Memory Allocation in C

Pointers and arrays are very similar

Strings are just char pointers/arrays with a null
terminator at the end

Pointer arithmetic moves the pointer by the
size of the thing it’s pointing to
Pointers are the source of many C bugs!

CMPT 295

Memory Allocation in C CMPT 295

Multiple Ways to Store Program Data

+ Static global data
" Fixed size at compile-time

= Entire lifetime of the program | void foo(int n) {

int tmp;
(loaded from executable) s loial T

int array[1024];

= Portion is read-only

(e.g. string literals) int* dyn =
(int*)malloc (n*sizeof (int)) ;

« Stack-allocated data }

" Local/temporary variables
« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<+ Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)
= Lifetime known only at runtime (long-lived data structures)

Memory Allocation in C

C Memory Layout

— Stack, Static Data, and Code
Dynamic Memory Allocation

— Heap

Common Memory Problems

C Wrap-up: Linked List Example

CMPT 295

Memory Allocation in C CMPT 295

 Program’s address space ~ FFFF

_ _ FrrFo | Stack |

contains 4 regions: 1

— Stack: local variables, grows
downward

— Heap: space requested via T
malloc () and used with pointers;, |~ — ——— —
resizes dynamically, grows upward heap

— Staicic Data: global and static | static data
variables, does not grow or shrink

— Code: loaded when program code
starts, does not change ™ Ohex

OS prevents accesses
between stack and heap
(via virtual memory)

Memory Allocation in C CMPT 295

Where Do the Variables Go?

e Declared outside a function: —
Static Data

#include <stdio.h>

int varGlobal;

e Declared inside a function:

int main () {

Stack »>int varLocal;

»int *varDyn =
>smalloc(sizeof (int)) ;

— main () is a function

— Freed when function returns }

* Dynamically allocated:
Heap

— i.e. malloc (we will cover this shortly)

Memory Allocation in C

* Each stack frame is a contiguous block of
memory holding the local variables of a
single procedure

e A stack frame includes:
— Location of caller function
— Function arguments
— Space for local variables

e Stack pointer (SP) tells where lowest
(current) stack frame is

 When procedure ends, stack pointer is
moved back (but data remains (garbage!));
frees memory for future stack frames;

SP -

CMPT 295

Function
catlirns:

frame

Memory Allocation in C CMPT 295

. stack
e Last In, First Out (LIFO) data structure
Int main
. a(0) ? 01 Stack Pointer Z:?)\C/\I:s
return 1; } down
—> Stack Pointer
_,void b(int n) {
c(2); Stack Pointer
d4); }
—> Stack Pointer

volid d(int p) {
printf (“d”); }

Memory Allocation in C CMPT 295

Stack Misuse Example

int *getPtr () { Never return pointers to
int y; - local variable from functions
y = 37
return &y; Your compiler will warn you about
I this
int main () | — don’t ignore such warningsl;
int *stackAddr, content; overwrites
—» stackAddr = getPtr(); stack frame

—» content = *stackAddr;

—» printf ("%d", content); /* 3 */
content = *stackAddr;
printf ("%$d", content); /* 2 */

by

Memory Allocation in C CMPT 295

 Program’s address space ~ FFFF
. : FFFF,, stack
contains 4 regions: T _1_ - T
— Stack: local variables, grows
downward
— Heap: space requested via T
malloc () and used with pointers; p— — —l— — —
resizes dynamically, grows upward heap
— Sta.tlc Data: global and static . static data
variables, does not grow or shrink
— Code: loaded when program code

starts, does not change ™ Ohex
OS prevents accesses

between stack and heap
(via virtual memory)

Memory Allocation in C CMPT 295

* Place for variables that persist

— Data not subject to comings and goings like
function calls

— Examples: String literals, global variables

— String literal example: char * str = “hi”;

— Size does not change, but sometimes data can
* Notably string literals cannot

* Copy of your code goes here
— C code becomes data too!

* Does not change

Question: Which statement below is FALSE?
All statements assume each variable exists.

volid funcA() {int x; printf (“A”);}
volid funcB() {

int y;

printf (“B”) ;

funcA() ;
}
vold main () {char *s = “s”; funcB();}
(A)

(B) x and y are in adjacent frames
| (C) |
(D) y is in the 2" frame from the top of the Stack

11

Question: Which statement below is FALSE?
All statements assume each variable exists.

volid funcA() {int x; printf (“A”);}
volid funcB() {

int y;

printf (“B”) ;
 fonca0; PRt
vold main () {char *s = “s”; funcB();}
(A) §x < &y Note: We're talking about

*s, not s, i.e. the

(B) x and y are in adjacent frames location where s points!

1(C) |
(D) y is in the 2" frame from the top of the Stack

12

Memory Allocation in C CMPT 295

* Dynamic Memory Allocation

— Heap
e Common Memory Problems
 C Wrap-up: Linked List Example

Memory Allocation in C CMPT 295

 Program’s address space ~ FFFF

. . FFFF,,, stack
contains 4 regions: T _1_ - T
— Stack: local variables, grows
downward
— Heap: space requested wiia T
malloc () and used with poines; — — —'— — —
resizes dynamiiczally, gneomss e cd hea P
— Stajuc Data: global and static | static data
variables, does not grow or shrink
— Code: loaded when program code
starts, does not change ™ Ohex

OS prevents accesses
between stack and heap
(via virtual memory)

Memory Allocation in C CMPT 295

 Want persisting memory (like static) even when
we don’t know size at compile time?
— e.g. input files, user input
— Stack won’t work because stack frames aren’t
persistent

 Dynamically allocated memory goes on the Heap
— more permanent than Stack

* Need as much space as possible without
interfering with Stack

— Start at opposite end and grow towards Stack

Memory Allocation in C

* |f integer sizes are machine dependent, how
do we tell?

e Use sizeof () function

— Returns size in bytes of variable or data type
name
Examples: int x; sizeof (x); sizeof (int);
* Acts differently with arrays and structs, which
we will cover later
— Arrays: returns size of whole array

— Structs: returns size of one instance of struct
(sum of sizes of all struct variables + padding)

CMPT 295

Memory Allocation in C CMPT 295

» Needto #include <stdlib.h>

» vold* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

« Related functions:

" void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block

" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t increment)

Used internally by allocators to grow or shrink the heap .

Memory Allocation in C CMPT 295

* Almost always used for arrays or structs
* Good practice to use sizeof () and typecasting

int *p = (int *) malloc(n*sizeof (int));
— sizeof () makes code more portable

—malloc () returns void *; typecast will help you
catch coding errors when pointer types don’t match

* Can use array or pointer syntax to access

Memory Allocation in C CMPT 295

* Release memory on the Heap using free ()
— Memory is limited, release when done
* free(p)

— Pass it pointer p to beginning of allocated block;
releases the whole block

— p must be the address originally returned by
m/c/realloc (), otherwise throws system
exception

— Don’t call free () on a block that has already
been released or on NULL

— Make sure you don’t lose the original address
* eg: p++isa BAD IDEA; use a separate pointer

End-to-End Example

void foo(int n, int m) {

int 1, *p;

p = (int*) malloc (n*sizeof (int)); /* allocate block of nints */

if (p == NULL) { /* check for allocation error */
perror ("malloc") ;
exit (0) ;

}

for (i=0; i<n; 1i++) / * initialize int array */
pli] = 1;

/* add space for m ints to end of p block */

p = (int*) realloc(p, (ntm) *sizeof (int)) ;

if (p == NULL) { /* check for allocation error */
perror ("realloc");
exit (0) ;

}

for (i=n; 1 < n+m; i++) /* initialize new spaces */
pli] = 1i;

for (1i=0; i<n+m; 1i++) /* print new array */
printf ("%d\n", pl[i]);

free (p) ; /* freep */

}

24

Memory Allocation in C CMPT 295

Dynamic Memory Example
* Need #include <stdlib.h>

typedef struct {

int x;
int y;
} point;
point *rect; /* opposite corners = rectangle
*/
1f(!(rect=(poilnt *) malloc(2*sizeof (point)))

Check for

printf ("\nOut of memory!\n”); returned NULL

1) s
eXlBéh&ﬁ%ﬂmngerectduﬁngthstwneH!

free(rect); 25

Question: Want output: a[] ={0,1,2} with no errors.
Which lines do we need to change?

1 4#define N 3

2 1nt *makeArray (int n) {

3 int *ar;

4 ar = (1nt *) malloc(n * sizeof(int));
5 return ar;

o '}

7 void main () { (A)

8 int i,*a = makeArray (N); (B) 5,12
9 for (i=0; 1i<N; i++) [(C)

10 *(a+1) = 1; (D)

11 printf (Yal] =

{%1,%1,%1}1",al[0],alll,al2]);
12 free (a);
13 }

Memory Allocation in C CMPT 295

e Common Memory Problems
 C Wrap-up: Linked List Example

Question: Want output: a[] ={0,1,2} with no errors.

Which lines do we need to change?

#define N 3

int *makeArray(int n) {
int *ar;
ar = (i1nt *) malloc(n);
return ar;

}

void main () { (A)
int i, *a = makeArray (N); (B) 5,12

for (i=0; i<N; i++) [(C)

= O O J o U1 » W N K

0 *a++ = 1i; (D)

1 printf (Yal] =
{%1,%1,%1}"”,al(0],all]l,al2l]);

12 free(a);

13 }

28

Memory Allocation in C CMPT 295

(Definitions taken from http://www.hyperdictionary.com)

* Segmentation Fault —— More common

“An error in which a rummning Unix program attiEmpits to
o @rressamamony holl atlkoeat éd toabd ndrramaitestedth
w sg ansagiateoriatiola trool roor enmdrusnid lisaadbra core
dump.”

* Bus Error «—— Less common in 295

“A fatzll failure im the exeautiom aff & medinime |Engusge
instruction resulting from the processor detecting an
anomalous condition on its bus. Such conditions
include invalid address alignment (accessing a multi-
byte number at an odd address), accessing a physical
address that does not correspond to any device, or

12 24

some other device-specific hardware error..

Memory Allocation in C CMPT 295

1) Using uninitialized values

2) Using memory that you don’t own
— Using NULL or garbage data as a pointer

— De-allocated stack or heap variable
— Out of bounds reference to stack or heap array

3) Freeing invalid memory
4) Memory leaks

Memory Allocation in C CMPT 295

Using Uninitialized Values

 What is wrong with this code?

void foo(int *p) {

int 7j;
*P = J; ——— 5 is uninitialized (garbage),

} copied into *p

void bar () Using i which now
int 1=10; contains garbage

foo (&1) ; «///
printf ("i = %d\n", 1i);
}

31

Memory Allocation in C CMPT 295

Using Memory You Don’t Own (1)

 What is wrong with this code?

typedef struct node {
§truct node* next; What if head
int val; is NULL?

} Node;

int findLastNodeVatue (Node* head) {

while (head->next != NULL)
head = head->next; No warnings!
return head->val; Just Seg Fault

} that needs finding!

32

Memory Allocation in C CMPT 295

Using Memory You Don’t Own (2)

 What is wrong with this code?

char *append(const char* sl, const char *s2) {
const int MAXSIZE = 128;
char result[MAXSIZE]; «— Local array appears
int 1=0, 3J=0; on Stack
for (; 1<MAXSIZE-1 && jJ<strlen(sl); 1++,]++)
result[i] = sl1[3];
for (3J=0; 1<MAXSIZE-1 && j<strlen(s2),; 1i++,]j++)
result[i] = s2[7];
result[++1i] = "\0';
return result;
} < Pointer to Stack (array)
no longer valid once
function returns

33

Using Memory You Don’t Own (3)

 What is wrong with this code?

typedef struct {

char *name;
Did not allocate space for the null terminator!

int age; Want (strlen (name)+1) here.
} Profile;
Profile *person =(Profile *)malloc (sigeof (Profile));
char *name = getName () ;
person->name = malloc(sizeof (char)*strlen (name));

strcpy (person—->name, name) ;
// Do stuff (that isn’t buggy)

free(person); Accessing memory after you've freed it.
free (person->name) ; These statements should be switched.

34

Memory Allocation in C CMPT 295

Using Memory You Haven’t Allocated
 What is wrong with this code?

vold StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(sizeof (char) * 10);
strncpy (str, name, 10);

str[10] = "\0';) Write beyond array bounds
printf ("$s\n", str); .

Read beyond array bounds

35

Memory Allocation in C CMPT 295

Using Memory You Haven’t Allocated

 What is wrong with this code?

char buffer[1024]; /* global */

int foo(char *str) {
strcpy (buffer, str) ;

What if more than
} a kibi characters?

This is called BUFFER OVERRUN or BUFFER
OVERFLOW and is a security flaw!!!

36

Memory Allocation in C CMPT 295

Freeing Invalid Memory

 What is wrong with this code?

vold FreeMemX () {
int fnh = 0;
free (&fnh),; <———1) Free of a Stack variable

J

vold FreeMemY () {
int *fum = malloc(4*sizeof(1int));
free (fum+1) ; 2) Free of middle of block
free (fum) ;
free (fum) ;— 3) Free of already freed block

37

Memory Allocation in C CMPT 295

Memory Leaks

 What is wrong with this code?
int *pi;

vold foo () {

pl = (int*)malloc (8*sizeof (1nt));
c .. Overrode old pointer!
free(p1); No way to free those 4*sizeof(int)

} bytes now

vold main () {
pl = (int*)malloc(4*sizeof (1nt));
foo(); - foo () leaks memory

38

Memory Leaks

* Remember that Java has garbage collection but C doesn’t
 Memory Leak: when you allocate memory but lose the

pointer necessary to free it
* Rule of Thumb: Moremallocsthan frees probably

indicates a memory leak
* Potential memory leak: Changing pointer — do you still
have copy to use with free later?

plk = (int *)malloc(2*sizeof (1nt));

plk++; Mem Leak! Typically happens through
incrementation or reassighment

39

Memory Allocation in C CMPT 295

* C Wrap-up: Linked List Example

Memory Allocation in C CMPT 295

* We want to generate a linked list of strings

— This example uses structs, pointers, malloc (),
and free ()

 Create a structure for nodes of the list:

struct Node {
char *value;
struct Node *next;
} node;

T~~~ The link of
the linked list

Memory Allocation in C CMPT 295

Adding a Node to the List

 Want to write addNode to support functionabitysr of
h) memory are
ds sSnown. these stored?

char *sl = "start", *s2 = "middle",
* — " ",
s3 end"; Must be able to

struct node *thelist = NULL;////hMMEa
theList = addNode (s3, theList);
thel.ist = addNode(s2, thelist);
thel.ist = addNode(sl, thelList);

If you’re more familiar with Lisp/Scheme,
you could name this function cons instead.

42

Memory Allocation in C CMPT 295

Adding a Node to the List

e Let’s examine the 3" call ("start"):

node *addNode (char *s, node *1list) {

= node *new = (node *)

;milloc(sizeof(NodeStruct));
> new->value = (char *) malloc (strlen(s)/+
ey () Don’t%orgetthisfg)r)/v

_1‘; the null terminator!
strcpy (new->value, s);

= ,
new—->next = list;
retutscaew? "middle" "end" "start"
} A A A A

thenEWIE__, > list: N / S:

? e NULL

43

Memory Allocation in C CMPT 295

Removing a Node from the List

* Delete/free the first node ("start"):

node *deleteNode (node *1list) {

= node *temp = list->nesdt; .

. What happens if you do
— free(list->value); —)

. these in the wrong order?
—» free(list); _
—p return temp;

} thelList:
temp:| _ "middle" "end

B |
e

list:

NULL

44

Memory Allocation in C CMPT 295

* How might you implement the following?
— Append node to end of a list
— Delete/free an entire list
— Join two lists together
— Reorder a list alphabetically (sort)

Memory Allocation in C CMPT 295

~ FFFF
FFFF,, stack

* C Memory Layout

— Stack: local variables (grows & shrinks in

LIFO manner) T
— Static Data: globals and string heap

literals)

. static data
— Code: copy of machine code
— Heap: dynamic storage using code
~0hex
malloc and free OS prevents accesses

The source of most memory bugs! between stack and heap

(via virtual memory)

e Common Memory Problems
* Last C Lecture!

