
CMPT 295L03: Memory & Data II

Memory, Data, & Addressing II

CMPT 295L03: Memory & Data II

Roadmap

2

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Arrays & structs
Integers & floats
RISC V assembly
Procedures & stacks
Executables
Memory & caches
Processor Pipeline
Performance
Parallelism

CMPT 295L03: Memory & Data II

Review

1) If the word size of a machine is 64-bits, which of the
following is usually true? (pick all that apply)
a) 64 bits is the size of a pointer
b) 64 bits is the size of an integer
c) 64 bits is the width of a register

2) (True/False) By looking at the bits stored in memory,
I can tell if a particular 4-bytes is being used to
represent an integer, floating point number, or
instruction.

3) If the size of a pointer on a machine is 6 bits, the
address space is how many bytes?

3

CMPT 295L03: Memory & Data II

Memory, Data, and Addressing

! Representing information as bits and bytes
! Organizing and addressing data in memory
! Manipulating data in memory using C
! Boolean algebra and bit-level manipulations

4

CMPT 295L03: Memory & Data II

Addresses and Pointers in C
! & = “address of” operator
! * = “value at address” or “dereference” operator

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

5

Declares a variable, ptr, that is a pointer to
(i.e. holds the address of) an int in memory

Declares two variables, x and y, that hold ints,
and initializes them to 5 and 2, respectively

Sets ptr to the address of x
(“ptr points to x”)

Sets y to “1 plus the value stored at the
address held by ptr. Because ptr
points to x, this is equivalent to y=1+x;“Dereference ptr”

What is *(&y) ?

* is also used with
variable declarations

CMPT 295L03: Memory & Data II

Assignment in C

! A variable is represented by a location
! Declaration ≠ initialization (initially holds “garbage”)
! int x, y;

" x is at address 0x04, y is at 0x18

6

x

y

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
EE EE EE EE
FA CE CA FE
26 00 00 00
00 00 10 00
01 00 00 00
FF 00 F4 96
DE AD BE EF
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

CMPT 295L03: Memory & Data II

Assignment in C

! A variable is represented by a location
! Declaration ≠ initialization (initially holds “garbage”)
! int x, y;

" x is at address 0x04, y is at 0x18

7

x

y

0x00 0x01 0x02 0x03

00 01 29 F3

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

32-bit example
(pointers are 32-bits wide)

little-endian

CMPT 295L03: Memory & Data II

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

8

00 01 29 F300 00 00 00 x

y

0x00 0x01 0x02 0x03

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;

9

00 00 00 00

01 00 00 0000 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

little endian!

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;
! x = y + 3;

" Get value at y, add 3, store in x

10

00 00 00 00

00 27 D0 3C

03 27 D0 3C x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;
! x = y + 3;

" Get value at y, add 3, store in x

! int* z;
" z is at address 0x20

11

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

zDE AD BE EF

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;
! x = y + 3;

" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, “add 3”, store in z

12

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

Pointer arithmetic

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

13

CMPT 295L03: Memory & Data II

Pointer Arithmetic

! Pointer arithmetic is scaled by the size of target type
" In this example, sizeof(int) = 4

! int* z = &y + 3;
" Get address of y, add 3*sizeof(int), store in z
" &y = 0x18

" 24 + 3*(4) = 36

! Pointer arithmetic can be dangerous!
" Can easily lead to bad memory accesses
" Be careful with data types and casting

14

= 1*161 + 8*160 = 24

= 2*161 + 4*160 = 0x24

CMPT 295L03: Memory & Data II

Assignment in C

! int x, y;

! x = 0;
! y = 0x3CD02700;

! x = y + 3;
" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, add 12, store in z

! *z = y;
" What does this do?

15

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Assignment in C

! int x, y;

! x = 0;
! y = 0x3CD02700;

! x = y + 3;
" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, add 12, store in z

! *z = y;
" Get value of y, put in address

stored in z
16

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00
00 27 D0 3C

The target of a pointer
is also a location

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

Arrays in C
Declaration: int a[6];

17

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

a (array name) returns the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

a[1]
a[3]
a[5]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

64-bit example
(pointers are 64-bits wide)

CMPT 295L03: Memory & Data II

Arrays Basics

• Pitfall: An array in C does not know its own
length, and its bounds are not checked!
– We can accidentally access off the end of an array
– We must pass the array and its size to any

procedure that is going to manipulate it
• Mistakes with array bounds cause

segmentation faults and bus errors
– Be careful! These are VERY difficult to find

(You’ll learn how to debug these in lab)

18

CMPT 295L03: Memory & Data II

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

19

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CMPT 295L03: Memory & Data II

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

20

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CMPT 295L03: Memory & Data II

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

21

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CMPT 295L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

22

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000
equivalent

0000000B

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CMPT 295L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1; 23

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent

0000000A

0000015F

00000BAD

00000BAD

00000018 00000000

0000000B

p

0000000C

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CMPT 295L03: Memory & Data II

Arrays Stored Differently Than
Pointers

void foo() {
int *p, a[4], x;
p = &x;

*p = 1; // or p[0]
printf("*p:%u, p:%u, &p:%u\n",*p,p,&p);
*a = 2; // or a[0]
printf("*a:%u, a:%u, &a:%u\n",*a,a,&a);

}

24

? ? ?40 2 1

*p:1, p:40, &p:20
*a:2, a:24, &a:24

K&R: “An array__.
name is not
a variable”.a

24
?

0 4 8 12 16 20 24 28 32 36 40 44 48 …

p x

CMPT 295L03: Memory & Data II

Representing strings

! C-style string stored as an array of bytes (char*)
" Elements are one-byte ASCII codes for each character
" No “String” keyword, unlike Java

25

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information Interchange

CMPT 295L03: Memory & Data II

Null-Terminated Strings

! Example: "Donald Trump" stored as a 13-byte array

! Last character followed by a 0 byte ('\0')
(a.k.a. "null terminator")
" Must take into account when allocating space in memory
" Note that '0' ≠ '\0' (i.e. character 0 has non-zero value)

! How do we compute the length of a string?
" Traverse array until null terminator encountered

26

Decimal:.. 68 111 110 97 108 100 32 84 114 117 109 112 0
Hex:.. 0x44 0x6F 0x6E 0x61 0x6C 0x64 0x20 0x54 0x72 0x75 0x6D 0x70 0x00

Text:.. D o n a l d T r u m p \0

CMPT 295L03: Memory & Data II

char s[6] = "12345";

Endianness and Strings

! Byte ordering (endianness) is not an issue for 1-byte
values
" The whole array does not constitute a single value
" Individual elements are values; chars are single bytes

27

C (char = 1 byte)

0x31 = 49 decimal = ASCII ‘1’ 33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03
0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'
'2'
'3'
'4'
'5'
'\0'

IA32, x86-64
(little-endian)

SPARC
(big-endian)

String literal

CMPT 295L03: Memory & Data II

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));
printf("\n");

}

Examining Data Representations

! Code to print byte representation of data
" Any data type can be treated as a byte array by casting it to char
" C has unchecked casts !! DANGER !!

28

printf directives:
%p Print pointer
\t Tab
%x Print value as hex
\n New line

CMPT 295L03: Memory & Data II

Examining Data Representations

! Code to print byte representation of data
" Any data type can be treated as a byte array by casting it to char
" C has unchecked casts !! DANGER !!

29

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));
printf("\n");

}

void show_int(int x) {
show_bytes((char *) &x, sizeof(int));

}

CMPT 295L03: Memory & Data II

show_bytes Execution Example

! Result (Linux x86-64):
" Note: The addresses will change on each run (try it!), but

fall in same general range

30

int x = 12345; // 0x00003039

printf("int x = %d;\n",x);

show_int(x); // show_bytes((char *) &x, sizeof(int));

int x = 12345;

0x7fffb7f71dbc 0x39

0x7fffb7f71dbd 0x30

0x7fffb7f71dbe 0x00

0x7fffb7f71dbf 0x00

CMPT 295L03: Memory & Data II

Summary

! Assignment in C results in value being put in memory
location

! Pointer is a C representation of a data address
" & = “address of” operator
" * = “value at address” or “dereference” operator

! Pointer arithmetic scales by size of target type
" Convenient when accessing array-like structures in memory
" Be careful when using – particularly when casting variables

! Arrays are adjacent locations in memory storing the
same type of data object
" Strings are null-terminated arrays of characters (ASCII)

31

CMPT 295L03: Memory & Data II

Assignment in C - Handout

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;
! x = y + 3;

! int* z = &y + 3;
! *z = y;

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CMPT 295L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C - Handout
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1;

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent
p

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

