Structs, Multi-dimensional arrays & Alignment

Structs & Alignment

Acknowledgments: These slides have been modified by Arrvindh Shriraman, Justin Tsia

Structs, Multi-dimensional arrays & Alignment

Data Structures in Assembly

< Arrays
" One-dimensional
= Multi-dimensional (nested)
= Multi-level

+ Structs

= Alignment

Structs, Multi-dimensional arrays & Alignment

Array Allocation

+ Basic Principle

=T A[N];

-

array of data type T and length N
= Contiguously allocated region of N*sizeof (T) bytes

= |dentifier A returns address of array (type T*)

char msg[12];

int val[5];

double a[3];

char* p[3];
(orchar *p[3];)

xX+12

X+4 X+8 x+12 X+ 16 x+20
| |
x+8 x+16 X+ 24
X+8 x+ 16 X+ 24

Array Access

+ Basic Principle

=T A[N];

-

Structs, Multi-dimensional arrays & Alignment

= |dentifier A returns address of array (type T*)

array of data type T and length N

int x[5]; } 3 7 1 9
a at4 a+8 atl?2 atlo a+20
+» Reference Type Value
x[4] int 5
X int¥* a
x+1 int* a + 4
&x[2] int* a + 8
x[5] int ?? (whatever’s in memory at addr x+20)
*(x+1) int 7
X+1 int* a + 4*i

Structs, Multi-dimensional arrays & Alignment

Array Example

typedef int zip dig[5];

zip dig cmu = { 1, 5, 2, 1,
zip dig sf = {9, 8, 1, 9,
}:

zip dig ucb { 9, 4, 7, 2,

0 };

<Z=—

typedef: Declaration “zip dig sfu” equivalentto “int sful[5]

initialization

n

Structs, Multi-dimensional arrays & Alignment

C Details: Arrays and Pointers

« Arrays are (almost) identical to pointers

" char *stringandchar string]] are nearly
identical declarations

= Differ in subtle ways: initialization, sizeof (), etc.

+ An array name looks like a pointer to the first (Oth)
element

" ar[0] sameas *ar, ar[2] sameas * (ar+2)

+ An array name is read-only (no assignment)
" Cannotuse "ar = <anything>"

Structs, Multi-dimensional arrays & Alignment

C Details: Arrays and Functions

+ Declared arrays only allocated while the scope is
valid:

char* foo () {
char string[32]; . BAD l
return string;

}

« An array is passed to a function as a pointer:

= Array size gets lost!

s~ Really int *ar
int foo(int ar[], unsigned int size) {

ar[size-1]
} Must explicitly
pass the size!

Structs, Multi-dimensional arrays & Alignment

typedef int zip dig[5];

Referencing Examples

zip dig cmu; } 1 | 5 | 2 | 1 | 3

16 20 24 28 32 36
zip dig sfu; } 9 | 8 | 1 [9 | 5

36 40 A4 A8 52 56
zip dig ucb; } 9 | a4 [7 [2 T o

56 60 64 68 72 76
Reference Address Value Guaranteed?
sful[3] 36 + 4* 3 = 48 9 Yes
sful6] 36 + 4* 6 = 60 4 No
sful-1] 36 + 4%-1 = 32 3 No
cmul[l5] 16 + 4*15 = 76 P No

No bounds checking
Example arrays happened to be allocated in successive 20 byte blocks
= Not guaranteed to happen in general

Structs, Multi-dimensional arrays & Alignment

typedef int zip dig[5];

Nested Array Example

[zip_dig sea[4]]= Remember, T A[N] is
tt9, 8 1, 9, 51}, an array with elements
t 9, 8 1, 0, 51, of type T, with length N
{ 9 8, 1, 0, 3 1},
{9, 8, 1, 1, 5 }};

: , ,
same as: What is the layout in memory?

int seal[d4][5];

10

Structs, Multi-dimensional arrays & Alignment

typedef int zip dig[5];

Nested Array Example

zip dig seal4] = Remember, T A[N] is
tt9, 8 1, 9, 51}, an array with elements
{9 8 1, 0, 51}, of type T, with length N
{9, 8, 1, 0, 3 },
19, 8, 1, 1, 5 ¢ sea[3][2];
Row 0 Row 1 Row 2 Rox&/ 3

9(8(1(9(5]9(8(1({0(5]|9(8(1({0(3}|9(8(1(1(5

76 96 116 136 156

+» “Row-major” ordering of all elements
+» Elements in the same row are contiguous
+ Guaranteed (in C)

11

Two-Dimensional (Nested) Arrays

«» Declaration: T A[R] [C];
= 2D array of data type T

Structs, Multi-dimensional arrays & Alignment

" R rows, C columns

= Each element requires

sizeof (T)

+» Array size?

bytes

A[O][O]

A[R-1][0] o

A[O] [C-1]

s A[R-1][C-1]

12

Structs, Multi-dimensional arrays & Alignment

Two-Dimensional (Nested) Arrays

+» Declaration: T A[R] [C]; 2107 (0]
= 2D array of data type T)
" R rows, C columns .
= Each element requires .
sizeof (T) bytes A[R-1]10]

+» Array size:
"= R*C*sizeof (T) bytes

+» Arrangement: row-major ordering
int A[R][C];

4*R*C bytes

13

Multi-Leve

Structs, Multi-dimensional arrays & Alignment

| Array Example

Multi-Level Array Declaration(s):

int cmul(5] = { 1, 5, 2, 1, 3 };

int sful[5] = {
int ucb[5] = {

9/ 8/ 1/ 915};
9, 4, 7, 2, 0 };

int* univ[3] =

{sfu, cmu, ucb};

2D Array Declaration:

Is a multi-level array the
same thing as a 2D array?

{ 9/ 8’ 1/ 9/

{ 1/ 5’ 2/ 1/

{ 9/ 4’ 7/ 2/
'

zip dig univ2D]|

31 = |
S}y
N
0 }

One array declaration = one contiguous block of memory

14

Structs, Multi-dimensional arrays & Alignment

Array Element Accesses

Nested array

Multi-level array

int get sea digit
(int index, int digit)
{

return sea[index] [digit];

}

int get univ digit
(int index, int digit)
{
return univ[index] [digit];

}

76 96 116 136 156

cmu

univ
16 20 24 28 32
160 —P 36‘>< sfu

~_ v 9 8 1 9 5
36 40 44 48 52

168 —» 16¢

176 —» 60@_ ucb

~____v|] 9 4 7 2 0

60 64 68 72 76

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit]

Mem[Mem[univ+8*index]+4*digit]

15

Structs, Multi-dimensional arrays & Alignment

Multi-Level Referencing Examples

cmu
} 1 5 2 1 3
univ
16 20 24 28 32 36
160 —— 36 sfu
9 8 1 9 5
168 —
e ach 36 40 44 48 52 56
4 7 2 0
64 68 72 76 80
Reference Address Value Guaranteed?
univ (2] [3]
univ[1] [5]
univi[2] [-2
univ[3] [—

univ[1l] [12]

" C code does not do any bounds checking

" Location of each lower-level array in memory is not guaranteed

16

Structs, Multi-dimensional arrays & Alignment

Summary

+» Contiguous allocations of memory

%+ No bounds checking (and no default initialization)
+» Can usually be treated like a pointer to first element
» int a[4][5]; — arrayofarrays
= all levels in one contiguous block of memory
» int* b[4]; — arrayof pointers (to arrays)
= First level in one contiguous block of memory

= Each element in the first level points to another “sub” array
= Parts anywhere in memory

17

Structs, Multi-dimensional arrays & Alignment

Data Structures in Assembly

< Arrays
® One-dimensional
" Multi-dimensional (nested)

" Multi-level

«» Structs
= Alignment

18

Structs, Multi-dimensional arrays & Alignment

Structs in C

+ Way of defining compound data types
« A structured group of variables, possibly including other structs

typedef struct {

int lengthInSeconds; typedef struct {
int yearRecorded; int lengthInSeconds;
int yearRecorded;
} Song;
} Song;
Song songl;
song1
songl.lengthlnSeconds = 213; —®| lengthInSeconds: 213
songl.yearRecorded = 1994; yearRecorded: 1994
Song song2; song2
—| lengthInSeconds: 248
songZ.lengthInSeconds = 248; yearRecorded: 1988

songZ.yearRecorded = 1988;

19

Structs, Multi-dimensional arrays & Alignment

Accessing Structure Members

% @Given a struct instance, access

member using the . operator: |struct rec {

int af[4];
struct rec rl; long i;
rl.i1 = val; struct rec *next;

b g

+» @iven a pointer to a struct:

struct rec *r;

r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).i = val;
- Use —> operator for short: r->1 = val;

+» In assembly: register holds address of the first byte

= Access members with offsets

20

Structs, Multi-dimensional arrays & Alignment

Structure Representation

struct rec { r

int af[4];

long 1i;

struct rec *next; a 1 next
b 0 16 24 32
struct rec *r;

« Characteristics

= Contiguously-allocated region of memory
= Refer to members within structure by names

= Members may be of different types

21

Structs, Multi-dimensional arrays & Alignment

Structure Representation

struct rec {
int a[4];
long 1i;
struct rec *next;

b g

struct rec *r;

r

next

16

24

« Structure represented as block of memory

= Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

32

+» Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the
structures in the source code

22

Structs, Multi-dimensional arrays & Alignment

Accessing a Structure Member

struct rec { T r—>1
int af[4];
long 1i; M v
struct rec *next; a i next
s 0 16 24 32
struct rec *r;)
long get 1 (struct rec *r)

{

return r—>i;

+» Compiler knows the

offset of each member |}
within a struct

"= Compute as add a0, al, 16 # Coming up in Week 3
* (r+offset) ret

- Referring to absolute
offset, so no pointer
arithmetic

23

Structs, Multi-dimensional arrays & Alignment

Generating Pointer to Array Element

struct rec {
int af4];
long 1i;
struct rec *next;

b g

struct rec *r;

+» @Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*1ndex

T r+4*index
a i next
0 16 24 32

int* find addr of array elem
(struct rec *r, long index)
{

return &r—>a[index];

} N\

p]
& (r->a[index])

24

Structs, Multi-dimensional arrays & Alignment

Struct Definitions

« Structure definition:

struct name {

= Does NOT declare a variable /* fields */
" Variable type is “struct name” b7 <
-~ pointer —— Easy to forget
& .
struct name namel, *pn, name ar[3]; semicolon!
— =
™~ array

+ Joint struct definition and typedef
"= Don’t need to give struct a name in this case

struct nm {
/* fields */
} 7
typedef struct nm name;
name nl;

—)

typedef struct {
/* fields */

} name;

name nl;

Structs, Multi-dimensional arrays & Alignment

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |«— Size= bytes | struct rec {
int ar[4]; int a[4];
long d; long 1i;
} s struct rec@ next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

26

Structs, Multi-dimensional arrays & Alignment

Nested Struct

struct foo {
long a;
long b;
struct bar my bar;

¥

struct bar {
long x;
long vy;
I

struct foo *f;

&f->my bar

&f->my bar.y

A 4

0 8 16 24 32

27

Structs, Multi-dimensional arrays & Alignment

Nested Struct

struct foo {
long a;
long b;
struct foo my foo;

b7

a b PAPRPRPRPRPRP PR

28

Structs, Multi-dimensional arrays & Alignment

Review: Memory Alighment

+» Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

short
float
double,

No restrictions

Lowest bit must be zero: ...0,
Lowest 2 bits zero: ...00,
Lowest 3 bits zero: ...000,

29

Structs, Multi-dimensional arrays & Alignment

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
- Virtual memory trickier when value spans 2 pages (more on this later)

30

Structs, Multi-dimensional arrays & Alignment

Structures & Alignment

+» Unaligned Data

struct S1 {

char c;
c|l i[0] i[1] v int i[2];
p ptl p+5 p+9 p+17 SETELE vy
b *ps
+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
c 1[0] i[1] M
p+0 §+4\ p+8 p+16 p+24
MuMphoﬁQ Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

31

Structs, Multi-dimensional arrays & Alignment

Satisfying Alignment with Structures (1)

/
0‘0

0

R/
0‘0

Within structure:
= Must satisfy each element’s alignment requirement

Overall structure placement

= Each structure has alignment requirement Ky«
- Kax = Largest alignment of any element

- Counts array elements individually as elements
Inner structs are aligned to their largest alignment

Example:
Kax = 8, due to double element

struct S1 {
char c;
int i[2];
double v;
} *ps

C 1[0] 1[1]

p+0 P4 p+8 p+16

a a

Multiple of«l{ Multiple of 8

Multiple of 8 internal fragmentation

pt24

32

Structs, Multi-dimensional arrays & Alignment

Satisfying Alignment with Structures (2)

« Can find offset of individual fields stzuck'ilsZ {
i ouble v;
using offsetof () ot 1101,
" Needto #include <stddef.h> char c;
= Example: offsetof (struct S2,c) returns16 |’ *P’

+ For largest alignment requirement Ky ;x,
overall structure size must be multiple of K.«
= Compiler will add padding at end of

structure to meet overall structure
alignment requirement

v 1[0] 1[1] C
p+0 p+8 pt+16 pt24

a

Multiple of 8 external fragmentation Multiple of 8

Structs, Multi-dimensional arrays & Alignment

Arrays of Structures

- . struct S2 {
» Overall structure length multiple of K,,, 4 Souble
+ Satisfy alignment requirement e el
. cnar c,;
for every element in array } a[10];
al0] all] al2] ¢ *
a+0 a+24 a+48 at/2
\Y% 1[0] 1[1] C
a+48

a+24 a+32 a+40 /

external fragmentation

Structs, Multi-dimensional arrays & Alignment

Accessing Array Elements

+» Compute start of array element as: 12*index |struct S3 {
short i;
" sizeof (53) = 12, including alignment padding Flard v
+ Element 7j is at offset 8 within structure short j;
: } all0];
+~ Assembler gives offset a+8
al0] ° o o a[index] o o o
a+0 a+l2 atl2*index
1 \Y,]
at+l2*index 1
atl2*index+8

short get j(int index)
{

return a[index].]j;

Structs, Multi-dimensional arrays & Alignment

Alignment of Structs

+» Compiler will do the following:

" Maintains declared ordering of fields in struct
= Each field must be aligned within the struct
(may insert padding)

- offsetof can be used to get actual field offset
= Qverall struct must be aligned according to largest field

= Total struct size must be multiple of its alighment
(may insert padding)

- sizeof should be used to get true size of structs

36

Structs, Multi-dimensional arrays & Alignment

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int 1i; ‘ char c;
char d; char d;
| oF b} *ps
C 1 d 1 c| d

37

Structs, Multi-dimensional arrays & Alignment

Peer Instruction Question

Minimize the size of the struct by re-ordering the vars

struct old {
int i;

short s[3];
char *c;

float f;
'

=)

struct new {
int i;

b g

» What are the old and new sizes of the struct?

sizeof(struct old) =

sizeof(struct new) =

38

Structs, Multi-dimensional arrays & Alignment

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes in order declared
= Padin middle and at end to satisfy alignment

39

