
CS295Structs, Multi-dimensional arrays & Alignment

Structs & Alignment

Acknowledgments: These slides have been modified by Arrvindh Shriraman, Justin Tsia

CS295Structs, Multi-dimensional arrays & Alignment

Data Structures in Assembly

v Arrays
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

2

CS295Structs, Multi-dimensional arrays & Alignment

Array Allocation

v Basic Principle
§ T A[N]; → array of data type T and length N
§ Contiguously allocated region of N*sizeof(T) bytes
§ Identifier A returns address of array (type T*)

3

char msg[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16
char* p[3];

(or char *p[3];)

x x + 8 x + 16 x + 24

CS295Structs, Multi-dimensional arrays & Alignment

Array Access

v Basic Principle
§ T A[N]; → array of data type T and length N
§ Identifier A returns address of array (type T*)

v Reference Type Value

4

int x[5]; 3 7 1 9 5

a a+4 a+8 a+12 a+16 a+20

x[4] int 5

x int* a

x+1 int* a + 4

&x[2] int* a + 8

x[5] int ?? (whatever’s in memory at addr x+20)

*(x+1) int 7

x+i int* a + 4*i

CS295Structs, Multi-dimensional arrays & Alignment

Array Example

5

typedef int zip_dig[5];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig sfu = { 9, 8, 1, 9, 5
};
zip_dig ucb = { 9, 4, 7, 2, 0 };

initialization

v typedef: Declaration “zip_dig sfu” equivalent to “int sfu[5]”

CS295Structs, Multi-dimensional arrays & Alignment

C Details: Arrays and Pointers

v Arrays are (almost) identical to pointers
§ char *string and char string[] are nearly

identical declarations
§ Differ in subtle ways: initialization, sizeof(), etc.

v An array name looks like a pointer to the first (0th)
element
§ ar[0] same as *ar; ar[2] same as *(ar+2)

v An array name is read-only (no assignment)
§ Cannot use "ar = <anything>"

7

CS295Structs, Multi-dimensional arrays & Alignment

C Details: Arrays and Functions

v Declared arrays only allocated while the scope is
valid:

char* foo() {
char string[32]; ...;
return string;

}

v An array is passed to a function as a pointer:
§ Array size gets lost!

int foo(int ar[], unsigned int size) {
... ar[size-1] ...

}

8

BAD!

Must explicitly
pass the size!

Really int *ar

CS295Structs, Multi-dimensional arrays & Alignment

Referencing Examples

9

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

Reference Address Value Guaranteed?
sfu[3]

sfu[6]

sfu[-1]

cmu[15]

36 + 4* 3 = 48 9 Yes
36 + 4* 6 = 60 4 No
36 + 4*-1 = 32 3 No
16 + 4*15 = 76 ?? No

zip_dig cmu;

zip_dig sfu;

zip_dig ucb;

typedef int zip_dig[5];

v No bounds checking
v Example arrays happened to be allocated in successive 20 byte blocks

§ Not guaranteed to happen in general

CS295Structs, Multi-dimensional arrays & Alignment

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

Nested Array Example

10

Remember, T A[N] is
an array with elements
of type T, with length N

What is the layout in memory?same as:
int sea[4][5];

typedef int zip_dig[5];

CS295Structs, Multi-dimensional arrays & Alignment

Nested Array Example

v “Row-major” ordering of all elements
v Elements in the same row are contiguous
v Guaranteed (in C)

11

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Row 0 Row 1 Row 2 Row 3

typedef int zip_dig[5];

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

Remember, T A[N] is
an array with elements
of type T, with length N

CS295Structs, Multi-dimensional arrays & Alignment

Two-Dimensional (Nested) Arrays

v Declaration: T A[R][C];
§ 2D array of data type T
§ R rows, C columns
§ Each element requires
sizeof(T) bytes

v Array size?

12

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CS295Structs, Multi-dimensional arrays & Alignment

Two-Dimensional (Nested) Arrays

v Declaration: T A[R][C];
§ 2D array of data type T
§ R rows, C columns
§ Each element requires
sizeof(T) bytes

v Array size:
§ R*C*sizeof(T) bytes

v Arrangement: row-major ordering

13

int A[R][C];

• • •
A

[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C bytes

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CS295Structs, Multi-dimensional arrays & Alignment

Multi-Level Array Example

14

int cmu[5] = { 1, 5, 2, 1, 3 };
int sfu[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

int* univ[3] = {sfu, cmu, ucb};

Is a multi-level array the
same thing as a 2D array?

zip_dig univ2D[3] = {
{ 9, 8, 1, 9, 5 },
{ 1, 5, 2, 1, 3 },
{ 9, 4, 7, 2, 0 }

};

One array declaration = one contiguous block of memory

NO
2D Array Declaration:

Multi-Level Array Declaration(s):

CS295Structs, Multi-dimensional arrays & Alignment

Array Element Accesses

15

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

Nested array Multi-level array

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

36160

16

60

168

176

univ

cmu

sfu

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CS295Structs, Multi-dimensional arrays & Alignment

Multi-Level Referencing Examples

Reference Address Value Guaranteed?
univ[2][3]

univ[1][5]

univ[2][-2]

univ[3][-1]

univ[1][12]

§ C code does not do any bounds checking
§ Location of each lower-level array in memory is not guaranteed

16

36160

16

60

168

176

univ

cmu

sfu

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CS295Structs, Multi-dimensional arrays & Alignment

Summary

v Contiguous allocations of memory
v No bounds checking (and no default initialization)
v Can usually be treated like a pointer to first element
v int a[4][5]; → array of arrays

§ all levels in one contiguous block of memory

v int* b[4]; → array of pointers (to arrays)
§ First level in one contiguous block of memory
§ Each element in the first level points to another “sub” array
§ Parts anywhere in memory

17

CS295Structs, Multi-dimensional arrays & Alignment

Data Structures in Assembly

v Arrays
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

v Unions

18

CS295Structs, Multi-dimensional arrays & Alignment

Structs in C

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song song1;

song1.lengthInSeconds = 213;
song1.yearRecorded = 1994;

Song song2;

song2.lengthInSeconds = 248;
song2.yearRecorded = 1988;

19

v Way of defining compound data types
v A structured group of variables, possibly including other structs

CS295Structs, Multi-dimensional arrays & Alignment

Accessing Structure Members

v Given a struct instance, access
member using the . operator:

struct rec r1;
r1.i = val;

v Given a pointer to a struct:
struct rec *r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;

• Use -> operator for short: r->i = val;

v In assembly: register holds address of the first byte
§ Access members with offsets

20

struct rec {
int a[4];
long i;
struct rec *next;

};

CS295Structs, Multi-dimensional arrays & Alignment

Structure Representation

v Characteristics
§ Contiguously-allocated region of memory
§ Refer to members within structure by names
§ Members may be of different types

21

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CS295Structs, Multi-dimensional arrays & Alignment

Structure Representation

v Structure represented as block of memory
§ Big enough to hold all of the fields

v Fields ordered according to declaration order
§ Even if another ordering would be more compact

v Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the

structures in the source code
22

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CS295Structs, Multi-dimensional arrays & Alignment

add a0, a1, 16 # Coming up in Week 3
ret

long get_i(struct rec *r)
{
return r->i;

}

Accessing a Structure Member

v Compiler knows the
offset of each member
within a struct
§ Compute as
*(r+offset)
• Referring to absolute

offset, so no pointer
arithmetic

23

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CS295Structs, Multi-dimensional arrays & Alignment

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

v Generating Pointer to
Array Element
§ Offset of each structure

member determined at
compile time

§ Compute as:
r+4*index

24

r+4*index

&(r->a[index])

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CS295Structs, Multi-dimensional arrays & Alignment

Struct Definitions

v Structure definition:
§ Does NOT declare a variable
§ Variable type is “struct name”

v Joint struct definition and typedef
§ Don’t need to give struct a name in this case

struct name {
/* fields */

};

typedef struct {
/* fields */

} name;
name n1;

struct name name1, *pn, name_ar[3];

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

pointer

array

Easy to forget
semicolon!

CS295Structs, Multi-dimensional arrays & Alignment

Scope of Struct Definition

v Why is placement of struct definition important?
§ What actually happens when you declare a variable?

• Creating space for it somewhere!

§ Without definition, program doesn’t know how much space

v Almost always define structs in global scope near the
top of your C file
§ Struct definitions follow normal rules of scope

26

struct data {
int ar[4];
long d;

};

Size = _____ bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = _____ bytes

CS295Structs, Multi-dimensional arrays & Alignment

Nested Struct

27

&f->my_bar

&f->my_bar.y

a b

0 8 16

struct foo {
long a;
long b;
struct bar my_bar;

};

struct bar {
long x;
long y;

};

struct foo *f;

x y

24 32

CS295Structs, Multi-dimensional arrays & Alignment

Nested Struct

28

a b

0 8 16

?????????

struct foo {
long a;
long b;
struct foo my_foo;

};

CS295Structs, Multi-dimensional arrays & Alignment

Review: Memory Alignment

v Aligned means that any primitive object of 𝐾 bytes
must have an address that is a multiple of 𝐾

v Aligned addresses for data types:

29

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

CS295Structs, Multi-dimensional arrays & Alignment

Alignment Principles

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾

v Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of bytes

(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

30

CS295Structs, Multi-dimensional arrays & Alignment

Structures & Alignment

v Unaligned Data

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾

31

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CS295Structs, Multi-dimensional arrays & Alignment

Satisfying Alignment with Structures (1)

v Within structure:
§ Must satisfy each element’s alignment requirement

v Overall structure placement
§ Each structure has alignment requirement 𝐾!"#

• 𝐾!"# = Largest alignment of any element
• Counts array elements individually as elements
• Inner structs are aligned to their largest alignment

v Example:
§ 𝐾!"# = 8, due to double element

32

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CS295Structs, Multi-dimensional arrays & Alignment

Satisfying Alignment with Structures (2)

v Can find offset of individual fields
using offsetof()
§ Need to #include <stddef.h>
§ Example: offsetof(struct S2,c) returns 16

v For largest alignment requirement 𝐾"#$,
overall structure size must be multiple of 𝐾"#$
§ Compiler will add padding at end of

structure to meet overall structure
alignment requirement

33

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} *p;

Multiple of 8Multiple of 8

CS295Structs, Multi-dimensional arrays & Alignment

Arrays of Structures

v Overall structure length multiple of 𝐾"#$
v Satisfy alignment requirement

for every element in array

34

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CS295Structs, Multi-dimensional arrays & Alignment

Accessing Array Elements
v Compute start of array element as: 12*index
§ sizeof(S3) = 12, including alignment padding

v Element j is at offset 8 within structure
v Assembler gives offset a+8

35

short get_j(int index)
{
return a[index].j;

}

a[0] • • • a[index] • • •

a+0 a+12 a+12*index

i 2 bytes v j 2 bytes
a+12*index

a+12*index+8

struct S3 {
short i;
float v;
short j;

} a[10];

CS295Structs, Multi-dimensional arrays & Alignment

Alignment of Structs

v Compiler will do the following:
§ Maintains declared ordering of fields in struct
§ Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

§ Overall struct must be aligned according to largest field
§ Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

36

CS295Structs, Multi-dimensional arrays & Alignment

How the Programmer Can Save Space

v Compiler must respect order elements are declared in
§ Sometimes the programmer can save space by declaring

large data types first

37

struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CS295Structs, Multi-dimensional arrays & Alignment

Peer Instruction Question
v Minimize the size of the struct by re-ordering the vars

v What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

38

struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

CS295Structs, Multi-dimensional arrays & Alignment

Summary

v Arrays in C
§ Aligned to satisfy every element’s alignment requirement

v Structures
§ Allocate bytes in order declared
§ Pad in middle and at end to satisfy alignment

39

