LO2: Memory & Data | CMPT 295

Memory, Data, & Addressing |

ON A SCALEOF 1To 10,
HOW LIKELY IS IT THAT
THIS QUESTION IS
USING BINARY?

y?
HIGH RISK \«/HR(TSAH? )
AREA

http://xkcd.com/953/



http://xkcd.com/676/

LO2: Memory & Data | CMPT 295

Roadmap

C- Java: Memory & data
car *c =|malloc(sizeof (car)) Car ¢ = new Car();

c->miles = 100; c.setMiles (100) ;

c->gals F 17; c.setGals (17);

float mpg ;—get_mpg(c); float mpg =

free(c); c.getMPG() ;

&

Assem b|y Fet_mpg(car‘*) :

I . 1w a5,0(aov)
anguage: 1w a4,4(ao)

divw a5,a5,a4

fcvt.s.w fa0, a5

ret

\ 4
Machine 0111010000011000 .
de- 100011010000010000000010
coae: 1000100111000010 ,
110000011111101000011111 L

Computer
system:




LO2: Memory & Data | CMPT 295

Hardware: Physical View

N USB...

\
(}' PCl-Express Slots
< 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

DDR2
1066+MHz
Dual Channel
Memory Slots

Memory

Chipset

controller

Serial ATA
Headers

|/O ntel ICH10 e \
.

Storage connections



LO2: Memory & Data |

Hardware: Logical View

CPU

Memory

Bus

Net

USB

Etc.

CMPT 295




LO2: Memory & Data |

Hardware: 295 View

4 O

\LPU Y,

Memory

« The CPU executes instructions

+» Memory stores data

+ Binary encoding!

" |nstructions are just data

\
How are data

and instructions
represented?

/

CMPT 295



LO2: Memory & Data | CMPT 295

Binary Encoding Additional Details

+» Because storage is finite in reality, everything is
stored as “fixed” length
= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

= Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100

Least Significant Bit (LSB)
Most Significant Bit (MSB)



LO2: Memory & Data |

Hardware: 295 View

-

\LPU Y,

Instructions

Memory

+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory

CMPT 295




LO2: Memory & Data |

Hardware: 295 View

-

\CPU

take 300

"\ instructions

registers/

data

Memory

+» We will start by learning about Memory

-

o

How does a
program find its

data in memory?

/

CMPT 295




LO2: Memory & Data | CMPT 295

Byte-Oriented Memory Organization
S &

QQ. (<<(.

» Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

= Each address is just a number represented in fixed-length binary

Programs refer to bytes in memory by their addresses

= Domain of possible addresses = address space

= We can store addresses as data to “remember” where other data is in

memory [ HIGH RISK
AREA

But not all values fit in a single byte... (e.g. 295)
= Many operations actually use multi-byte values



LO2: Memory & Data | CMPT 295

Peer Instruction Question

+ If we choose to use 4-bit addresses, how big is our
address space?

= j.e. How much space can we “refer to” using our addresses?

16 bytes

4 bits

. 4 bytes
We're lost...

m o O W >

10



CMPT 295

LO2: Memory & Data |

Machine “Words”

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits — 2¥ addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 294 addresses
254 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

11



LO2: Memory & Data | CMPT 295

Word-Oriented Memory Organization

_ _ 64-bit  32-bit Butes  fddr.
» Addresses still specify Words  Words YIS (hex)
locations of bytes in memory 0x00
= Addresses of successive words [ A 0x01
differ by word size (in bytes): - ?? 0x02
e.qg. 4 (32-bit) or 8 (64-bit) e 0x03
= Address of wordO, 1, ... 107 _ Addr 8?8‘5l
T ” 0x06
Ox07
Ox08
Ad:dr 0x09
T 27 Ox0A
A Ox0B
?? Ox0C
Addr 0x0D
?? OxOE

OxOF ,




LO2: Memory & Data | CMPT 295

Word-Oriented Memory Organization

64-bit  32-bit Addr.
» Addresses still specify Words  Words Y (hex)
locations of bytes in memory 0x00
= Addresses of successive words Addr 0x01
differ by word size (in bytes): rddr 0000 0x02
e.g. 4 (32-bit) or 8 (64-bit) . 8X82

. 0000 X
Address of word 0, 1, ... 10? Ader OxO5
» Address of word 0004 0x06
= address of first byte in word 0x07
* The address of any chunk of 0x08
) ] Addr OX09

memory is given by the address -
of the first byte Addr 0008 Ox0A
= Alignment y 0x0B
0008 0x0C
Addr 0x0D
0012 OxOE
OxOF




LO2: Memory & Data | CMPT 295

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer I : \

WI” flt on one row 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
v T ¥ T ¢T VT ¢ T ¥ T ¢ 1 ¥

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

14



LO2: Memory & Data | CMPT 295

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer I : \

will fit on one row

Address

¥ | 0x00
7 | Ox08
0x10
Ox18
0x20
Ox28
0x30
0Ox38
0x40
0Ox48

v

15



LO2: Memory & Data | CMPT 295

[ 64-bit example ]
( )

pointers are 64-bits wide

Addresses and Pointers

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+» Value 504 stored at I R A 0x00
address 0x08 ~»00:00:00;00;00;00;01;F8]| 0x08
R 0x10

" 504, =1F84; R Ox18
=0x 00 ... 00 01 F8 I O O A 0w

. L1 4 r bbb 10x28

+ Pointer stored at 1 1 1 1 1 0§30
0x38 points to 000000, 00,00:00:0008] 0x38
R 0x40

address 0x08 ] Ox48

16



LO2: Memory & Data | CMPT 295

[ 64-bit example ]
( )

pointers are 64-bits wide

Addresses and Pointers

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+ Pointer stored at L r v b loxoo
0x48 points to ~»00:00:00:00:00:00:01:F8]| 0x08
I T O O O I e X

address 0x38 T loxs

= Pointer to a pointer! I R S N R SN 0x20

I I I I I I I Ox28

« |s the data stored | 0x30

at 0x08 a pointer? {00 0000000000 00]08] 0x38

, IR 0x40

" Could be, depending “00700:00:00: 00 00 00 38| 0x48
on how you use it

17



LO2: Memory & Data | CMPT 295

Data Representations

+ Sizes of data types (in bytes)

Java Data Type  C Data Type 32-bit x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long 8 8
long double 8 16
(reference) pointer * 4 8

[ address size = word size ]

To use “bool” in C, you must #include <stdbool.h> 18



LO2: Memory & Data | CMPT 295

Memory Alignment

+ Aligned: Primitive object of K bytes must have an
address that is a multiple of K

®= More about alignment later in the course

1 char

2 short

4 int, float

8 long, double, pointers

+» For good memory system performance, data has to
be aligned.

19



LO2: Memory & Data | CMPT 295

Byte Ordering

L)

+» How should bytes within a word be ordered in
memory?

= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4

+ By convention, ordering of bytes called endianness

" The two options are big-endian and little-endian
- In which address does the least significant byte go?

L)

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

20



Byte Ordering

LO2: Memory & Data |

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address

2+ Little-endian (x86, x86-64, RISC-V)

= Least significant byte has lowest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxal

0x100

n2c3d4 at address 0x100

0x101 0x102 0Ox103

Big-Endian

al

b2

c3

d4

0x100 0x101 Ox102 0Ox103

Little-Endian

d4

c3

b2

al

CMPT 295

21



LO2: Memory & Data | CMPT 295

Peer Instruction Question:

«» We store the value 0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

+» What is the byte of data stored at address 0x104?

0x40
0x01
. 0x10
We're lost...

m o O W >

23



LO2: Memory & Data | CMPT 295

Endianness

% Endianness only applies to memory storage

+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior (software)

+» Endianness still shows up:

L)

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store 1nt, access byte as a char)

= Need to know exact values to debug memory errors

= Software emulation machine code (assignment 2)

24



LO2: Memory & Data |

CMPT 295

Summary

+» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

+ Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

25



