
CMPT 295L26: Sequential Logic

CMPT 295 Week 10

CMPT 295L26: Sequential Logic

Synchronous Digital Systems (SDS)

Synchronous:
• All operations coordinated by a central clock

‒ “Heartbeat” of the system (processor frequency)

Digital:
• Represent all values with two discrete values
• Electrical signals are treated as 1’s and 0’s

‒ High/Low voltage represent True/False, 1/0

Hardware of a processor (e.g., RISC-V) is an example of a
Synchronous Digital System

2

CMPT 295L26: Sequential Logic

Moore’s Law

v Original Version (1965): Since the integrated circuit was
invented, the number of transistors in an integrated circuit has
roughly doubled every year; this trend would continue for the
foreseeable future

v 1975: Revised - circuit complexity doubles every two years
v Hardware Trend: Hardware gets more powerful every year

(due to technology advancement and the hard work of many
engineers)

v Software Trend: Software gets faster and uses more resources
(And has to keep up with ever-changing hardware)

v Digital circuits are used to build hardware

3

CMPT 295L26: Sequential Logic

Transistors to Gates Example: Inverter

v CMOS technology
v Two transistors:

§ NMOS (top): turns on
when input is 0 (low V)

§ PMOS (bottom): turns on
when input is 1 (high V)

4

IN OUT

GND

VDD

CMPT 295L26: Sequential Logic

Transistors to Gates Example: Inverter

v Input = 0
v Top transistor turned on,

bottom transistor turned
off -> Output connected
to VDD, capacitor
charged

v Output = 1

5

0 1

GND

VDD

CMPT 295L26: Sequential Logic

Transistors to Gates Example: Inverter

v Input = 1
v Top transistor turned off,

bottom transistor turned
on -> Output connected
to GND, capacitor
discharged

v Output = 0

6

1 0

GND

VDD

Inverter is commonly called “NOT gate”

CMPT 295L26: Sequential Logic

Combinational vs. Sequential Logic

• Digital Systems consist of two basic types of
circuits:
• Combinational Logic (CL)
–Output is a function of the inputs only, not the history

of its execution
– Example: add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information
– Also called “State Elements”
– Example: Memory and registers

7

CMPT 295L26: Sequential Logic

Simple Logic Gates
• Special names and symbols:

NOT

AND

OR

a b a AND b
0 0 0
0 1 0
1 0 0
1 1 1
a b A OR b
0 0 0
0 1 1
1 0 1
1 1 1

a NOT a
0 1
1 0

Circle means NOT!

8

= NOT a

= a AND b

= a OR b

True if input is false

True if both inputs are true

True if at least one input is true

Truth
Table

8

CMPT 295L26: Sequential Logic

More Simple Logic Gates
Inverted versions are easier to implement in CMOS

NAND

NOR

XOR

a b a NOR b
0 0 1
0 1 0
1 0 0
1 1 0
a b a XOR b
0 0 0
0 1 1
1 0 1
1 1 0

a b a NAND b
0 0 1
0 1 1
1 0 1
1 1 0

9

= a NAND b

= a NOR b

= a XOR b

True if both inputs are false

True if exactly one input is true
(or if odd number of inputs are true for > 2 inputs)

True if at least one input is false

CMPT 295L26: Sequential Logic

10

A
B

C

D

Combining Multiple Logic Gates

D = (NOT(A AND B)) AND (A OR (NOT B AND C))

CMPT 295L26: Sequential Logic

How to Represent Combinational Logic?

✓Text Description
✓Circuit Diagram
– Transistors and wires
– Logic Gates

✓Truth Table
✓Boolean Expression

✓All are equivalent

11

CMPT 295L26: Sequential Logic

Useful Combinational Circuits

12

CMPT 295L26: Sequential Logic

Data Multiplexor (MUX)

• Multiplexor (“MUX”) is a selector
– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX
– Input S selects between two inputs of n bits each

13

This input is passed
to output if selector
bits match shown
value

Represents that
this input has n bits

A

B

S

0

1

C‘n

‘n

‘n

CMPT 295L26: Sequential Logic

Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

• Boolean Algebra:

• Circuit Diagram:

14

s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

A

B

S

0

1

C‘n

‘n

‘n

s

CMPT 295L26: Sequential Logic

1-bit 4-to-1 MUX

• Schematic:

• Truth Table: How many rows?
• Boolean Expression:

 E = S1S0A + S1S0B + S1S0C + S1S0D

15

26

A

D

S= S1S0

00

11

E

‘2

01
10

B
C

CMPT 295L26: Sequential Logic

Another Design for 4-to-1 MUX

• Can we leverage what we’ve previously built?
– Alternative hierarchical approach:

16

A

B

0

1

C

D

S0

0

1
S1

0

1

E

CMPT 295L26: Sequential Logic

Decoder
• Enable one of 2N outputs based on N input
• Example: 2-to-4 decoder

• Use case: Choose ALU operation based on instruction op-code
17

By BlueJester0101, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3668293

CMPT 295L26: Sequential Logic

Demultiplexer (Demux)
• Similar to decoder with an enable signal

18

By BlueJester0101, CC BY-SA 3.0,
https://commons.wikimedia.org/w/i
ndex.php?curid=3668293

CMPT 295L26: Sequential Logic

Single-Bit Binary Adder (Half Adder)
• Add A + B to get Sum (S) and Carry (C)
• Truth Table:
• Boolean Expressions:
• S = AÅB; C = AB

• Circuit:

19

By inductiveload - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1023090

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

CMPT 295L26: Sequential Logic

S = A ⊕ B ⊕ C; C = AB + C(A ⊕ B)

0
1
1
0

1
0
0
1

§ Truth table:

A B C
0 0 0
0 0 1
0 1 0
0 1 1

1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
1

0
1
1
1

3-bit
Addition!

What is this Circuit?

A
B

C

Q. What’s the propagation delay?

C

S

Ø 3 gate delays (highlighted)

Q. What does the circuit accomplish?
Ø Algebra:

S = A ⊕ B ⊕ C

C S

Full Adder

Half Adder
Half Adder

FA

S

C C

A B

20

CMPT 295L26: Sequential Logic

Definition: A combinational circuit computes a pure function, i.e.,
its outputs react only based on its inputs. There are no feedback
loops and no state information (memory) is maintained.

Theorem: Every Boolean function can be implemented with
NAND and NOT. Circuits are modular

Computing with Combinational Circuits

FAFAFAFA

A3B3 A2B2 A1B1 A0B0

S3 S2 S1 S0

C3 C2 C1
C0C4

… a 4-bit ripple carry adder!
Ø Adds by columns
Ø Propagation delay

= 9 (2n + 1)

Adder-4

A B
4 4

4

S

CC

21

CMPT 295L26: Sequential Logic

FS func

0001 A + B
0010 A − B
1000 A * B
0100 A ^ B
0101 A + 1
1101 B

32

Functional Unit
Hardware circuits are fixed

Ø Can’t adjust wires / gates while running
Ø Build control wires to parametrize its function

Function Unit:

32

opA

32

opB

res

4FS

Function Select:

22

CMPT 295L26: Sequential Logic

32

Functional Unit: Adder-Subtractor

Adder-32

32

32

A
32

B

S

C

FS

● if FS == 0 then
S = A + B

● if FS == 1 then

= A − B
S = A + B + 1

23

CMPT 295L26: Sequential Logic

Combinational vs. Sequential Logic

• Digital Systems consist of two basic types of
circuits:
• Combinational Logic (CL)
–Output is a function of the inputs only, not the history

of its execution
– Example: add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information
– Also called “State Elements”
– Example: Memory and registers

24

CMPT 295L26: Sequential Logic

CMPT 295L26: Sequential Logic

Want: S=0;
 for X1,X2,X3 over time...
 S = S + Xi

An example of why we would need sequential logic

Assume:
• Each X value is applied in succession, one per cycle
• The sum since time 1 (cycle) is present on S

SUMXi S

Accumulator Example

26

CMPT 295L26: Sequential Logic

No!
1) How to control the next iteration of the ‘for’ loop?
2) How do we say: ‘S=0’?

Feedback

First Try: Does this work?

27

X

+ S

CMPT 295L26: Sequential Logic

Second Try: How About This?

A Register is the state
element that is used here
to hold up the transfer
of data to the adder

28

Xi

+ S

register
Load/Clk

reset

CMPT 295L26: Sequential Logic

Accumulator Revisited: Proper Timing
• Reset signal shown
• In practice Xi might not arrive to the

adder at the same time as Si-1
• Si temporarily is wrong, but register

always captures correct value
• In good circuits, instability never

happens around rising edge of CLK

29

Xi

+ Si

register
Clk

reset

Si-1

“Undefined” (unknown) signal

X0 X0+X1 X0+X1
+X2

X0+X1+
X2+X3

X0 X1 X2 X3Xi

Si

0 X0 X0+X1 X0+X1
+X2Si-1

Reset

CLK

CMPT 295L26: Sequential Logic

Uses for State Elements

• Place to store values for some amount of
time:
– Register files (like in RISCV)
– Memory (caches and main memory)

• Help control flow of information between
combinational logic blocks
– State elements are used to hold up the movement

of information at the inputs to combinational logic
blocks and allow for orderly passage

30

CMPT 295L26: Sequential Logic

CPU Hardware
Goal: Given an instruction set architecture, construct a machine
that reliably executes instructions.

Design choices will influence speed of instructions:

● some instructions will be faster than others

● order of instructions may matter

● order of memory accesses may matter

“conflicts” or “hazards”

CMPT 295L26: Sequential Logic

Maximum Clock Frequency
•

32

Max Delay =

Min Period = Max Delay
Max Freq = 1/Min Period

CLK-to-Q Delay
+ CL Delay
+ Setup Time

Assumes Max Delay > Hold Time

CMPT 295L26: Sequential Logic

+Reg

Reg

The Critical Path

• The critical path is the longest delay between
any two registers in a circuit

• The clock period must be longer than this
critical path, or the signal will not propagate
properly to that next register

CMPT 295L26: Sequential Logic

How do we go faster?

Pipelining!
• Split operation into smaller parts and add a register

between each one.

34

CMPT 295L26: Sequential Logic

RISC-V CPU Datapath, Control Intro

CMPT 295L26: Sequential Logic

Design Principles

• Five steps to design a processor:
1) Analyze instruction set →

datapath requirements
2) Select set of datapath

components & establish
clock methodology

3) Assemble datapath meeting
the requirements

4) Analyze implementation of each instruction to determine
setting of control points that effects the register transfer

5) Assemble the control logic
• Formulate Logic Equations
• Design Circuits

36

Control

Datapath

Memory

Processor
Input

Output

CMPT 295L26: Sequential Logic

Summary !

• Universal datapath
− Capable of executing all RISC-V instructions in one cycle each
− Not all units (hardware) used by all instructions

• 5 Phases of execution
− IF (Instruction Fetch), ID (Instruction Decode), EX (Execute),

MEM (Memory), WB (Write Back)
− Not all instructions are active in all phases (except for loads!)

• Controller specifies how to execute instructions
− Worth thinking about: what new instructions can be added

with just most control?

37

CMPT 295L26: Sequential Logic

Your CPU in two parts
• Central Processing Unit (CPU):
– Datapath: contains the hardware necessary to perform

operations required by the processor
• Reacts to what the controller tells it! (ie. “I was told to do an add, so

I”ll feed these arguments through an adder)

– Control: decides what each piece of the datapath should do
• What operation am I performing? Do I need to get info from

memory? Should I write to a register? Which register?
• Has to make decisions based on the input instruction only!

38

CMPT 295L26: Sequential Logic

Design Principles

• Determining control signals
– Any time a datapath element has an input that

changes behavior, it requires a control signal
(e.g. ALU operation, read/write)

– Any time you need to pass a different input based
on the instruction, add a MUX with a control
signal as the selector
(e.g. next PC, ALU input, register to write to)

• Your control signals will change based on your
exact datapath

• Your datapath will change based on your ISA
39

CMPT 295L26: Sequential Logic

Storage Element: Register File

• Register File consists of 31 registers:
– Output ports portA and portB
– Input port portW

• Register selection
– Place data of register RA (number) onto portA
– Place data of register RB (number) onto portB
– Store data on portW into register RW (number) when

Write Enable is 1
• Clock input (CLK)

– CLK is passed to all internal registers so they can be written
to if they match RW and Write Enable is 1

40

Clk

portW

Write Enable

32
32

portA

32
portB

5 5 5
RW RA RB

32 x 32-bit
Registers

CMPT 295L26: Sequential Logic

Implementing R-Types

41

IMEM

+4

ALU
pc inst[11:7]

inst[19:15]

inst[24:20]

Control

(4) Perform operation
- New hardware: ALU

(Arithmetic Logic Unit)
- Abstraction for adders,

multipliers, dividers,
etc.

- How do we know what
operation to execute?
- Our first control bit!

ALUSel(ect)

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

R[rs1]

R[rs2]

ALUSel

inst[31:0]

CMPT 295L26: Sequential Logic

42

Inst[31:0] PCSel ImmSel RegWEn Br
Un

Br
Eq

Br
LT

BSel ASel ALUSe
l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU
sub +4 * 1 * * * Reg Reg Sub Read ALU
(R-R
Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

CMPT 295L26: Sequential Logic

Control Logic

Adding addi to datapath

43

+4

pc
pc+4

inst[11:7]

inst[19:15]
inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.
Gen

0
1

RegWEn=1

inst[31:20]
imm[31:0]

ImmSel=I BSel=1

Also works for all other I-format
arithmetic instruction
(slti,sltiu,andi,ori,
xori,slli,srli,srai)
just by changing ALUSel

CMPT 295L26: Sequential Logic

44

Inst[31:0] PCSel ImmSel RegWEn Br
Un

Br
Eq

Br
LT

BSel ASel ALUSe
l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU
sub +4 * 1 * * * Reg Reg Sub Read ALU
(R-R
Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

addi +4 I 1 * * * Imm Reg Add Read ALU

CMPT 295L26: Sequential Logic

Adding lw to datapath

45

IMEM
ALU

Imm.
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=I RegWEn=1 Bsel=1 ALUSel=Add MemRW=Read WBSel=0

wb

CMPT 295L26: Sequential Logic

46

Inst[31:0] PCSel ImmSel RegWEn Br
Un

Br
Eq

Br
LT

BSel ASel ALUSe
l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU
sub +4 * 1 * * * Reg Reg Sub Read ALU
(R-R
Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

addi +4 I 1 * * * Imm Reg Add Read ALU
lw +4 I 1 * * * Imm Reg Add Read Mem

CMPT 295L26: Sequential Logic

Storage Element: Idealized Memory
• Memory (idealized)
– One input port: Data In
– One output port: Data Out

• Memory access:
– Read: Write Enable = 0, data at Address is placed on

Data Out
– Write: Write Enable = 1, Data In written to Address

• Clock input (CLK)
– CLK input is a factor ONLY during write operation
– During read, behaves as a combinational logic block:

Address valid → Data Out valid after “access time”

47

CLK

Data In

Write Enable

32 32
DataOut

Address

CMPT 295L26: Sequential Logic

Current Datapath

48

IMEM
ALU

Imm.
Gen

+4

DMEM

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr
DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

ALU

mem

wb

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel BSel ALUSel MemRW WBSel

wb

pc+4

CMPT 295L26: Sequential Logic

Adding sw to datapath

49

IMEM
ALU

Imm.
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR 0

1pc
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn=0 Bsel=1 ALUSel=Add MemRW=Write WBSel=*

wb

*= “Don’t Care”

CMPT 295L26: Sequential Logic

50

Inst[31:0] PCSel ImmSel RegWEn Br
Un

Br
Eq

Br
LT

BSel ASel ALUSe
l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU
sub +4 * 1 * * * Reg Reg Sub Read ALU
(R-R
Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

addi +4 I 1 * * * Imm Reg Add Read ALU
lw +4 I 1 * * * Imm Reg Add Read Mem
sw +4 S 0 (N) * * * Imm Reg Add Write *

CMPT 295L26: Sequential Logic

51

CMPT 295L26: Sequential Logic

52

Inst[31:0] PCSel ImmSel RegWEn Br
Un

Br
Eq

Br
LT

BSel ASel ALUSe
l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU
sub +4 * 1 * * * Reg Reg Sub Read ALU
(R-R
Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

addi +4 I 1 * * * Imm Reg Add Read ALU
lw +4 I 1 * * * Imm Reg Add Read Mem
sw +4 S 0 (N) * * * Imm Reg Add Write *
beq +4 B 0 * 0 * Imm PC Add Read *
beq ALU B 0 * 1 * Imm PC Add Read *
bne ALU B 0 * 0 * Imm PC Add Read *
bne +4 B 0 * 1 * Imm PC Add Read *
blt ALU B 0 0 * 1 Imm PC Add Read *
bltu ALU B 0 1 * 1 Imm PC Add Read *
jalr ALU I 1 * * * Imm Reg Add Read PC+4
jal ALU J 1 * * * Imm PC Add Read PC+4
auipc +4 U 1 * * * Imm PC Add Read ALU

CMPT 295L26: Sequential Logic

Adding branches to datapath

53

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1

1
0

pc
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=0 BrUn BrEq BrLT ASel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=*PCSel=taken/not-taken

wb

CMPT 295L26: Sequential Logic

Adding jalr to datapath

54

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0
pc

0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=0Bsel=1
ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

CMPT 295L26: Sequential Logic

Adding jal to datapath

55

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0
pc

0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=J RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=1Bsel=1
ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

CMPT 295L26: Sequential Logic

Implementing lui

56

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=U RegWEn=1

BrUn=* BrE=* BrLT=*

Asel=*Bsel=1 ALUSel=B MemRW=Read WBSel=1PCSel=pc+4

wb

pc

CMPT 295L26: Sequential Logic

Implementing auipc

57

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=U RegWEn=1

BrUn=* BrE=* BrLT=*

Asel=1Bsel=1 ALUSel=Add MemRW=0 WBSel=1PCSel=pc+4

wb

pc

