CPU Control Pipelines and Hazards

CMPT 295 Week 11

Control Signals

- Control signals are how we get the same hardware to behave differently and execute different instructions
- For every instruction, all control signals are set to one of their possible values (not always 0 or 1) or an indeterminate (*) value indicating the control signal doesn't affect the instruction's execution
- Each control signal has a sub-circuit based on ~9 bits from the instruction format:
 - > Upper 5 func7 bits (lower 2 are the same for all instructions)
 - All func3 bits
 - "2nd" upper opcode bit (others are the same for all instructions)

Control Signals: ADD

ADD: Control Signals

Here are the signals and values we've compiled for our ADD instruction:

Inst[31:0]	BrEq	BrLT	PCSel	ImmSel	BrUn	ASel	BSel	ALUSel	MemRW	RegWEn	WBSel
add	*	*	+4	*	*	Reg	Reg	Add	Read	1 (Y)	ALU

(green = left 3 cols = control INPUTS)

(orange = right 9 cols = control OUTPUTS)

addi datapath

Br datapath

jal datapath

CPU Control, Pipeline and Hazards

PT 29	
1 /9	٠

Inst[31:0]	PCSel	ImmSel	RegWEn	Br Un	Br Eq	Br LT	BSel	ASel	ALUSe I	MemRW	WBSel
add	+4	*	1 (Y)	*	*	*	Reg	Reg	Add	Read	ALU
sub	+4	*	1	*	*	*	Reg	Reg	Sub	Read	ALU
(R-R Op)	+4	*	1	*	*	*	Reg	Reg	(Ор)	Read	ALU
addi	+4	I	1	*	*	*	Imm	Reg	Add	Read	ALU
lw	+4	I	1	*	*	*	Imm	Reg	Add	Read	Mem
sw	+4	S	0 (N)	*	*	*	Imm	Reg	Add	Write	*
beq	+4	В	0	*	0	*	Imm	PC	Add	Read	*
beq	ALU	В	0	*	1	*	Imm	PC	Add	Read	*
bne	ALU	В	0	*	0	*	Imm	PC	Add	Read	*
bne	+4	В	0	*	1	*	Imm	PC	Add	Read	*
blt	ALU	В	0	0	*	1	Imm	PC	Add	Read	*
bltu	ALU	В	0	1	*	1	Imm	PC	Add	Read	*
jalr	ALU	I	1	*	*	*	Imm	Reg	Add	Read	PC+4
jal	ALU	J	1	*	*	*	Imm	PC	Add	Read	PC+4
auipc	+4	U	1	*	*	*	Imm	PC	Add	Read	ALU

Instruction Timing

IMEM	Reg Read	ALU	DMEM	Reg W	
200 ps	100 ps	200 ps	200 ps	100 ps	800 ps

1. Instruction Fetch Register Read

Instruction Timing

Instr	IF = 200ps	ID = 100ps	ALU = 200ps	MEM=200ps	WB = 100ps	Total
add	Х	Х	Х		Х	600ps
beq	Х	Х	Х			500ps
jal	Х	Х	Х		Х	600ps
lw	Х	Х	Х	Х	Х	800ps
SW	Х	Х	Х	Х		700ps

• Maximum clock frequency

f_{max} = 1/800ps = 1.25 GHz

• Most blocks idle most of the time. For example, "IF" active every 200/800ps

"Iron Law" of Processor Performance

<u> </u>	Instructions	Cycles	<u>Time</u>
Program	Program *	Instruction	* Cycle

Speed Trade-off Example

• For some task (e.g., image compression)

	Processor A	Processor B
# Instructions	1 Million	1.5 Million
Average CPI	2.5	1
Clock rate f	2.5 GHz	2 GHz
Execution time	1 ms	0.75 ms

- Processor B is faster for this task, despite executing more instructions and having a lower clock rate. Why?
 - Each instruction is less complex (~2.5 B instructions = 1 A instruction)

Improving Processor Performance with Pipelining

• Pipelined Car assembly takes 7 hours for 4 cars

1 car finishes every hour (after the first car, which takes 4 hours)

Pipelining Lessons

- Pipelining doesn't decrease *latency* of single task; it increases *throughput* of entire workload
- *Multiple* tasks operating simultaneously using different resources
- Potential speedup ~ number of pipeline stages
- Speedup reduced by time to *fill* and *drain* the pipeline: 16 hours/7 hours which gives 2.3X speedup v. potential 4X in this example
- Pipeline frequency depends on longest pipeline stage

Pipelining with RISC-V

RISC-V Pipeline

Each stage operates on different instruction

RISC-V Pipeline Example

Address	Inst Cycle	0	1	2	3	4	5	6	7
0x00	add a1,a2,a3	IF	ID	EX	MEM	WB			
0x04	addi a4,a5,0x2f7		IF	ID	EX	MEM	WB		
0x08	sub s4,s0,s3			IF	ID	EX	MEM	WB	
0x0C	or s1,s2,s5				IF	ID	EX	MEM	WB

Instruction Level Parallelism (ILP)

- Pipelining allows us to execute parts of multiple instructions at the same time using the same hardware!
 - This is known as *instruction level parallelism*
- Later: Other types of parallelism
 - DLP: same operation on lots of data (SIMD)
 - TLP: executing multiple threads "simultaneously" (e.g., using OpenMP or pthreads)

Question: Assume the stage times shown below. Suppose we *remove loads and stores* from our ISA. Consider going from a single-cycle implementation to a **4-stage** pipelined version.

Instr Fetch	Reg Read	ALU Op	Mem Access	Reg Write	
200ps	100 ps	200ps	200ps	100 ps	

- 1) The *latency* will be ?x slower.
- 2) The *throughput* will be ?x higher.

No mem access Throughput:

Old: one inst every (IF+ID+EX+WB) = 600 ps \rightarrow New: one inst every (4*max_stage)/4 = 200 ps New/Old throughput = (1/200)/(1/600) = 3x higher **Question:** Assume the stage times shown below. Suppose we *remove loads and stores* from our ISA. Consider going from a single-cycle implementation to a **4-stage** pipelined version.

200ps 100 ps 200ps 200ps 100 ps	Instr Fetch	Reg Read	ALU Op	Mem Access	Reg Write	
	200ps	100 ps	200ps	200ps	100 ps	

- 1) The *latency* will be ?x slower.
- 2) The *throughput* will be 3x higher.

No mem access Latency (per inst): Old latency: IF+ID+EX+WB = 600 ps New latency = 4*max_stage = 800 ps New/Old = 800/600 = 1.33x slower **Question:** Assume the stage times shown below. Suppose we *remove loads and stores* from our ISA. Consider going from a single-cycle implementation to a **4-stage** pipelined version.

	Instr Fetch	Reg Read	ALU Op	Mem Access	Reg Write	
	200ps	100 ps	200ps	200ps	100 ps	
1	·	• 1 1	1 22			

1) The *latency* will be 1.33x slower.

2) The *throughput* will be 3x higher.

Agenda

Hazards Ahead!

- RISC-V Pipeline
- Hazards
 - Structural
 - Data
 - R-type instructions
 - Load
 - Control
- Superscalar processors

Pipeline Hazards

A *hazard* is a situation that prevents starting the next instruction in the next clock cycle

1) Structural hazard

- A required resource is busy (e.g. needed in multiple stages)
- 2) Data hazard
 - Data dependency between instructions
 - Need to wait for previous instruction to complete its data write
- 3) Control hazard
 - Flow of execution depends on previous instruction

Structural Hazard: Regfile!

• RegFile: Used in ID and WB!

RISC-V Pipeline: Regfile Structural Hazard

Addr	Inst Cycle	0	1	2	3		5	6	7	8	9	10
0x00	addi a0, zero, 5	IF	ID	ΕX	MM	WB						
0x04	addi a1, a4, 5		IF	ID	EX	MM	WB					
0x08	addi a2, a5, 5			IF	ID	ΕX	MM	WB				
0x0C	addi a3, a6, 5				IF	ID	ID	ΕX	MM	WB		

Regfile Structural Hazards

- Each instruction:
 - Can read up to two operands in decode stage
 - Can write one value in writeback stage
- Avoid structural hazard by having separate "ports"
 - Two independent read ports and one independent write port
- Three accesses per cycle can happen simultaneously

Regfile Structural Hazards

- Two *alternate* solutions:
 - Build RegFile with independent read and write ports; good for single-stage
 - 2) Double Pumping: Split RegFile access in two. Prepare to write during 1st half, write on <u>rising</u> edge, read during 2nd half of each clock cycle (<u>falling</u> edge)
 - Will save us a cycle later...
 - Possible because RegFile access is fast (takes less than half the time of ALU stage)
- **Conclusion:** It is OK to read and Write to registers during same clock cycle

Regfile Structural Hazard: 2 Rd+1Wr Ports

Addr	Inst Cycle	0	1	2	3	4	5	6	7	8	9	10
0x00	addi a0, zero, 5	IF	ID	ΕX	MM	WB						
0x04	addi a1, a4, 5		IF	ID	ΕX	MM	WB					
0x08	addi a2, a5, 5			IF	ID	ΕX	MM	WB				
0x0C	addi a3, a6, 5				IF	ID	ΕX	MM	WB			

Structural Hazard: Memory Access

instruction sequence

Structural Hazards – Summary

- Conflict for use of a resource
- In RISC-V pipeline with a single memory unit
 - Load/store requires data access
 - Without separate memory units, instruction fetch would have to stall for that cycle
 - All other operations in pipeline would have to wait
- Pipelined datapaths require separate instruction/data memory units
 - Or separate instruction/data caches
- RISC ISAs (including RISC-V) designed to avoid structural hazards
 - e.g. at most one memory access/instruction

2. Data Hazards (1/2)

• Consider the following sequence of instructions:

2. Data Hazards (2/2)

Identifying data hazards:

- Where is data WRITTEN?
- Where is data **<u>READ</u>**?
- Does the WRITE happen AFTER the READ?

CMPT 295

Solution 1: Stalling

• Problem: Instruction depends on result from previous instruction

• Bubble:

effectively NOP: affected pipeline stages do "nothing" (add x0 x0 x0)
Data Hazard

Addr	Inst Cycle	0	1	2	3	4	5	6	7	8	9	10
0x00	add s0, s1, s2	IF	ID	ΕX	MM	WB						
0x04	sub s4, <mark>s0</mark> , s3		IF	ID	-	-	ΕX	MM	WB			
0x08	and s5, <mark>s0</mark> , s6			IF	-	-	ID	ΕX	MM	WB		
0x0C	or s7, <mark>s0</mark> , s8						IF	ID	EX	MM	WB	

Data Hazard Solution: Forwarding

 Forward result as soon as it is available, even though it's not stored in RegFile yet

Data Hazard with Forwarding

Addr	Inst Cycle	0	1	2	3	4	5	6	7	8	9	10
0x00	add s0, s1, s2	IF	ID	EX	MM	WB						
0x04	sub s4, <mark>s0</mark> , s3		IF	ID	ΕX	MM	WB					
0x08	and s5, <mark>s0</mark> , s6			IF	ID	ΕX	MM	WB				
0x0C	or s7, s0, s8				IF	ID	ΕX	MM	WB			

Data Hazard: Loads (1/2)

• Recall: Dataflow backwards in time are hazards

- Can't solve all cases with forwarding
 - Must *stall* instruction <u>dependent</u> on load (sub), then forward after the load is done (more hardware)

Data Hazard: Loads (2/2)

- Slot after a load is called a *load delay slot*
 - If that instruction uses the result of the load, then the hardware will stall for <u>one cycle</u>
 - Equivalent to inserting an explicit **nop** in the slot
 - except the latter uses more code space
 - Performance loss
- Idea: Let the compiler/assembler put an unrelated instruction in that slot \rightarrow no stall!

3. Control Hazards

- Branch (beq, bne, ...) determines flow of control
 - Fetching next instruction <u>depends on branch</u> <u>outcome</u>
 - Pipeline can't always fetch correct instruction
 - Result isn't known until end of execute
- Simple Solution: Stall or flush on every branch until we have the new PC value

– How long must we stall?

 How many instructions after <u>beq</u> are affected by the control hazard?

Branch Stall

• How many bubbles required for branch?

Time (clock cycles)

Taken Branch & ecall

Address	Ins-Cycle	0	1	2	3	4	5	6	7	8	9	10	11
0x00	add a2, a1, a0	IF	ID	EX	MM	WB							
0x04	bne a2, zero, 0x00000010		IF	ID	EX	MM	WB						
0x08	addi a3, zero, 1			IF	ID								
0x0c	jal zero, 0x00000014				IF								
0x10	addi a3, zero, 0					IF	ID	EX	MM	WB			
0x14	ecall						IF	ID	EX	-	-	MM	WB

Not-Taken Branch

Ins-Cycle	0	1	2	3	4	5	6	7	8	9	10	11	12
add a2, a1, a0	IF	ID	EX	MM	WB								
beq a2, zero, 0x00000010		IF	ID	EX	MM	WB							
addi a3, zero, 1			IF	ID	EX	MM	WB						
jal zero, 0x00000014				IF	ID	EX	MM	WB					
addi a3, zero, 0					IF	ID							
ecall						IF	IF	ID	EX	-	-	MM	WB
	add a2, a1, a0 beq a2, zero, 0x00000010 addi a3, zero, 1 jal zero, 0x00000014 addi a3, zero, 0	add a2, a1, a0IFbeq a2, zero, 0x00000010IFaddi a3, zero, 1Ijal zero, 0x00000014Iaddi a3, zero, 0I	add a2, a1, a0 IF ID beq a2, zero, 0x00000010 IF IF addi a3, zero, 1 IF IF jal zero, 0x00000014 IF IF addi a3, zero, 0 IF IF	add a2, a1, a0 IF ID EX beq a2, zero, 0x00000010 IF IF ID addi a3, zero, 1 IF IF IF jal zero, 0x00000014 IF IF IF	add a2, a1, a0 IF ID EX MM beq a2, zero, 0x0000010 IF ID EX ID addi a3, zero, 1 IF IF ID IF ID jal zero, 0x0000014 IF IF IF IF IF	add a2, a1, a0 IF ID EX MM WB beq a2, zero, 0x0000010 IF IF ID EX MM addi a3, zero, 1 IF IF IF ID EX ID jal zero, 0x0000014 IF IF IF IF IF ID	indication indicat	add a2, a1, a0IFIFIDEXMMWBIbeq a2, zero, 0x0000010IFIFIDEXMMWBIFaddi a3, zero, 1IFIFIFIFIDEXMMWBjal zero, 0x0000014IFIFIFIFIFIDIFMMWBaddi a3, zero, 0IFIFIFIFIFIDIFIDIFIF	indication indicat	And a constraintNoteNoNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNote<	And a constraintIndI	And a condensitieNoteNo	And a 2, a 1, a 0IFIFIDEXMMWBIC

3. Control Hazard: Branching

- RISC-V Solution: Branch Prediction guess outcome of a branch, fix afterwards if necessary
 - Must cancel (*flush*) all instructions in pipeline that depended on guess that was wrong
 - How many instructions do we end up flushing?

Clear Instructions after Branch if Taken

Two instructions are affected by an incorrect branch, just like we'd have to insert two NOP's/stalls in the pipeline to wait on the correct value!

Branch Prediction

