per instruction X miss rate
=04 x 0.1 0.04
CPIl = CPI(Perfect Cache) + misses per instruction x miss penalty

2.0 = CPI(Perfect Cache) + 0.04 x 30
CPI(Perfect Cache) =2.0-0.04 x 30 =0.8

Speedup for perfect cache = CPI/CPI(Perfect Cache) = 2.0/0.8 = 2.5 x
» Perfect cache is 2.5 x faster (or 150% faster)



* Miss rate used to compute average memory access time (AMAT)
Hit Time + Miss rate x Miss penalty

* Misses Per Instruction (or MPKI) used to compute CPI & Execution Time
CPI = CPI(Perfect Cache) + Misses per instruction x Miss Penalty
Execution Time = Inst/Program x CPI x Cycle Time

« MPKI is more directly related to performance
* Is It possible to have worse performance with a better miss rate?



Programs P1 and P2 run on a processor with a 4GHz frequency, an L1 cache hit
time of 1 ns and an L1 average miss penalty of 30 ns. P1 has a miss rate of 5% and
an MPKI of 25. P2 has a miss rate of 10% and an MPKI of 10. Both programs have a
CPI of 0.5 with a perfect L1 cache. Compare P1 and P2’s AMAT and CPI.

Note: Cycle Time = 1/frequency = 0.25 ns
« AMAT(P1) = Hit Time + Miss Rate(P1) x Miss Penalty =1 + 0.05x 30 =2.5ns
« AMAT(P2) = Hit Time + Miss Rate(P2) x Miss Penalty =1 +0.1x 30=4ns
 CPI(P1) = CPI(Perfect Cache) + misses per instruction(P1) x miss penalty

= 0.5 + (25/1000) x (30/0.25) = 3.5
« CPI(P2) = CPI(Perfect Cache) + misses per instruction(P2) x miss penalty

= 0.5+ (10/1000) x (30/0.25) = 1.7
 P1 has lower average memory access time but worse performance. Why?



Why Do Gaches Work?

e Spatial Locality

» If data at a certain address is accessed, it is likely that data located at nearby addresses will also
be accessed in the (near) future

» Implications:

O Cache line (block) size tradeoff
QO Prefetching brings lines to the cache before they are demanded

« Temporal Locality

» If data at a certain address is accessed, it is likely the same data will be accessed in the (near)
future
» Implications:

U Replacement policies try to predict which lines will be not be accessed (or will be accessed furthest) in the future
O Insertion policies prioritize lines that will be accessed sooner
 Dead block predictors predict which lines will be dead-on-arrival so they aren'’t allocated

« We still need multiple cache levels in the memory hierarchy to bridge the gap

between processor and memory speeds
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Memory Hierarchy

First-level caches
» Usually Split | & D caches
» Small and fast

Second-level caches

» Usually on-die
» SRAM cells

Third-level... etc.?

Main memory
» DRAM cells
» focus on density

Solid-State Disk

Hard Disk

» Usually magnetic device, non-volatile
» Slow access time




Memory Hierarchy for a Mobile Device

ARCH Figure 2.1(A)
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Memory Hierarchy for a Deskton/Laptop

ARCH Figure 2.1(B)
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Memory Hierarchy for a Server

ARCH Figure 2.1(C)
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* Array of blocks (lines)
»Each block Is usually 32-128 bytes

* Finding a block in cache:
Data

pciress I GOSN

» Offset: byte offset in block
* Index: Which set in the cache is the block located
* Tag: Needs to match address tag in cache
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1ativi ARCH Fi B.2
« Set associativity igure

. I Full iative: Di d: S iative:
> Set: G_roup of blocks corresponding to ooty Ty i e o
same |ndex anywhere only into block 4 anywhere in set 0
_ _ (12 MOD 8) (12 MOD 4)
>EaCh bIOCk In the Set IS Ca”ed away Block 01234567 Block 01234567 Block 01234567
»2-way set associative cache: each set " e -
contains two blocks s
» Direct-mapped cache: each set contains
one block
.. Set Set Set S
> Fully-associative cache: the whole cache 0 1 2 3
" Block frame address
IS C"1€35N3t Block 11141 11111222:222:2222373
no. 01234567890123456789012345678901

* Need to check all tags in a set to
determine hit/miss status then
select correct block

»Higher latency for set-associative caches

Memory
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« Consider a 4-way, 32KB cache with 64-byte lines

* Where is 48-bit address OxO000FFFFAB64?

»Number of lines = cache size / line size = 32K/ 64 =512
»Each set contains 4 lines = Number of sets = 512/4 = 128 sets
» Offset bits = log, (64) = 6: 0x24

»Index bits = log, (128) = 7: 0x2D

»Tag bits = 48-(6+7) = 35: OxO0007FFFD
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Gache Associativity Example

Program P runs on a processor with a4 GHz frequency. The average memory access latency
on a cache miss is 40 ns. Which one of these caches gets better performance for P?

1. 64KB direct-mapped cache with miss rate of 3%, hit latency = 3 cycles

2. 64KB 4-way set-associative cache with miss rate of 2%, hit latency = 4 cycles (due to extra
latency of tag match/select)

Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns

Hit Time = cycles/hit x cycle_time

Average memory access time(1) = Hit Time(1) + Miss rate(1) X miss penalty
=3x0.25+0.03x40=1.95ns

Average memory access time(2) = Hit Time(2) + Miss rate(2) X miss penalty
=4x0.25+0.02x40=1.8ns

Cache 2 (4-way) is better even if hit time is higher.

What if frequency is lower for set-associative cache?
16



Tynes of Gache Misses

« Compulsory (cold) misses: First access to a block. Compulsory misses occur
even for infinite size cache

»Could be reduced by prefetching blocks before they are demanded
« Capacity misses: A cache cannot contain all blocks needed in a program.

some blocks are discarded then later accessed. Capacity misses occur in a
fully-associative cache.

» Could be reduced with insertion/replacement policies and dead block prediction
« Conflict misses: Blocks mapping to the same set may be discarded (in direct-
mapped and set-associative caches).
»Could be reduced by increasing associativity or better replacement/insertion
policies
« Coherence misses: Misses due to shared memory accesses
»Discussed later this course
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ARCH Figure B.8

Miss rate components (relative percent)

(sum = 100% of total miss rate)

Degree  Total miss
Cachessize (KB)  associative rate Compulsory Capacity Conflict

4 1-way 0.098 0.0001 0.1% 0.070 72% 0.027 28%

4 2-way 0.076 0.0001 0.1% 0.070 93% 0.005 7%

4 4-way 0.071 0.0001 0.1% 0.070 99% 0.001 1%

4 8-way 0.071 0.0001 0.1% 0.070 100% 0.000 0%

8 l-way 0.068 0.0001 0.1% 0.044 65% 0.024 35%

8 2-way 0.049 0.0001 0.1% 0.044 90% 0.005 10%

8 4-way 0.044 0.0001 0.1% 0.044 99% 0.000 1%

8 8-way 0.044 0.0001 0.1% 0.044 100% 0.000 0%
16 l-way 0.049 0.0001 0.1% 0.040 82% 0.009 17%
16 2-way 0.041 0.0001 0.2% 0.040 98% 0.001 2%
16 4-way 0.041 0.0001 0.2% 0.040 99% 0.000 0%
16 8-way 0.041 0.0001 0.2% 0.040 100% 0.000 0%
32 1-way 0.042 0.0001 0.2% 0.037 89% 0.005 11%
32 2-way 0.038 0.0001 0.2% 0.037 99% 0.000 0%
32 4-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%
32 8-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%
64 I-way 0.037 0.0001 0.2% 0.028 77% 0.008 23%
64 2-way 0.031 0.0001 0.2% 0.028 91% 0.003 9%
64 4-way 0.030 0.0001 0.2% 0.028 95% 0.001 4%
64 8-way 0.029 0.0001 0.2% 0.028 97% 0.001 2%
128 I-way 0.021 0.0001 0.3% 0.019 91% 0.002 8%
128 2-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
128 4-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
128 S-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
256 1-way 0.013 0.0001 0.5% 0.012 94% 0.001 6%
256 2-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
256 4-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
256 8-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
512 1-way 0.008 0.0001 0.8% 0.005 66% 0.003 33%
S12 2-way 0.007 0.0001 0.9% 0.005 T1% 0.002 28%
512 4-way 0.006 0.0001 1.1% 0.005 91% 0.000 8%
512 8-way 0.006 0.0001 1.1% 0.005 95% 0.000 4%
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« Cache optimizations target reducing average memaory access time
Average memory access time = Hit Time + Miss rate x Miss penalty

Hit Miss Miss  Hardware
Technique time penalty rate complexity Comment
Larger block size - 0 Trivial; Pentium 4 L2 uses 128 bytes
Larger cache size - + I Widely used, especially for L2
caches
Higher associativity - K | Widely used
Multilevel caches - 2 Costly hardware; harder if L1 block
size # L2 block size; widely used
Read priority over writes . I Widely used
Avoiding address translation during . | Widely used

cache indexing

ARCH Figure B.18
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Virtual vs. Physical Addressing

» Using virtual addresses to access the L1 cache reduces latency
»Physical addresses need address translation

 Issues with virtually-addressed caches
»Handing synonyms: multiple VAs mapping to same PA
»Address translation needed on L1 misses
»Reverse translation needed for coherence in a multiprocessor system
»Need to invalidate whole cache on a context switch
« Some L1 caches are “virtually-indexed, physically tagged” to parallelize

cache access with address translation when indexing the cache. PA is still
needed to match tags.
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Multi-Level Gache Example

Program P with 30% loads/stores runs on a processor with a 4 GHz frequency. A main memory access needs 80 ns.
Consider the following caches:

1. L1 data cache: 32KB 8-way cache with 4-cycle hit latency and a miss rate of 10%

2. L2 cache: 256KB 8-way cache with 10-cycle hit latency and a miss rate of 30%

3. L3 cache: 6MB 24-way cache with 35-cycle average hit latency and a miss rate of 50%

What is the average memory access time for a system with (1) L1 only; (2) L1 and L2; (3) L1,L2 and L3?

 Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns; Hit Time = cycles/hit x cycle_time

Average memory access time(L1) = Hit Time(L1) + Miss rate(L1) x miss penalty(Memory Access)
=4x025+0.1x80=9ns

Average memory access time(L1,L2) = Hit Time(L1) + Miss rate(L1) x miss penalty(L2 Access)

L2 Access Latency = Hit Time (L2) + Miss rate (L2) x miss penalty(Memory Access)
=10x0.25+0.3x80=26.5ns

Average memory access time(L1,L2) =4 x 0.25+ 0.1 x 26.5=3.65ns

Average memory access time(L1,L2,L3) = Hit Time(L1) + Miss rate(L1) x miss penalty(L2 Access)

= Hit Time(L1) + Miss rate(L1) x (Hit Time (L2) + Miss rate(L2) x (Hit Time(L3) + Miss rate(L3) x Miss Penalty(Memory)))

=4x025+0.1x(10x0.25+0.3x(35x0.25+0.5x80)) =2.71 ns

21



« Cache replacement policy:
»0On a cache line fill, which victim line to replace?

»Only applicable to set-associative caches
O Direct-mapped caches have only one line per set

»Examples: LRU, more advanced policies
»Discuss stack algorithms

e Cache insertion policy:
»When a cache line is filled, what would its priority be in the replacement stack?
»LRU: fill line is inserted in “Most Recently Used” position
» Other policies: LIP, BIP, DIP

»Dead block prediction helps determine lines that won’t be reused (either
bypassed or inserted in LRU position)
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Miss Penalty in Out-of-Order Processors

* Recall:
Memory stall cycles/Instruction = Cache Misses/instruction x miss penalty
 This assumes that the whole miss penalty is observed for all instructions

* In modern OoO processors, miss penalty for a single miss may be overlapped
with other latencies

»Overlapped with executions of other instructions in the instruction window

»Qverlapped with other memory accesses if cache is non-blocking (called
memory-level parallelism)

« So we only need to include non-overlapped miss penalty:
Memory stall cycles/Instruction
= Cache Misses/instruction x (miss latency — overlapped miss latency)
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Non-Blocking Gache Hierarchy

« Superscalar processors can reduce average memory latency by overlapping
multiple misses

« Cache hierarchies can simultaneously service multiple memory requests

» Do not block cache references that do not need the miss data (Called hit-under-
mISs optimization)

» Service multiple miss requests to memory concurrently (Called hit-under-
multiple-miss OR miss-under-miss optimization)

UOnly useful if memory can service multiple requests in parallel
 These caches are called non-blocking (or lockup-free) caches
* Miss penalty with memory-level parallelism (MLP):
Memory stall cycles/Instruction
= Cache Misses/instruction x (miss latency / average outstanding misses)

24



Memory-Level Parallelism Exampie

Program P has runs on a processor with a 4 GHz frequency. P has 10 billion instructions, and
has a CPI of 0.5 with a perfect cache. The L1 cacheis a non-blocking cache that can enable up
to 16 outstanding misses at atime. The average memory access latency on a cache miss is 40
cycles. The L1 cacheis a 32KB 8-way set-associative cache with 0.03 misses per instruction.
Compare P’s execution time when the average number of outstanding misses changes from 1
to 2.

« Cycle time = 1/frequency = 1/4,000,000,000 = 0.25 ns
« CPI = CPI(Perfect Cache) + misses per instruction x miss penalty
* For MLP = 1:
CPI=05+0.03x40=1.7
Execution Time = Instructions/Program x CPI x Cycle time = 10B x 1.7 x 0.25 ns = 4.25 seconds
 For MLP = 2;
CPI=05+0.03x40/2=1.1

Execution Time = Instructions/Program x CPI x Cycle time =10B x 1.1 x 0.25 ns = 2.75 seconds
(55% faster)
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« Caches use Miss Status Holding (Handling) Registers to facilitate
non-blocking memory level parallelism

« MSHRs are used to track address, data, and status for multiple
outstanding cache misses

* Need to provide correct memory ordering, respond to CPU
reguests, and maintain cache coherence

e Design details (and names) vary widely between different
processors but basic functions are similar
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Example MSHR Structure & Operation

« Each MSHR contains the following information
» Data address of requested cache block
» Block Valid Bit
» PC of requesting instruction

» For each word in cache line: Valid bit, destination (register where
data will be stored), format bits (e.g., load width, int vs. fp, byte
address bits, whether word is to be sign-extended)

» Partial write codes: Indicates which bytes in a word has been
written to the cache

« On acache miss, one MSHR is assigned
» Valid bit set
» Data address saved
» PC of requesting instruction saved
» Appropriate word valid bits set and other cleared
» Appropriate destination and format fields set for valid words
» Partial write codes cleared

1 43 1 6 ~5
Block | Block Word 0 | Word 0 | Word O
valid | request || valid desli- | format
bit address || bit nation

Word1 | Word 1 | Word 1

valid | desti- |format
bit nation

Wordn | Wordn | Word n

valid desti- | format

Ibil nation

Farkas and Jouppi,

“Complexity/Performance Tradeoffs with

Non-Blocking Loads”, ISCA 1994
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« Cache misses are very costly

* Need multiple cache levels with
»High associativity or/and victim caches to reduce conflict misses
» Effective replacement algorithms
»Insertion policies
»Data and instruction prefetching
»Dead block prediction

e Several mechanisms discussed next week
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* ARCHC
* ARCHA

napter 2.1, 2.2, 2.3, 2.4 (Read)

opendix B (Skim, Covered in 295/PreReq Quiz)
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