
CMPT 295Memory Allocation in C

Review

• Pointers and arrays are very similar
• Strings are just char pointers/arrays with a null

terminator at the end
• Pointer arithmetic moves the pointer by the

size of the thing it’s pointing to
• Pointers are the source of many C bugs!

1

CMPT 295Memory Allocation in C

Multiple Ways to Store Program Data
v Static global data

§ Fixed size at compile-time
§ Entire lifetime of the program

(loaded from executable)
§ Portion is read-only

(e.g. string literals)

v Stack-allocated data
§ Local/temporary variables

• Can be dynamically sized (in some versions of C)

§ Known lifetime (deallocated on return)

v Dynamic (heap) data
§ Size known only at runtime (i.e. based on user-input)
§ Lifetime known only at runtime (long-lived data structures)

2

int array[1024];

void foo(int n) {
int tmp;
int local_array[n];

int* dyn =
(int*)malloc(n*sizeof(int));

}

CMPT 295Memory Allocation in C

Agenda

• C Memory Layout
– Stack, Static Data, and Code

• Dynamic Memory Allocation
– Heap

• Common Memory Problems
• C Wrap-up: Linked List Example

3

CMPT 295Memory Allocation in C

C Memory Layout
• Program’s address space

contains 4 regions:
– Stack: local variables, grows

downward
– Heap: space requested via
malloc() and used with pointers;
resizes dynamically, grows upward

– Static Data: global and static
variables, does not grow or shrink

– Code: loaded when program
starts, does not change

4

code

static data
heap

stack~ FFFF
FFFFhex

~ 0hex

OS prevents accesses
between stack and heap

(via virtual memory)

CMPT 295Memory Allocation in C

Where Do the Variables Go?

• Declared outside a function:
Static Data

• Declared inside a function:
Stack

– main() is a function
– Freed when function returns

• Dynamically allocated:
Heap

– i.e. malloc (we will cover this shortly)

5

#include <stdio.h>

int varGlobal;

int main() {
int varLocal;
int *varDyn =
malloc(sizeof(int));

}

CMPT 295Memory Allocation in C

The Stack
• Each stack frame is a contiguous block of

memory holding the local variables of a
single procedure

• A stack frame includes:
– Location of caller function
– Function arguments
– Space for local variables
• Stack pointer (SP) tells where lowest

(current) stack frame is
• When procedure ends, stack pointer is

moved back (but data remains (garbage!));
frees memory for future stack frames;

6

frame

frame

frame

frame

SP

…

Function
call:
Function
returns:

SP

CMPT 295Memory Allocation in C

The Stack

• Last In, First Out (LIFO) data structure
int main() {
a(0);
return 1; }

void a(int m) {
b(1); }

void b(int n) {
c(2);
d(4); }

void c(int o) {
printf(“c”); }

void d(int p) {
printf(“d”); }

7

stack

Stack Pointer Stack
grows
down

Stack Pointer

Stack Pointer

Stack Pointer

CMPT 295Memory Allocation in C

Stack Misuse Example
int *getPtr() {

int y;
y = 3;
return &y;

};

int main () {
int *stackAddr,content;
stackAddr = getPtr();
content = *stackAddr;
printf("%d", content); /* 3 */
content = *stackAddr;
printf("%d", content); /* ? */

};
8

What’s BAD about
this function?

main

getPtr()
(y==3)

SP

main
SP

main

printf()
(y==?)

SP
printf

overwrites
stack frame

stackAddr

Never return pointers to
local variable from functions

Your compiler will warn you about
this

– don’t ignore such warnings!

CMPT 295Memory Allocation in C

• Program’s address space
contains 4 regions:
– Stack: local variables, grows

downward
– Heap: space requested via
malloc() and used with pointers;
resizes dynamically, grows upward

– Static Data: global and static
variables, does not grow or shrink

– Code: loaded when program
starts, does not change

C Memory Layout

9

code

static data
heap

stack~ FFFF
FFFFhex

~ 0hex
OS prevents accesses

between stack and heap
(via virtual memory)

CMPT 295Memory Allocation in C

Static Data
• Place for variables that persist
– Data not subject to comings and goings like

function calls
– Examples: String literals, global variables
– String literal example: char * str = “hi”;

– Size does not change, but sometimes data can
• Notably string literals cannot

10

Code
• Copy of your code goes here
– C code becomes data too!

• Does not change

void funcA() {int x; printf(“A”);}
void funcB() {
int y;
printf(“B”);
funcA();

}
void main() {char *s = “s”; funcB();}

&x < &y(A)
x and y are in adjacent frames(B)
&x < s(C)
y is in the 2nd frame from the top of the Stack(D)

11

Question: Which statement below is FALSE?
All statements assume each variable exists.

void funcA() {int x; printf(“A”);}
void funcB() {
int y;
printf(“B”);
funcA();

}
void main() {char *s = “s”; funcB();}

&x < &y(A)
x and y are in adjacent frames(B)
&x < s(C)
y is in the 2nd frame from the top of the Stack(D)

12

Question: Which statement below is FALSE?
All statements assume each variable exists.

This is a string literal, and
thus stored in STATIC DATA.

Note: We’re talking about
*s, not s, i.e. the
location where s points!

CMPT 295Memory Allocation in C

Agenda

• C Memory Layout
– Stack, Static Data, and Code

• Administrivia
• Dynamic Memory Allocation
– Heap

• Common Memory Problems
• C Wrap-up: Linked List Example

17

CMPT 295Memory Allocation in C

C Memory Layout
• Program’s address space

contains 4 regions:
– Stack: local variables, grows

downward
– Heap: space requested via
malloc() and used with pointers;
resizes dynamically, grows upward

– Static Data: global and static
variables, does not grow or shrink

– Code: loaded when program
starts, does not change

18

code

static data
heap

stack~ FFFF
FFFFhex

~ 0hex
OS prevents accesses

between stack and heap
(via virtual memory)

• Program’s address space
contains 4 regions:
– Stack: local variables, grows

downward
– Heap: space requested via
malloc() and used with pointers;
resizes dynamically, grows upward

– Static Data: global and static
variables, does not grow or shrink

– Code: loaded when program
starts, does not change

CMPT 295Memory Allocation in C

Dynamic Memory Allocation
• Want persisting memory (like static) even when

we don’t know size at compile time?
– e.g. input files, user input
– Stack won’t work because stack frames aren’t

persistent
• Dynamically allocated memory goes on the Heap

– more permanent than Stack
• Need as much space as possible without

interfering with Stack
– Start at opposite end and grow towards Stack

19

CMPT 295Memory Allocation in C

sizeof()

20

• If integer sizes are machine dependent, how
do we tell?

• Use sizeof() function
– Returns size in bytes of variable or data type

name
Examples: int x; sizeof(x); sizeof(int);

• Acts differently with arrays and structs, which
we will cover later
– Arrays: returns size of whole array
– Structs: returns size of one instance of struct

(sum of sizes of all struct variables + padding)

CMPT 295Memory Allocation in C

Allocating Memory in C
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ Returns a pointer to the beginning of the allocated block; NULL indicates

failed request
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Related functions:
§ void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block
§ void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)
§ void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
21

CMPT 295Memory Allocation in C

Using malloc()

• Almost always used for arrays or structs
• Good practice to use sizeof() and typecasting

int *p = (int *) malloc(n*sizeof(int));

– sizeof() makes code more portable

– malloc() returns void *; typecast will help you
catch coding errors when pointer types don’t match

• Can use array or pointer syntax to access

22

CMPT 295Memory Allocation in C

Releasing Memory
• Release memory on the Heap using free()
– Memory is limited, release when done

• free(p)
– Pass it pointer p to beginning of allocated block;

releases the whole block
– p must be the address originally returned by
m/c/realloc(), otherwise throws system
exception

– Don’t call free() on a block that has already
been released or on NULL

–Make sure you don’t lose the original address
• eg: p++ is a BAD IDEA; use a separate pointer

23

CMPT 295Memory Allocation in C

End-to-End Example

24

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
if (p == NULL) { /* check for allocation error */

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) /* initialize int array */

p[i] = i;
/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));
if (p == NULL) { /* check for allocation error */

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;
for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);
free(p); /* free p */

}

CMPT 295Memory Allocation in C

Dynamic Memory Example
• Need #include <stdlib.h>

typedef struct {
int x;
int y;

} point;

point *rect; /* opposite corners = rectangle
*/

...
if(!(rect=(point *) malloc(2*sizeof(point)))

)
{

printf(“\nOut of memory!\n”);
exit(1);

}
...
free(rect); 25

Check for
returned NULL

Do NOT change rect during this time!!!

1 #define N 3
2 int *makeArray(int n) {
3 int *ar;
4 ar = (int *) malloc(n * sizeof(int));
5 return ar;
6 }
7 void main() {
8 int i,*a = makeArray(N);
9 for(i=0; i<N; i++)
10 *(a+i) = i;
11 printf(“a[] =

{%i,%i,%i}”,a[0],a[1],a[2]);
12 free(a);
13 } 26

Question: Want output: a[] = {0,1,2} with no errors.
Which lines do we need to change?

4, 12(A)
5, 12(B)
4, 10(C)
5, 10(D)

CMPT 295Memory Allocation in C

Agenda

• C Memory Layout
– Stack, Static Data, and Code

• Administrivia
• Dynamic Memory Allocation
– Heap

• Common Memory Problems
• C Wrap-up: Linked List Example

27

1 #define N 3
2 int *makeArray(int n) {
3 int *ar;
4 ar = (int *) malloc(n);
5 return ar;
6 }
7 void main() {
8 int i,*a = makeArray(N);
9 for(i=0; i<N; i++)
10 *a++ = i;
11 printf(“a[] =

{%i,%i,%i}”,a[0],a[1],a[2]);
12 free(a);
13 } 28

Question: Want output: a[] = {0,1,2} with no errors.
Which lines do we need to change?

4, 12(A)
5, 12(B)
4, 10(C)
5, 10(D)

CMPT 295Memory Allocation in C

Know Your Memory Errors
• Segmentation Fault

“An error in which a running Unix program attempts
to access memory not allocated to it and terminates
with a segmentation violation error and usually a core
dump.”

• Bus Error
“A fatal failure in the execution of a machine language
instruction resulting from the processor detecting an
anomalous condition on its bus. Such conditions
include invalid address alignment (accessing a multi-
byte number at an odd address), accessing a physical
address that does not correspond to any device, or
some other device-specific hardware error.”

29

(Definitions taken from http://www.hyperdictionary.com)

• Segmentation Fault
“An error in which a running Unix program attempts to
access memory not allocated to it and terminates with
a segmentation violation error and usually a core
dump.”

• Bus Error
“A fatal failure in the execution of a machine language
instruction resulting from the processor detecting an
anomalous condition on its bus. Such conditions
include invalid address alignment (accessing a multi-
byte number at an odd address), accessing a physical
address that does not correspond to any device, or
some other device-specific hardware error.”

More common

Less common in 295

CMPT 295Memory Allocation in C

Common Memory Problems

1) Using uninitialized values
2) Using memory that you don’t own
– Using NULL or garbage data as a pointer
– De-allocated stack or heap variable
– Out of bounds reference to stack or heap array

3) Freeing invalid memory
4) Memory leaks

30

CMPT 295Memory Allocation in C

Using Uninitialized Values

• What is wrong with this code?
void foo(int *p) {
int j;
*p = j;

}

void bar() {
int i=10;
foo(&i);
printf("i = %d\n", i);

}

31

j is uninitialized (garbage),
copied into *p

Using i which now
contains garbage

CMPT 295Memory Allocation in C

Using Memory You Don’t Own (1)

• What is wrong with this code?
typedef struct node {

struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL)

head = head->next;
return head->val;

}
32

What if head
is NULL?

No warnings!
Just Seg Fault
that needs finding!

CMPT 295Memory Allocation in C

Using Memory You Don’t Own (2)

• What is wrong with this code?
char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;
char result[MAXSIZE];
int i=0, j=0;
for (; i<MAXSIZE-1 && j<strlen(s1); i++,j++)

result[i] = s1[j];
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++)

result[i] = s2[j];
result[++i] = '\0';
return result;

}

33

Local array appears
on Stack

Pointer to Stack (array)
no longer valid once
function returns

CMPT 295Memory Allocation in C

Using Memory You Don’t Own (3)

• What is wrong with this code?
typedef struct {

char *name;
int age;

} Profile;

Profile *person =(Profile *)malloc(sizeof(Profile));
char *name = getName();
person->name = malloc(sizeof(char)*strlen(name));
strcpy(person->name,name);
... // Do stuff (that isn’t buggy)
free(person);
free(person->name);

34

Accessing memory after you’ve freed it.
These statements should be switched.

Did not allocate space for the null terminator!
Want (strlen(name)+1) here.

CMPT 295Memory Allocation in C

Using Memory You Haven’t Allocated

• What is wrong with this code?

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(sizeof (char) * 10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

35

Write beyond array bounds

Read beyond array bounds

CMPT 295Memory Allocation in C

Using Memory You Haven’t Allocated

• What is wrong with this code?

char buffer[1024]; /* global */

int foo(char *str) {
strcpy(buffer,str);
...

}

36

What if more than
a kibi characters?

This is called BUFFER OVERRUN or BUFFER
OVERFLOW and is a security flaw!!!

CMPT 295Memory Allocation in C

Freeing Invalid Memory

• What is wrong with this code?
void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4*sizeof(int));
free(fum+1);
free(fum);
free(fum);

}
37

1) Free of a Stack variable

2) Free of middle of block

3) Free of already freed block

CMPT 295Memory Allocation in C

Memory Leaks

• What is wrong with this code?
int *pi;

void foo() {
pi = (int*)malloc(8*sizeof(int));
...
free(pi);

}

void main() {
pi = (int*)malloc(4*sizeof(int));
foo();

}
38

foo() leaks memory

Overrode old pointer!
No way to free those 4*sizeof(int)
bytes now

CMPT 295Memory Allocation in C

Memory Leaks
• Remember that Java has garbage collection but C doesn’t
• Memory Leak: when you allocate memory but lose the

pointer necessary to free it
• Rule of Thumb: More mallocs than frees probably

indicates a memory leak

• Potential memory leak: Changing pointer – do you still
have copy to use with free later?

plk = (int *)malloc(2*sizeof(int));
...
plk++;

39

Mem Leak! Typically happens through
incrementation or reassignment

CMPT 295Memory Allocation in C

Agenda

• C Memory Layout
– Stack, Static Data, and Code

• Administrivia
• Dynamic Memory Allocation
– Heap

• Common Memory Problems
• C Wrap-up: Linked List Example

40

CMPT 295Memory Allocation in C

Linked List Example

• We want to generate a linked list of strings
– This example uses structs, pointers, malloc(),

and free()

• Create a structure for nodes of the list:

struct Node {
char *value;
struct Node *next;

} node;

41

The link of
the linked list

CMPT 295Memory Allocation in C

Adding a Node to the List
• Want to write addNode to support functionality

as shown:
char *s1 = "start", *s2 = "middle",
*s3 = "end";
struct node *theList = NULL;
theList = addNode(s3, theList);
theList = addNode(s2, theList);
theList = addNode(s1, theList);

42

If you’re more familiar with Lisp/Scheme,
you could name this function cons instead.

Must be able to
handle a
NULL input

In what part of
memory are
these stored?

CMPT 295Memory Allocation in C

Adding a Node to the List

• Let’s examine the 3rd call ("start"):
node *addNode(char *s, node *list) {

node *new =(node *)
malloc(sizeof(NodeStruct));

new->value = (char *) malloc (strlen(s) +
1);

strcpy(new->value, s);
new->next = list;
return new;

}

43

s:list:new:

NULL

"start""middle""end"

?

?

???"start"

Don’t forget this for
the null terminator!

theList
:

CMPT 295Memory Allocation in C

Removing a Node from the List

• Delete/free the first node ("start"):
node *deleteNode(node *list) {

node *temp = list->next;
free(list->value);
free(list);
return temp;

}

44

list:

NULL

"middle" "end
"

"start"???temp:

???

What happens if you do
these in the wrong order?

theList:

CMPT 295Memory Allocation in C

Additional Functionality

• How might you implement the following?
– Append node to end of a list
– Delete/free an entire list
– Join two lists together
– Reorder a list alphabetically (sort)

45

CMPT 295Memory Allocation in C

Summary

• C Memory Layout
– Stack: local variables (grows & shrinks in

LIFO manner)

– Static Data: globals and string
literals

– Code: copy of machine code
– Heap: dynamic storage using
malloc and free
The source of most memory bugs!

• Common Memory Problems
• Last C Lecture!

46

code

static data
heap

stack~ FFFF
FFFFhex

~ 0hex
OS prevents accesses

between stack and heap
(via virtual memory)

