# The challenge of simultaneous speech translation 

Anoop Sarkar



PACLIC 30: Seoul. Oct 30, 2016

## Simultaneous Translation

## Simultaneous Translation [Latency vs. Quality]

Input Sentence

## Simultaneous Translation

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease.

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 /
```


## Simultaneous Translation

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease.

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

/ 인간 유전학에서 /

## Simultaneous Translation / in human genetics /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 / / 이ᄂ가ᄂ 지노ᄆ 초ᄋ체에서 이ᄅ어나느ᄂ 벼ᄂ이느ᄂ /
```

Simultaneous Translation / in human genetics /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease.

## Simultaneous Translation [Latency vs. Quality]

Input Sentence
/ 인간 유전학에서 / / 인간 지놈 총체에서 일어나는 변이는 /

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

Input Sentence
/ 인간 유전학에서 / / 인간 지놈 총체에서 일어나는 변이는 / / 당뇨병 암 심장마비 등 /

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

Input Sentence
/ 인간 유전학에서 / / 인간 지놈 총체에서 일어나는 변이는 / / 당뇨병 암 심장마비 등 /

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome / / is related to diabetes, cancer and heart attack /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 / / 이ᄂ가ᄂ 지노ᄆ 초ᄋ체에서 이ᄅ어나느ᄂ 벼ᄂ이느ᄂ /
/ 다ᄋ뇨벼ᄋ 아ᄆ 시ᄆ자ᄋ마비 드ᄋ / / 최소 1500여가지의 지ᄅ벼ᄋ과 과ᄂ려ᄂ이
이ᄊ느ᄂ 거ᄉ으로 /
```

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome / / is related to diabetes, cancer and heart attack /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 / / 이ᄂ가ᄂ 지노ᄆ 초ᄋ체에서 이ᄅ어나느ᄂ 벼ᄂ이느ᄂ /
/ 다ᄋ뇨벼ᄋ 아ᄆ 시ᄆ자ᄋ마비 드ᄋ / / 최소 1500여가지의 지ᄅ벼ᄋ과 과ᄂ려ᄂ이
이ᄊ느ᄂ 거ᄉ으로 /
```

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome / / is related to diabetes, cancer and heart attack / / and causes at least 1500 other diseases /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 / / 이ᄂ가ᄂ 지노ᄆ 초ᄋ체에서 이ᄅ어나느ᄂ 벼ᄂ이느ᄂ /
/ 다ᄋ뇨벼ᄋ 아ᄆ 시ᄆ자ᄋ마비 드ᄋ / / 최소 1500여가지의 지ᄅ벼ᄋ과 과ᄂ려ᄂ이
이ᄊ느ᄂ 거ᄉ으로 / / 추저ᄋ되ᄂ다./
```

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome / / is related to diabetes, cancer and heart attack / / and causes at least 1500 other diseases /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

```
/ 이ᄂ가ᄂ 유저ᄂ하ᄀ에서 / / 이ᄂ가ᄂ 지노ᄆ 초ᄋ체에서 이ᄅ어나느ᄂ 벼ᄂ이느ᄂ /
/ 다ᄋ뇨벼ᄋ 아ᄆ 시ᄆ자ᄋ마비 드ᄋ / / 최소 1500여가지의 지ᄅ벼ᄋ과 과ᄂ려ᄂ이
이ᄊ느ᄂ 거ᄉ으로 / / 추저ᄋ되ᄂ다./
```

Simultaneous Translation
/ in human genetics / / variations that occur in the entire human genome / / is related to diabetes, cancer and heart attack / / and causes at least 1500 other diseases / / it is estimated . /

Reference translation
it is estimated that variations that occur in the sum total of the human genetic code are related to at least 1500 diseases such as diabetes, cancer and heart disease .

## Simultaneous Translation [Latency vs. Quality]

## Input Sentence

/ 인간 유전학에서 / / 인간 지놈 총체에서 일어나는 변이는 /
/ 당뇨병 암 심장마비 등 / / 최소 1500 여가지의 질병과 관련이

- Segmentation: Avoid long delay in producing the translation (Oda+ 14)
- Prediction: To produce timely translations, predict what will be said (Grissom+14)
- Paraphrasing: e.g. convert to passive form if that reduces delay (Shimizu+13, He+15) [also Disfluencies]
- Evaluation: reward both translation quality and reduced delay (Mieno+15)


## Speech to speech translation



## Speech to speech translation



Karlsruhe (KIT) Lecture Translator


NICT Speech Translator

## Speech to speech translation



Karlsruhe (KIT) Lecture Translator ${ }^{\text {man }}$.


NICT Speech Translator


Skype Translator

## Speech to speech translation is not simultaneous

> I made sure to include pauses after each sentence so that the audience would have time to clearly hear the Mandarin version of what I was saying. This also meant there was plenty of time for the audience to react. I remember hearing some gasps from the front rows, along with general applause and approval from the audience. It was quite moving.


- Rick Rashid (Microsoft) in an interview in 2014


## Contributions

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality


## Contributions

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- An efficient algorithm for segment annotation used to train a segmentation classifier


## Contributions

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- An efficient algorithm for segment annotation used to train a segmentation classifier
- A new simultaneous translation system that uses our segmentation classifier


## Contributions

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- An efficient algorithm for segment annotation used to train a segmentation classifier
- A new simultaneous translation system that uses our segmentation classifier
- Significant improvement in latency with the same quality


## Segmentation

## Measuring translation quality: BLEU SCORE

## Input:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging.

Reference translation:
I was in my twenties before I ever went to an art museum .

## Measuring translation quality: BLEU SCORE

## Input:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging.

## Reference translation:

I was in my twenties before I ever went to an art museum .
Low BLEU\% score (41.1): [few n-gram matches with reference]
I was twenty I ever went to art .

## Measuring translation quality: BLEU SCORE

## Input:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging.

## Reference translation:

I was in my twenties before I ever went to an art museum .
Low BLEU\% score (41.1): [few n-gram matches with reference]
I was twenty I ever went to art .
High BLEU\% score (89.0): [many n-gram matches with reference]
I was in my twenties before I first went to an art museum .

## Simultaneous Translation - the Delay problem

- No segmentation inside a sentence:


Ich war in meinen zwanzig bevor ich in ein kunstmuseum ging

- Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- Bleu Score: High (57.6)
- Segments/Second: Low


## Simultaneous Translation - the Delay problem

- Word by word segmentation:

- Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- Bleu Score: Low (15.6)
- Segments/Second: High


## Segmentation - A Trade-off between Extremes



- Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- Bleu Score: Acceptable (38.2)
- Segments/Second: Acceptable


## Creating Segmentation Data

## Training a classifier needs annotated data

We provide a method that will create annotated data for segmentation

## Creating Segmentation Data - An Example

- Task: English-German
- Segmentation locations indexed by adjacent part-of-speech tags (only source side shown here)
- For each possible segmentation location: translate segments and pre-compute BLEU scores
- Exponential! Computed once for training data and stored.

$$
\begin{aligned}
& \frac{I}{N} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}: \\
& \frac{I}{\mathrm{~N}} \frac{\text { was }}{\mathrm{V}} \frac{\text { in }}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{\mathrm{I}}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}: \\
& \underline{\mathrm{N}} \frac{\text { grew }}{\mathrm{V}} \frac{\text { up }}{\mathrm{R}} \frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { nowhere }}{\mathrm{N}} \frac{\text { on }}{\mathrm{P}} \frac{\text { a dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}:
\end{aligned}
$$

## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :--- | :---: | :--- | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |
| N-. | 3 | D-J | 2 | S-N | 1 |
| N-V | 3 | R-P | 1 | A-V | 1 |
| V-D | 3 | N-A | 1 |  |  |
| Full Segmentation Set Size |  | 40 |  |  |  |

## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :--- | :---: | :--- | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |
| N-. | 3 | D-J | 2 | S-N | 1 |
| N-V | 3 | R-P | 1 | A-V | 1 |
| V-D | 3 | N-A | 1 |  |  |
| Full Segmentation Set Size |  |  |  |  |  |

$\frac{\mathrm{I}}{\mathrm{N}} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}}\left|\frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}}\right| \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}$.
$\frac{I}{N} \frac{\text { was }}{V} \frac{\text { in }}{P} \frac{\text { my }}{S} \frac{\text { twenties }}{N} \left\lvert\, \frac{\text { before }}{\mathrm{N}} \frac{\mathrm{I}}{\mathrm{N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}\right.$.
$\frac{I}{N} \frac{\text { grew }}{\mathrm{V}} \frac{\text { up }}{\mathrm{R}} \frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}}\left|\frac{\text { of }}{\mathrm{P}} \frac{n}{\mathrm{~N}}\right| \frac{\mathrm{m}}{\mathrm{P}} \frac{\frac{a}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \left\lvert\, \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}} .\right.}{.}$

## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |

## Part of Speech alternatives



## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |

## Part of Speech alternatives



## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |

## Part of Speech alternatives



## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |

## Part of Speech alternatives



## Candidates for Segmentation: Using part of speech tags

| Feat | Freq | Feat | Freq | Feat | Freq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |

## Part of Speech alternatives

POS alternatives Granularity

Google universal tagset 12
Penn Treebank tagset 36
Brown clusters 100C 100
Brown clusters 400C 389

Penn Treebank tagset gave us the best tradeoff between latency and quality.


# Greedy Segmentation 

[Oda+ 2014]

## Greedy Segmentation

- Greedily maximize the sum of Bleu Scores of Sentences
- Decoding is done Sentence by Sentence


## Greedy Segmentation

- Greedily maximize the sum of Bleu Scores of Sentences
- Decoding is done Sentence by Sentence
- Input: the desired average segment length ( $\mu$ )
$\Rightarrow$ total number of expected segments $(K)$


## Greedy Segmentation

- Greedily maximize the sum of Bleu Scores of Sentences
- Decoding is done Sentence by Sentence
- Input: the desired average segment length ( $\mu$ )
$\Rightarrow$ total number of expected segments $(K)$

$$
K=\left\lfloor\frac{\# \text { Words }}{\mu}\right\rfloor-[\# \text { Sentences }]
$$

Sentence boundaries do not count towards $K$

## Greedy Segmentation - An Example for $\mu=13$

$$
K=0=\left\lfloor\frac{[\# \text { Words }=43]}{[\mu=13]}\right\rfloor-[\# \text { Sentences }=3]
$$

Sum of Bleu Scores [of the 3 sentences] $=57.6$
$\frac{I}{N} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}} \cdot$.

$$
\frac{1}{N} \frac{\text { was }}{\mathrm{V}} \frac{\text { in }}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{\mathrm{l}}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}} .
$$

$\underline{I}$ grew up $\frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{of}} \underline{\text { nowhere }} \frac{\text { on }}{\mathrm{P}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{in}} \frac{\text { rural Arkansas }}{\mathrm{J}}$. $\begin{array}{lllllllllll}\mathrm{N} & \overline{\mathrm{V}} & \overline{\mathrm{R}} & \mathrm{P} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{N} \\ \mathrm{N} & \mathrm{N} & \mathrm{P} & \mathrm{J} & \mathrm{N}\end{array}$

## Greedy Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words }=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

Sum of Bleu Scores [of the 3 sentences] $=13.8$

 | $\mathrm{N} V$ | D | J | N | P | $\mathrm{D} N$ | P D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{N} \frac{\text { was }}{\mathrm{V}} \frac{\text { in }}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{1}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}:-$

$\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas : | N | V | R | P | D | N | P | N | P | D | N | N | P | J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Greedy Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words } s=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

Sum of Bleu Scores [of the 3 sentences] $=27.2$
 $\begin{array}{llllllll}\mathrm{N} V & \mathrm{D} \\ \mathrm{J} & \mathrm{N} & \mathrm{P} & \mathrm{D} N & \text { P D } \overline{\mathrm{J}}\end{array}$
$\frac{1}{N} \frac{\text { was }}{\mathrm{V}} \frac{\mathrm{in}}{\mathrm{P}} \frac{\mathrm{my}}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{\mathrm{l}}{\mathrm{N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}} \div-$

$\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas . | N | V | $\overline{\mathrm{R}}$ | P | D | N | P | N | P | $\mathrm{D} N$ | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Greedy Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words }=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

Sum of Bleu Scores [of the 3 sentences] $=38.2$
$\underline{I} \underline{a m} \underline{a}$ contemporary $\frac{\text { artist }}{\mathrm{with}} \underline{\mathrm{a}}$ bit of an unexpected background $\underset{\mathrm{D}}{\mathrm{J}}$. $\begin{array}{lllllll}\mathrm{N} V & \mathrm{D} \\ \mathrm{J} & \mathrm{N} & \mathrm{P} & \mathrm{D} N & \mathrm{P} & \mathrm{D} & \mathrm{J} \\ \mathrm{N}\end{array}$ $\left[\frac{1}{\mathrm{~N}} \frac{\text { was }}{\mathrm{V}} \frac{\mathrm{in}}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{\mathrm{I}}{\mathrm{N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}} \div-\right.$
 $\begin{array}{lllllllllll}\mathrm{N} & \mathrm{V} & \overline{\mathrm{R}} & \mathrm{P} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{N} \\ \mathrm{N} & \mathrm{P} & \mathrm{J} & \mathrm{N} & \end{array}$

## Greedy Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words }=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

Sum of Bleu Scores [of the 3 sentences] $=38.2$
$\underline{I} \frac{\text { am }}{\mathrm{a}} \frac{\text { contemporary }}{\mathrm{artist}} \frac{\text { with }}{\mathrm{a}} \underline{\text { bit }} \frac{\text { of }}{\mathrm{P}} \frac{\mathrm{n}}{\mathrm{D}} \frac{\text { unexpected background }}{\mathrm{J}}$. N V D J $\mathrm{N} \quad \mathrm{P}$ D N P D J N
$\frac{1}{N} \frac{\text { was }}{\mathrm{V}} \frac{\text { in }}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{\mathrm{I}}{\mathrm{N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}:-$
$\frac{\mathrm{I}}{\mathrm{N}} \frac{\text { grew }}{\mathrm{V}} \frac{\text { up }}{\mathrm{R}} \frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{n}{\mathrm{~N}} \quad \frac{\text { nowhere }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}:$

Only maximizes the BLEU score

Tends to oversegment a small number of sentences

## Pareto-Optimal Segmentation

## Pareto-Optimality



## Pareto-Optimality



## Pareto-Optimality



## Pareto-Optimal Segmentation

- Tries to find the best segmentation points taking both BLEU and Segs/Sec into consideration
- The input is the same desired average segment length $\mu$
- For each possible segmentation location: translate segments and pre-compute BLEU scores and segments/second.


## Pareto-Optimal Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words } s=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

Avg $\left\{\frac{\text { BLEU }}{\# \text { Segments }}\right\} /$ Sentence $=12.7$, Segs $/ \mathrm{Sec}=0.560$
$\underline{I} \frac{\text { am }}{\mathrm{a}} \frac{\text { contemporary }}{}$ artist $\frac{\text { with }}{\mathrm{a}} \frac{\text { bit }}{\mathrm{N}} \frac{\mathrm{f}}{\mathrm{an}}$ unexpected background. $\begin{array}{llllllll}\mathrm{N} V & \mathrm{D} & \mathrm{J} & \mathrm{N} & \mathrm{P} & \mathrm{D} N & \mathrm{P} & \mathrm{D} \\ \mathrm{J}\end{array}$

```
I}\frac{\mathrm{ was }}{\textrm{V}}\frac{\textrm{in}}{\textrm{P}}\frac{my}{\textrm{S}}\frac{\mathrm{ twenties }}{\textrm{N}}\frac{\mathrm{ before }}{\textrm{P}}\frac{\textrm{l}}{~}\frac{\mathrm{ ever }}{\textrm{A}}\frac{\mathrm{ went }}{\textrm{V}}\frac{\mathrm{ to }}{\textrm{P}}\frac{\textrm{an}}{\textrm{D}}\frac{\mathrm{ art museum }}{\textrm{N}
N V 
```

$\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas $\frac{1}{\mathrm{P}} \underline{\mathrm{D}}$. | N | V | $\overline{\mathrm{R}}$ | P | D | N | P | N | P | $\mathrm{D} N$ | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Pareto-Optimal Segmentation - An Example for $\mu=8$

$$
K=2=\left\lfloor\frac{[\# \text { Words }=43]}{[\mu=8]}\right\rfloor-[\# \text { Sentences }=3]
$$

$$
\text { Avg }\left\{\frac{\text { BLEU }}{\# \text { Segments }}\right\} / \text { Sentence }=9.0, \text { Segs } / \mathrm{Sec}=0.956
$$

$\underline{I} \underline{a m} \underline{a}$ contemporary artist with a bit of an unexpected background $\underline{\text { a }}$.

| $\mathrm{N} V$ | D |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| J | N | P | $\mathrm{D} N$ | P | D | J |
| N |  |  |  |  |  |  |

$\frac{1}{\mathrm{~N}} \frac{\text { was }}{\mathrm{V}} \frac{\mathrm{in}}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{1}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}:-$
$\underline{I}$ grew up $\frac{\text { in }}{\mathrm{R}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{of}} \frac{\text { nowhere on }}{\mathrm{a}} \frac{\text { dirt }}{\mathrm{r}} \frac{\mathrm{rad}}{\mathrm{in}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}$. $\begin{array}{llllllllll}\mathrm{N} & \overline{\mathrm{V}} & \mathrm{P} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{N} \\ \mathrm{N} & \mathrm{N} & \mathrm{P} & \mathrm{J} & \mathrm{N}\end{array}$

## Example: Find optimal pair of segments $(\mu=8)$

| Feat | Freq | Feat | Freq | Feat | Freq |
| :--- | :---: | :--- | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |
| N-. | 3 | D-J | 2 | S-N | 1 |
| N-V | 3 | R-P | 1 | A-V | 1 |
| V-D | 3 | N-A | 1 |  |  |
| Full Segmentation Set Size |  |  |  |  |  |

$\frac{\mathrm{I}}{\mathrm{N}} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}$.
$\left.\frac{I}{N} \frac{\text { was }}{V} \frac{\text { in }}{P} \frac{\text { my }}{S} \frac{\text { twenties }}{N} \frac{\text { before }}{P} \frac{I}{N} \frac{\text { ever }}{A} \frac{\text { went }}{V} \frac{\text { to }}{P} \frac{\text { an }}{D} \frac{\text { art }}{N} \right\rvert\, \frac{\text { museum }}{N}$.
$\left.\frac{I}{N} \frac{\text { grew }}{V} \frac{u p}{R} \frac{\text { in }}{P} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { nowhere }}{\mathrm{N}} \frac{\text { on }}{\mathrm{P}} \frac{a}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \right\rvert\, \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}:$

## Example: Find optimal pair of segments $(\mu=8)$

| Feat | Freq | Feat | Freq | Feat | Freq |
| :--- | :---: | :--- | :---: | :---: | :---: |
| N-P | 6 | J-N | 3 | V-R | 1 |
| P-D | 5 | N-N | 2 | P-S | 1 |
| D-N | 4 | P-N | 2 | P-J | 1 |
| N-. | 3 | D-J | 2 | S-N | 1 |
| N-V | 3 | R-P | 1 | A-V | 1 |
| V-D | 3 | N-A | 1 |  |  |
| Full Segmentation Set Size |  |  |  |  |  |

$\frac{I}{N} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\mathrm{of}}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}$. $\frac{I}{N} \frac{\text { was }}{V} \frac{i n}{P}\left|\frac{m y}{S} \frac{\text { twenties }}{N} \frac{\text { before }}{P} \frac{I}{N} \frac{\text { ever }}{A}\right| \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{P} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{N}:$
$\frac{I}{N} \frac{\text { grew }}{\mathrm{V}} \frac{\mathrm{up}}{\mathrm{R}} \frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { nowhere }}{\mathrm{N}} \frac{\text { on }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}:$

## Pareto-Optimal Segmentation - No segments



$\frac{1}{N} \frac{\text { was }}{\mathrm{V}} \frac{\text { in }}{\mathrm{P}} \frac{\text { my }}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{1}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}=$

[^0]
## Pareto-Optimal Segmentation - One segment


$\frac{\mathrm{I}}{\mathrm{N}} \frac{\mathrm{am}}{\mathrm{V}} \frac{a}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}-$


[^1]
## Pareto-Optimal Segmentation - One segment



$\left[\frac{I}{N} \frac{\text { was }}{\mathrm{V}} \frac{\mathrm{in}}{\mathrm{P}} \frac{\mathrm{my}}{\mathrm{S}} \frac{\text { twenties }}{\mathrm{N}} \frac{\text { before }}{\mathrm{P}} \frac{1}{\mathrm{~N}} \frac{\text { ever }}{\mathrm{A}} \frac{\text { went }}{\mathrm{V}} \frac{\text { to }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { art }}{\mathrm{N}} \frac{\text { museum }}{\mathrm{N}}:-\right.$

$\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas . | $\mathrm{N} V$ | R | P | D | N | P | N | P | $\mathrm{D} N$ | N | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Pareto-Optimal Segmentation - One segment





[^2]
## Pareto-Optimal Segmentation - One segment



$$
\left(\frac{I}{N} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}} .\right.
$$

$$
\frac{I}{N} \frac{\text { was }}{V} \frac{i n}{P} \frac{m y}{S} \frac{\text { twenties }}{N} \frac{\text { before }}{P} \frac{1}{N} \text { ever went to } \frac{\text { an }}{\mathrm{P}} \frac{\text { art }}{\mathrm{D}} \frac{\text { museum }}{\mathrm{N}}:
$$

$$
\frac{I}{N} \frac{\text { grew }}{V} \frac{u p}{R} \frac{\text { in }}{P} \frac{\text { the }}{D} \frac{\text { middle }}{N} \frac{\text { of }}{\mathrm{P}} \frac{\text { nowhere }}{\mathrm{N}} \frac{\text { on }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}}=
$$

## Pareto-Optimal Segmentation - One segment



## Pareto-Optimal Segmentation - One segment



## Pareto-Optimal Segmentation - Two segments


$\underline{I}$ am a contemporary artist with a bit of an unexpected background $\underline{\text { a }}$.
$\begin{array}{lllllll}\mathrm{N} V & \mathrm{D} & \mathrm{J} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{N} \\ \mathrm{P} & \mathrm{D} & \mathrm{J} & \mathrm{N}\end{array}$


I grew up in the middle of nowhere on a dirt road in rural Arkansas . | N | V | R | P | D | N | P | N | P | D | N | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Pareto-Optimal Segmentation - Two segments


$\frac{\mathrm{I}}{\mathrm{N}} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}$.


 | N | V | $\bar{R}$ | P | D | N | P | N | P | D | N | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Pareto-Optimal Segmentation - Two segments



## Pareto-Optimal Segmentation - Two segments



## Pareto-Optimal Segmentation - Two segments


$\frac{I}{N} \frac{\text { am }}{\mathrm{V}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { contemporary }}{\mathrm{J}} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}$.


[^3]
## Pareto-Optimal Segmentation - Two segments



$\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas $\frac{1}{\mathrm{P}} \frac{\mathrm{D}}{\mathrm{D}}$.


## Pareto-Optimal Segmentation - Two segments



$$
\left(\frac{I}{N} \frac{a m}{V} \frac{a}{D} \frac{\text { contemporary }}{J} \frac{\text { artist }}{\mathrm{N}} \frac{\text { with }}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { bit }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{\text { an }}{\mathrm{D}} \frac{\text { unexpected }}{\mathrm{J}} \frac{\text { background }}{\mathrm{N}}=\right.
$$



$$
\frac{I}{N} \frac{\text { grew }}{\mathrm{V}} \frac{\text { up }}{\mathrm{R}} \frac{\text { in }}{\mathrm{P}} \frac{\text { the }}{\mathrm{D}} \frac{\text { middle }}{\mathrm{N}} \frac{\text { of }}{\mathrm{P}} \frac{n}{\mathrm{~N}} \quad \frac{\mathrm{P}}{\mathrm{P}} \frac{\mathrm{a}}{\mathrm{D}} \frac{\text { dirt }}{\mathrm{N}} \frac{\text { road }}{\mathrm{N}} \frac{\text { in }}{\mathrm{P}} \frac{\text { rural }}{\mathrm{J}} \frac{\text { Arkansas }}{\mathrm{N}} .
$$

## Pareto-Optimal Segmentation - Two segments



## Pareto-Optimal Segmentation - Two segments



## Segmentation Evaluation

## Experimental Setup

- Task: English-German TED speech translation shared task (original task is not simultaneous translation!)
- Segmenter Training Data: IWSLT Dev 2010 and 2012 and Test 2010
- Segmenter Test Data: IWSLT Test 2013
- Segmentation Train Size: 3669 sents
- Segmentation Test Size: 1025 sents


## Accuracy vs. Latency - Comparison

- We compared
- the state-of-the-art prosodic speech segmenter (monolingual) [Rangarajan+ 13; Sridhar+ 13] Heuristic
- Greedy Segmentation Approach [Oda+ 2014] GDP
- Pareto-Optimal Segmentation Approach PO


## Results on the Test Data



## Result comparison for $\mu=3$ and $\mu=8$

|  | $\mu=3$ |  | $\mu=8$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Segs/Sec | BLEU | Segs/Sec | BLEU |
| Pareto-Optimal Segmenter | $\mathbf{0 . 4 7 4}$ | 18.07 | $\mathbf{0 . 3 1 5}$ | $\mathbf{2 1 . 7 7}$ |
| Greedy Segmenter | 0.424 | 18.07 | 0.305 | 21.63 |

## Segmentation Classifier

## Classifier based on an alignment heuristic: Align



Figure: Word alignment matrix for an English-German sentence.
Monotone phrases are shown in dashed lines. Heuristic annotation for $\mu=5$.

## Classifier based on our generated training data: PO

- We created training data for segment boundaries using Pareto optimal search.
- We use this data to build a segment classifier.


## Classifier based on our generated training data: PO

- We created training data for segment boundaries using Pareto optimal search.
- We use this data to build a segment classifier.

| Feature set | Example |
| :--- | :---: |
| Set1: LastWord, Position, Length | "engineers", 9, 5 |
| Set2: + Segment POS n-grams | [NNS],[CC-NNS],[NN-CC-NNS] |
| Set3: + Cross-segment POS tags | [NNS-IN] |

Table: For segment "from our scientist and engineers * in"

## Classification Results

|  | F1 | Prec | Recall |
| :--- | :---: | :---: | :---: |
| Align Set1 | 67.04 | 62.88 | 71.78 |
| Align Set2 | 64.27 | 56.46 | 74.58 |
| Align Set3 | 67.43 | 58.39 | 79.78 |
| PO Set1 | 63.87 | 52.56 | 81.38 |
| PO Set2 | 65.06 | 53.90 | 82.03 |
| PO Set3 | $\mathbf{8 1 . 3 1}$ | $\mathbf{6 9 . 8 9}$ | $\mathbf{9 7 . 1 8}$ |

- Data from IWSLT 2011 (train)
- Data was split into $90 \%$ training for Align and $10 \%$ test (5K words) for both methods


## Incremental Decoding

## Translation Data

<CHAPTER ID=1>
Wiederaufnahme der Sitzungsperiode <SPEAKER ID=1 NAME="Die Pr sidentin">
Ich erkl re die am Freitag, dem 17. Dezember unterbro <P>
Wie Sie feststellen konnten, ist der gef rchtete "Mil Im Parlament besteht der Wunsch nach einer Aussprache Heute $m$ chte ich Sie bitten - das ist auch der Wunsch Ich bitte Sie, sich zu einer Schweigeminute zu erhebe <P>
Das Parlament erhebt sich zu einer Schweigeminute. <P>
<SPEAKER ID=2 LANGUAGE="EN" NAME="Evans, Robert J"> Frau Pr sidentin, zur Gesch ftsordnung.
Wie Sie sicher aus der Presse und dem Fernsehen wisse W re es angemessen, wenn Sie, Frau Pr sidentin, der $\mathrm{P}_{\text {Would }}$ it be appropriate for you, Madam President, to <P>
<SPEAKER ID=3 NAME="Die Pr sidentin">
Ja, Herr Evans, ich denke, da eine derartige Initiat Yes, Mr Evans, I feel an initiative of the type you h Wenn das Haus damit einverstanden ist, werde ich dem <P>
<SPEAKER ID=4 LANGUAGE="EN" NAME="MacCormick">
Frau Pr sidentin, zur Gesch ftsordnung.
im Zusam I would like your advice about Rule 143 concerning in Meine Frage betrifft eine Angelegenheit, die am Donne My question relates to something that will come up on <P>
Das Parlament wird sich am Donnerstag mit dem Cunha-B Und zwar sollen derartige Strafen trotz des Grundsatz Ich meine, da der Grundsatz der relativen Stabilit Ich m chte wissen, ob es m glich ist, einen Einwand <P>

You will be aware from the press and television that

Madam President, on a point of order.
<CHAPTER ID=1>
Resumption of the session
<SPEAKER ID=1 NAME="President">
I declare resumed the session of the European Parliam <P>
Although, as you will have seen, the dreaded 'millenn You have requested a debate on this subject in the co In the meantime, I should like to observe a minute' $s$ Please rise, then, for this minute' s silence.

## <P>

The House rose and observed a minute' s silence <P>
<SPEAKER ID=2 NAME="Evans, Robert J">
Madam President, on a point of order. <P>
<SPEAKER ID=3 NAME="President"> If the House agrees, I shall do as Mr Evans has sugge <P>
<SPEAKER ID=4 NAME="MacCormick">
<P> $\quad$ The Cunha report on multiannual guidance programmes $c$ It says that this should be done despite the principl I believe that the principle of relative stability is I want to know whether one can raise an objection of <P>

## Translation Data

## <CHAPTER ID=1>

Wiederaufnahme der Sitzungsperiode <SPEAKER ID=1 NAME="Die Pr sidentin">
Ich erkl re die am Freitag, dem 17. Dezember unterbro <P>
Wie Sie feststellen konnten, ist der gef rchtete "Mil Im Parlament besteht der Wunsch nach einer Aussprache Heute m chte ich Sie bitten - das ist auch der Wunsch Ich bitte Sie, sich zu einer Schweigeminute zu erhebe <P>
Das Parlament erhebt sich zu einer Schweigeminute. <P> <SPEAKER Frau Pr s:
Wie Sie si
Zu den Att
W re es ar <P>
<SPEAKER I Wikipedia, etc.)

## Parallel Text:

## <CHAPTER ID=1>

Resumption of the session
<SPEAKER ID=1 NAME="President">
I declare resumed the session of the European Parliam <P>
Although, as you will have seen, the dreaded 'millenn You have requested a debate on this subject in the co In the meantime, I should like to observe a minute' $s$ Please rise, then, for this minute' s silence.

## <P>

The House rose and observed a minute' s silence

Ja, Herr Evans, ich denke, da eine derartige Initiat Yes, Mr Evans, I feel an initiative of the type you h Wenn das Haus damit einverstanden ist, werde ich dem If the House agrees, I shall do as Mr Evans has sugge
<P>
<SPEAKER ID=4 LANGUAGE="EN" NAME="MacCormick">
Frau Pr sidentin, zur Gesch ftsordnung.
<P>
<SPEAKER ID=4 NAME="MacCormick">
Madam President, on a point of order.
$K$ nnten Sie mir eine Auskunft zu Artikel 143 im Zusam I would like your advice about Rule 143 concerning in Meine Frage betrifft eine Angelegenheit, die am Donne My question relates to something that will come up on <P>
Das Parlament wird sich am Donnerstag mit dem Cunha-B Und zwar sollen derartige Strafen trotz des Grundsatz ar sollen derartige Strafen trotz des Grundsatz It says that this should be done despite the princ Ich meine, da der Grundsatz der relativen Stabilit $t$ Ich m chte wissen, ob es m glich ist, einen Einwand <P>

The Cunha report on multiannual guidance programmes c I believe that the principle of relative stability is I want to know whether one can raise an objection of <P>
elevision that cently in Sri L President, to
(Web, United Nations, European/Canadian Parliament,

## Statistical Machine Translation



Figure: Learn alignments from parallel text

## Statistical Machine Translation



Figure: Learn alignments from parallel text

| ld | Source | Target | Weight |
| :--- | :--- | :--- | :---: |
| $r_{1}$ | in order | um | -5.3 |
| $r_{2}$ | $X_{1}$ the world $X_{2}$ | die welt $X_{1} X_{2}$ | -2.8 |
| $r_{3}$ | to change | verändern | -3.1 |

Figure: Learn weighted translation rules from parallel text

## Statistical Machine Translation



Figure: Learn alignments from parallel text

| Id | Source | Target | Weight |
| :--- | :--- | :--- | :---: |
| $r_{1}$ | in order | um | -5.3 |
| $r_{2}$ | $X_{1}$ the world $X_{2}$ | die welt $X_{1} X_{2}$ | -2.8 |
| $r_{3}$ | to change | verändern | -3.1 |

Figure: Learn weighted translation rules from parallel text

$$
\mathbf{t}^{*}=\underset{\mathbf{t} \in \mathcal{Y}(\mathbf{d})}{\operatorname{argmax}} \sum_{r \in d} \mathbf{w} \cdot \mathbf{f}(\mathbf{r})
$$

## Statistical Machine Translation



Figure: Learn alignments from parallel text

| Id | Source | Target | Weight |
| :--- | :--- | :--- | :---: |
| $r_{1}$ | in order | um | -5.3 |
| $r_{2}$ | $X_{1}$ the world $X_{2}$ | die welt $X_{1} X_{2}$ | -2.8 |
| $r_{3}$ | to change | verändern | -3.1 |

Figure: Learn weighted translation rules from parallel text

$$
\mathbf{t}^{*}=\underset{\mathbf{t} \in \mathcal{Y}(\mathbf{d})}{\operatorname{argmax}} \sum_{r \in d} \mathbf{w} \cdot \mathbf{f}(\mathbf{r})
$$

- Exponential time $\Rightarrow$ CKY dynamic programming $\mathcal{O}\left(n^{3}\right)$
- Our algorithm: Earley style decoding $\mathcal{O}\left(n^{2} b\right)$
- https://github.com/sfu-natlang/lrhiero

Figure: Decoder: produces most likely translation

## Segmentation Classifier Integrated with Decoder

## Segmentation Classifier Integrated with Decoder



## Segmentation Classifier Integrated with Decoder



## Segmentation Classifier Integrated with Decoder



## Segmentation Classifier Integrated with Decoder



## Segmentation Classifier Integrated with Decoder



## Segmentation Classifier Integrated with Decoder



## Incremental Decoder Evaluation

## Experimental Setup

## Translation data

- Task: English-German TED talks translation
- Train: IWSLT 2013 Train data + Europarl v7 data [Koehn 2005]
- Tuning: IWSLT Test 2012
- German Language Model: WMT 2013 Shared Task


## Segmenter data

- Train: IWSLT Dev 2010 and 2012 and Test 2010 (3669 sentences)
- Test: IWSLT Test 2013 (1025 sentences)


## Incremental Decoder Results

|  | Num segs | BLEU | Latency <br> (time/segs) | Segs/second |
| :--- | :---: | :---: | :---: | :---: |
| Heuristic <br> (Sridhar+ 13) | 2709 | $\mathbf{2 0 . 8 8}$ | 0.468 | 2.27 |
| Align | 2654 | 20.62 | 0.524 | 1.96 |
| PO Set1 | 3608 | 19.97 | 0.274 | 4.07 |
| PO Set2 | 2777 | 20.74 | 0.466 | 2.35 |
| PO Set3 | $\mathbf{3 4 7 1}$ | $\mathbf{2 0 . 7 0}$ | $\mathbf{0 . 2 7 0}$ | $\mathbf{3 . 7 3}$ |

## Summary

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality


## Summary

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- A new dynamic programming algorithm for segment annotation


## Summary

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- A new dynamic programming algorithm for segment annotation
- Segmentation annotated data used to train a segmentation classifier


## Summary

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- A new dynamic programming algorithm for segment annotation
- Segmentation annotated data used to train a segmentation classifier
- A new simultaneous translation decoder that uses our segmentation classifier


## Summary

We improve the state of the art in simultaneous machine translation by providing:

- A choice between latency and translation quality using Pareto optimality
- A new dynamic programming algorithm for segment annotation
- Segmentation annotated data used to train a segmentation classifier
- A new simultaneous translation decoder that uses our segmentation classifier
- Significant improvement in latency with the same quality


## The Paris Peace Conference 1919

Birth of multilingual (human) simultaneous translation


- To avoid "such a confusion of tongues that it will be ridiculous" (Nuremberg trial judge)
- But even now: few can afford interpretation services
- Everyone should have access to simultaneous translation!


Figure: from left to right, David Lloyd George of Britain, Vittorio Emanuele Orlando of Italy, Georges Clemenceau of France, Woodrow Wilson of the U.S.


These interpreters have a language of their own. We are completely in their hands.

- Stalin to Anthony Eden, Moscow 1943 in Birse 1967, 144


## Collaborators



Maryam Siahbani, ex-PhD student


Hassan Shavarani, ex-MSc student

## Future Work

- Compare against human interpreter output (EPIC corpus)
- Use Pareto optimal points on demand in the decoder
- Improve the scores for translation quality and latency
- Extend encoder-decoder recurrent neural networks
- Use encoder to predict future input tokens in incremental decoding (predict the clause-final predicate)


## Future Work

- Compare against human interpreter output (EPIC corpus)
- Use Pareto optimal points on demand in the decoder
- Improve the scores for translation quality and latency
- Extend encoder-decoder recurrent neural networks
- Use encoder to predict future input tokens in incremental decoding (predict the clause-final predicate)
- Multiple decoder stages while encoding the input


## Future Work

- Compare against human interpreter output (EPIC corpus)
- Use Pareto optimal points on demand in the decoder
- Improve the scores for translation quality and latency
- Extend encoder-decoder recurrent neural networks
- Use encoder to predict future input tokens in incremental decoding (predict the clause-final predicate)
- Multiple decoder stages while encoding the input
- Integrate training of segmenter with translation model


## Fin


[^0]:    $\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas . $\mathrm{N} V \quad \overline{\mathrm{R}} \mathrm{P} \quad \mathrm{D} \quad \mathrm{N} \quad \mathrm{P} \mathrm{N} \quad \mathrm{P} \quad \mathrm{D} \overline{\mathrm{N}} \mathrm{N} \quad \mathrm{P} \quad \mathrm{J} \quad \mathrm{N}$

[^1]:    $\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas : $\bar{N} \overline{\mathrm{~V}} \mathrm{R} \frac{\mathrm{P}}{\mathrm{D}} \frac{\mathrm{N}}{\mathrm{P}} \overline{\mathrm{N}} \quad \overline{\mathrm{P}} \overline{\mathrm{D}} \frac{\mathrm{N}}{\mathrm{N}} \stackrel{\mathrm{P}}{\mathrm{J}} \frac{\mathrm{N}}{}$

[^2]:    $\underline{I}$ grew up in the middle of nowhere on a dirt road in rural Arkansas : $\begin{array}{lllllllll}\mathrm{N} & \mathrm{V} & \mathrm{R} & \mathrm{P} & \mathrm{D} & \mathrm{N} & \mathrm{P} N & \mathrm{P} & \mathrm{D}\end{array}$

[^3]:    I grew up in the middle of nowhere on a dirt road in rural Arkansas . | N | $\overline{\mathrm{V}}$ | P | D | N | P | N | P | D | N | N |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

