
CMPT 295Week 1 - Summary

1

CMPT 295Week 1 - Summary

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

2

int square(int num) {
return num * num;
}

C Program Assembly

Logic

0x00000317
0x00830067
0xff010113
0x00112623
0x00812423
0x01010413
0xfea42a23
…….

Binary

CMPT 295Week 1 - Summary

Binary and Hexadecimal

! Binary is base 2
" Symbols: 0, 1
" Convention: 210 = 102 = 0b10

! Example: What is 0b110 in base 10?
" 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

! Hexadecimal (hex, for short) is base 16
" Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …?
" Convention: 1610 = 1016 = 0x10

! Example: What is 0xA5 in base 10?
" 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

3

9, A, B, C, D, E, F

CMPT 295Week 1 - Summary

Base Comparison

! Why does all of this matter?
" Humans think about numbers in base

10, but computers “think” about
numbers in base 2

" Binary encoding is what allows
computers to do all of the amazing
things that they do!

! You should have this table
memorized by the end of the class
" Might as well start now!

4

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CMPT 295Week 1 - Summary

Numerical Encoding

! AMAZING FACT: You can represent anything
countable using numbers!
" Need to agree on an encoding
" Kind of like learning a new language

! Examples:
" Decimal Integers: 0→0b0, 1→0b1, 2→0b10, etc.
" English Letters: CSE→0x435345, yay→0x796179
" Emoticons: 😃 0x0, 😞 0x1, 😎 0x2, 😇 0x3, 😈 0x4, 🙋 0x5

5

CMPT 295Week 1 - Summary

Binary Encoding – Characters/Text

! ASCII Encoding (www.asciitable.com)
" American Standard Code for Information Interchange

6

http://www.asciitable.com/

CMPT 295Week 1 - Summary

Memory, Data, & Addressing I

CMPT 295Week 1 - Summary

Binary Encoding Additional Details

! Because storage is finite in reality, everything is
stored as “fixed” length
" Data is moved and manipulated in fixed-length chunks
" Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)
" Leading zeros now must be included up to “fill out” the fixed

length

! Example: the “eight-bit” representation of the
number 4 is 0b00000100

8

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CMPT 295Week 1 - Summary

Byte-Oriented Memory Organization

! Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
" Each address is just a number represented in fixed-length binary

! Programs refer to bytes in memory by their addresses
" Domain of possible addresses = address space
" Pointer: We can store addresses as data to “remember” where other

data is in memory

! But not all values fit in a single byte… (e.g. 295)
" Many operations actually use multi-byte values

9

00•••0

FF
•••F

• • •

CMPT 295Week 1 - Summary

Peer Instruction Question

! If we choose to use 4-bit addresses, how big is our
address space?
" i.e. How much space can we “refer to” using our addresses?

A. 16 bits
B. 16 bytes
C. 4 bits
D. 4 bytes
E. We’re lost…

10

CMPT 295Week 1 - Summary

Machine “Words”

! We have chosen to tie word size to address size/width
" word size = address size = register size
" word size = 𝑤 bits → 2𝑤 addresses

! Current x86 systems use 64-bit (8-byte) words
" Potential address space: 𝟐𝟔𝟒 addresses

264 bytes » 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

" Actual physical address space: 48 bits

11

CMPT 295Week 1 - Summary

Word-Oriented Memory Organization
! Addresses still specify

locations of bytes in memory
" Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

" Address of word 0, 1, … 10?

12

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

CMPT 295Week 1 - Summary

Word-Oriented Memory Organization
! Addresses still specify

locations of bytes in memory
" Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

" Address of word 0, 1, … 10?

! Address of word
= address of first byte in word
" The address of any chunk of

memory is given by the address
of the first byte

" Alignment

13

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CMPT 295Week 1 - Summary

A Picture of Memory (64-bit view)

! A “64-bit (8-byte) word-aligned” view of memory:
" In this type of picture, each row is composed of 8 bytes
" Each cell is a byte
" A 64-bit pointer

will fit on one row

14

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

one word

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

Address

CMPT 295Week 1 - Summary

A Picture of Memory (64-bit view)

! A “64-bit (8-byte) word-aligned” view of memory:
" In this type of picture, each row is composed of 8 bytes
" Each cell is a byte
" A 64-bit pointer

will fit on one row

15

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0D 0x0E 0x0F0x0C0x09 0x0A 0x0B0x08

CMPT 295Week 1 - Summary

Addresses and Pointers

! An address is a location in memory
! A pointer is a data object that holds an address

" Address can point to any data

! Value 504 stored at
address 0x08
" 50410 = 1F816

= 0x 00 ... 00 01 F8

! Pointer stored at
0x38 points to
address 0x08

16

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CMPT 295Week 1 - Summary

Addresses and Pointers

! An address is a location in memory
! A pointer is a data object that holds an address

" Address can point to any data

! Pointer stored at
0x48 points to
address 0x38
" Pointer to a pointer!

! Is the data stored
at 0x08 a pointer?
" Could be, depending

on how you use it
17

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

64-bit example
(pointers are 64-bits wide)

big-endian

CMPT 295Week 1 - Summary

Data Representations

! Sizes of data types (in bytes)

18To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CMPT 295Week 1 - Summary

Memory Alignment

! Aligned: Primitive object of 𝐾 bytes must have an
address that is a multiple of 𝐾
" More about alignment later in the course

! For good memory system performance, data has to
be aligned.

19

𝐾 Type
1 char
2 short
4 int, float
8 long, double, pointers

CMPT 295Week 1 - Summary

Byte Ordering

! How should bytes within a word be ordered in
memory?
" Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

! By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

• In which address does the least significant byte go?
• Based on Gulliver’s Travels: tribes cut eggs on different sides

(big, little)

20

CMPT 295Week 1 - Summary

Byte Ordering

! Big-endian (SPARC, z/Architecture)
" Least significant byte has highest address

! Little-endian (x86, x86-64, RISC-V)
" Least significant byte has lowest address

! Bi-endian (ARM, PowerPC)
" Endianness can be specified as big or little

! Example: 4-byte data 0xa1b2c3d4 at address 0x100

21

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CMPT 295Week 1 - Summary

Memory, Data, & Addressing II

CMPT 295Week 1 - Summary

Review

1) If the word size of a machine is 64-bits, which of the
following is usually true? (pick all that apply)
a) 64 bits is the size of a pointer
b) 64 bits is the size of an integer
c) 64 bits is the width of a register

2) (True/False) By looking at the bits stored in memory,
I can tell if a particular 4-bytes is being used to
represent an integer, floating point number, or
instruction.

3) If the size of a pointer on a machine is 6 bits, the
address space is how many bytes?

23

CMPT 295Week 1 - Summary

Assignment in C

! left-hand side = right-hand side;
" LHS must evaluate to a location
" RHS must evaluate to a value (could be an address)
" Store RHS value at LHS location

! int x, y;

! x = 0;

! y = 0x3CD02700;
! x = y + 3;

" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, “add 3”, store in z

24

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

Pointer arithmetic

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits

wide)

CMPT 295Week 1 - Summary

Pointer Arithmetic

! Pointer arithmetic is scaled by the size of target type
" In this example, sizeof(int) = 4

! int* z = &y + 3;
" Get address of y, add 3*sizeof(int), store in z
" &y = 0x18

" 24 + 3*(4) = 36

! Pointer arithmetic can be dangerous!
" Can easily lead to bad memory accesses
" Be careful with data types and casting

25

= 1*161 + 8*160 = 24
= 2*161 + 4*160 = 0x24

CMPT 295Week 1 - Summary

Assignment in C

! int x, y;

! x = 0;
! y = 0x3CD02700;

! x = y + 3;
" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, add 12, store in z

! *z = y;
" What does this do?

26

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits

wide)

CMPT 295Week 1 - Summary

Assignment in C

! int x, y;

! x = 0;
! y = 0x3CD02700;

! x = y + 3;
" Get value at y, add 3, store in x

! int* z = &y + 3;
" Get address of y, add 12, store in z

! *z = y;
" Get value of y, put in address

stored in z
27

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00
00 27 D0 3C

The target of a pointer
is also a location

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits

wide)

CMPT 295Week 1 - Summary

Arrays in C
Declaration: int a[6];

28

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

a (array name) returns the
array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

a[1]
a[3]
a[5]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

64-bit example
(pointers are 64-bits wide)

CMPT 295Week 1 - Summary

Arrays Basics

• Pitfall: An array in C does not know its own
length, and its bounds are not checked!
– We can accidentally access off the end of an array
– We must pass the array and its size to any

procedure that is going to manipulate it
• Mistakes with array bounds cause

segmentation faults and bus errors
– Be careful! These are VERY difficult to find

(You’ll learn how to debug these in lab)

29

CMPT 295Week 1 - Summary

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

30

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the
array’s address
&a[i] is the address of a[0]
plus i times the element size in
bytes

CMPT 295Week 1 - Summary

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

31

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the
array’s address
&a[i] is the address of a[0] plus
i times the element size in bytes

CMPT 295Week 1 - Summary

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

32

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the
array’s address
&a[i] is the address of a[0] plus
i times the element size in bytes

CMPT 295Week 1 - Summary

array indexing = address arithmetic
(both scaled by the size of the type)

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

33

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000
equivalent

0000000B

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the
array’s address
&a[i] is the address of a[0] plus
i times the element size in bytes

CMPT 295Week 1 - Summary

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1; 34

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent

0000000A

0000015F

00000BAD

00000BAD

00000018 00000000

0000000B

p

0000000C

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the
array’s address
&a[i] is the address of a[0] plus
i times the element size in bytes

CMPT 295Week 1 - Summary

Representing strings

! C-style string stored as an array of bytes (char*)
" Elements are one-byte ASCII codes for each character
" No “String” keyword, unlike Java

35

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information
Interchange

CMPT 295Week 1 - Summary

Null-Terminated Strings

! Example: "Donald Trump" stored as a 13-byte array

! Last character followed by a 0 byte ('\0')
(a.k.a. "null terminator")
" Must take into account when allocating space in memory
" Note that '0' ≠ '\0' (i.e. character 0 has non-zero value)

! How do we compute the length of a string?
" Traverse array until null terminator encountered

36

Decimal:.. 68 111 110 97 108 100 32 84 114 117 109 112 0
Hex:.. 0x44 0x6F 0x6E 0x61 0x6C 0x64 0x20 0x54 0x72 0x75 0x6D 0x70 0x00

Text:.. D o n a l d T r u m p \0

CMPT 295Week 1 - Summary

char s[6] = "12345";

Endianness and Strings

! Byte ordering (endianness) is not an issue for 1-byte
values
" The whole array does not constitute a single value
" Individual elements are values; chars are single bytes

37

C (char = 1 byte)

0x31 = 49 decimal = ASCII ‘1’ 33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03
0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'
'2'
'3'
'4'
'5'
'\0'

IA32, x86-64
(little-endian)

SPARC
(big-endian)

String literal

CMPT 295Week 1 - Summary

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));
printf("\n");

}

Examining Data Representations

! Code to print byte representation of data
" Any data type can be treated as a byte array by casting it to char
" C has unchecked casts !! DANGER !!

38

printf directives:
%p Print pointer
\t Tab
%x Print value as hex
\n New line

CMPT 295Week 1 - Summary

Examining Data Representations

! Code to print byte representation of data
" Any data type can be treated as a byte array by casting it to char
" C has unchecked casts !! DANGER !!

39

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));
printf("\n");

}

void show_int(int x) {
show_bytes((char *) &x, sizeof(int));

}

CMPT 295Week 1 - Summary

show_bytes Execution Example

! Result (Linux x86-64):
" Note: The addresses will change on each run (try it!), but

fall in same general range

40

int x = 12345; // 0x00003039

printf("int x = %d;\n",x);

show_int(x); // show_bytes((char *) &x,
sizeof(int));

int x = 12345;

0x7fffb7f71dbc 0x39

0x7fffb7f71dbd 0x30

0x7fffb7f71dbe 0x00
0x7fffb7f71dbf 0x00

