
CMPT 295L06 – RISC V - I

YOUR CODE IS YOUR RESPONSIBILITY

1

DEBUGGING IS PART OF YOUR DUTY

NO PSEUDOCODE/CODE ON PIAZZA
e.g., my while loop does not work etc

https://www.cs.sfu.ca/~ashriram/Courses/CS295//policy.html#assignment-ta-help-policy

https://www.cs.sfu.ca/~ashriram/Courses/CS295//assignments.html#obtaining-help-from-tainstructor

CMPT 295L06 – RISC V - I

Abstraction
(Levels of Representation/Interpretation)

2

square:
addi sp,sp,-16
sw ra,12(sp)
sw s0,8(sp)
addi s0,sp, 16
sw a0,-12(s0)
lw a0,-12(s0)
addi a1,a0,2
mul a0,a1,a0
lw ra,12(sp)
lw s0,8(sp)
addi sp,sp,16
ret

C Program

Assembly

Lo
gi

c

0x00000317
0x00830067
0xff010113
0x00112623
0x00812423
0x01010413
0xfea42a23
…….

Binary

Python Program
def square(num):
 return num * num

int square(int num):
 return num * num

CMPT 295L06 – RISC V - I

sum.c sum.s

Compiler

C source
files

assembly
files

sum.o

Assembler

obj files
sum

Linker executable
program

Executing
in

Memory

loader

process

exists on
disk

From Writing to Running

3

When most people say “compile”
they mean

the entire process:
compile + assemble + link

“It’s alive!”

gcc -S gcc -c gcc -o

CMPT 295L06 – RISC V - I

Aside: Registers are Inside the Processor

Processor

Control

Datapath

PC

Registers
Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write Data

Read Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

4

CMPT 295L06 – RISC V - I

Registers -- Summary

• In high-level languages, number of variables
limited only by available memory

• ISAs have a fixed, small number of operands
called registers
– Special locations built directly into hardware
– Benefit: Registers are EXTREMELY FAST

(faster than 1 billionth of a second)
– Drawback: Operations can only be performed on

these predetermined number of registers

5

CMPT 295L06 – RISC V - I

Memory vs. Registers

v Addresses vs. Names
§ 0x7FFFD024C3DC %x0

v Big vs. Small
§ ~ 8 GiB (16 x 8 B) = 128 B

v Slow vs. Fast
§ ~50-100 ns sub-nanosecond timescale

v Dynamic vs. Static
§ Can “grow” as needed fixed number in hardware

 while program runs

6

CMPT 295L06 – RISC V - I

RISC V Integer Registers – 32 bits wide

7

CMPT 295L06 – RISC V - I

RISCV Instructions (1/2)

• Instruction Syntax is rigid:
 op dst, src1, src2

– 1 operator, 3 operands
• op = operation name (“operator”)
• dst = register getting result (“destination”)
• src1 = first register for operation (“source 1”)
• src2 = second register for operation (“source 2”)

• Keep hardware simple via regularity

8

CMPT 295L06 – RISC V - I

Mainstream ISAs

9

PCs
(Core i3, i5, i7, M)
x86 Instruction Set

Smartphones, Laptop, Tablet
(iPhone, Macbook, iPad)
ARM Instruction Set

Versatile and open-source
Relatively new, designed for
cloud computing, high-end
phones, small embedded sys.
RISCV Instruction Set

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/su18/img/riscvcard.pdf

CMPT 295L06 – RISC V - I

10

Intel x86 ISA RISC-V ISA

Complex instructions (~800 instructions) *ptr++;
(e.g., string operations, REP MOVS, etc.)-
inc DWORD PTR [EAX]

Small set (~48 instructions)
lw t0, 0(a0) # Read memory
addi t0, t0, 1 # Increment
sw t0, 0(a0) #

Multiple addressing modes (e.g., base +
displacement + scaled index)- Can combine
memory operands with arithmetic (e.g., ADD

Fewer addressing modes. Separates pointer
access from operations on the value.

Variable length (1 to 15 bytes)- Complex
encodings

Mostly fixed length (32 bits in the base ISA, with
optional 16-bit compressed)

CMPT 295L06 – RISC V - I

RISCV Instructions (1/2)

• Instruction Syntax is rigid:
 op dst, src1, src2

– 1 operator, 3 operands
• op = operation name (“operator”)
• dst = register getting result (“destination”)
• src1 = first register for operation (“source 1”)
• src2 = second register for operation (“source 2”)

• Keep hardware simple via regularity

11

CMPT 295L06 – RISC V - I

RISCV Instructions Example

• Your very first instructions!
(assume here that the variables a, b, and c are assigned to
registers s1, s2, and s3, respectively)

• Integer Addition (add)
– C: a = b + c

– RISCV: add s1, s2, s3
• Integer Subtraction (sub)
– C: a = b - c

– RISCV: sub s1, s2, s3

12

CMPT 295L06 – RISC V - I

C example 1

13

Ordering of
instructions matters
(must follow order
of operations)

Utilize temporary registers

• Suppose a → s0,b → s1,c → s2,d → s3
and e → s4. Convert the following C
statement to RISCV:

a = (b + c) - (d + e);

add t1, s3, s4
add t2, s1, s2
sub s0, t2, t1

CMPT 295L06 – RISC V - I

Three Basic Kinds of Instructions

1) Transfer data between memory and register
§ Load data from memory into register

• %reg = Mem[address]

§ Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
§ c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
§ Unconditional jumps to/from procedures
§ Conditional branches

14

Remember: Memory
is indexed just like an
array of bytes!

CMPT 295L06 – RISC V - I

Addition and Subtraction of Integers (3/4)

vHow to do the following C statement?
 a = b + c + d - e;
vBreak into multiple instructions
add x10, x1, x2 # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e

vNotice: A single line of C may break up into several
lines of RISC-V.
vNotice: Everything after the hash mark on each line is
ignored (comments). Check Apollo-11 comments!

15

CMPT 295L06 – RISC V - I

C example 2

17

Since second
operand is a literal
value, no need to
use separate
register.

• Suppose a → s0,e → s4. Convert the
following C statement to RISCV:

e = (a + 10);

addi s4, s0, 10

CMPT 295L06 – RISC V - I

Immediates

• Numerical constants are called immediates
• Separate instruction syntax for immediates:
 opi dst, src, imm

– Operation names end with ‘i’, replace 2nd source register
with an immediate

• Example Uses:
– addi s1, s2, 5 # a=b+5
– addi s3, s3, 1 # c++

• Why no subi instruction?
18

CMPT 295L06 – RISC V - I

Processor

Control

Datapath

Data Transfer:
Load from and Store to memory

PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address
Write Data =
Store to
memory
Read Data =
Load from
memory

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Much larger place
To hold values, but

slower than registers!

Fast but limited place
To hold values

19

CMPT 295L06 – RISC V - I

Speed of Registers vs. Memory

v Given that
§ Registers: 32 words (128 Bytes)
§ Memory (DRAM): Billions of bytes (2 GB to 64 GB on laptop)

v and physics dictates…
§ Smaller is faster

v How much faster are registers than DRAM??
§ About 100-500 times faster! (in terms of latency of one access)

20

CMPT 295L06 – RISC V - I

C Example 3: Load Memory to Register

v C code
 int A[100];
 g = h + A[3];

v Using Load Word (lw) in RISC-V:
 lw x10,12(x15) # Reg x10 gets A[3]
 add x11,x12,x10 # g = h + A[3]

Note: x15 – base register (pointer to A[0])
 12 – offset in bytes
Offset must be a constant known at assembly time

Data flow

21

CMPT 295L06 – RISC V - I

C Example 4: Store Register to Memory

v C code
 int A[100];
 A[10] = h + A[3];

v Using Store Word (sw) in RISC-V:
 lw x10,12(x15) # Temp reg x10 gets A[3]
 add x10,x12,x10 # Temp reg x10 gets h + A[3]
 sw x10,40(x15) # A[10] = h + A[3]

Note: x15 – base register (pointer)
 12,40 – offsets in bytes
x15+12 and x15+40 must be multiples of 4

Data flow

22

CMPT 295L06 – RISC V - I

Loading and Storing Bytes
v In addition to word data transfers

(lw, sw), RISC-V has byte data transfers:
§ load byte: lb
§ store byte: sb

v Same format as lw, sw
v E.g., lb x10,3(x11)

§ contents of memory location with address = sum of “3” + contents of register x11 is
copied to the low byte position of register x10.

byte
loaded

zzz zzzzx

This bit
…is copied to “sign-extend”

xxxx xxxx xxxx xxxx xxxx xxxxx10:

RISC-V also has “unsigned byte” loads (lbu) which zero
extends to fill register. Why no unsigned store byte sbu?

23

CMPT 295L06 – RISC V - I

RISCV Agenda
• Basic Arithmetic Instructions
• Comments
• x0 (zero)
• Immediates
• Data Transfer Instructions
• Decision Making Instructions
• Bonus: C to RISCV Practice
• Bonus: Additional Instructions

24

CMPT 295L06 – RISC V - I

Decision Making Instructions

• Branch If Equal (beq)
– beq reg1,reg2,label
– If value in reg1 = value in reg2, go to label

• Branch If Not Equal (bne)
– bne reg1,reg2,label
– If value in reg1 ≠ value in reg2, go to label

• Jump (j)
– j label
– Unconditional jump to label

25

CMPT 295L06 – RISC V - I

C Example 5: If Else
C Code:
if(i==j) {
 a = b /* then */
} else {
 a = -b /* else */
}

In English:
• If TRUE, execute the THEN

block
• If FALSE, execute the ELSE

block

RISCV (beq):
i→s0, j→s1
a→s2, b→s3

beq s0,s1,then
else:
sub s2, x0, s3
j end
then:
add s2, s3, x0
end:

26

???
This label unnecessary???

CMPT 295L06 – RISC V - I

Breaking Down the If Else
C Code:
if(i==j) {
 a = b /* then */
} else {
 a = -b /* else */
}

In English:
• If TRUE, execute the THEN

block
• If FALSE, execute the ELSE

block

RISCV (bne):
i→s0, j→s1
a→s2, b→s3

bne s0,s1,else
then:
add s2, s3, x0
j end
else:
sub s2, x0, s3
end:

27

???

???

CMPT 295L06 – RISC V - I

Branching on Conditions other than (Not)
Equal

• Set Less Than (slt)
– slt dst, reg1,reg2
– If value in reg1 < value in reg2, dst = 1, else 0

• Set Less Than Immediate (slti)
– slti dst, reg1,imm
– If value in reg1 < imm, dst = 1, else 0

28

CMPT 295L06 – RISC V - I

Breaking Down the If Else
C Code:
if(i<j) {
 a = b /* then */
} else {
 a = -b /* else */
}

In English:
• If TRUE, execute the THEN

block
• If FALSE, execute the ELSE

block

RISCV (???):
i→s0, j→s1
a→s2, b→s3

slt t0 s0 s1
beq t0,x0,else
then:
add s2, s3, x0
j end
else:
sub s2, x0, s3
end:

29

??????

CMPT 295L06 – RISC V - I

C Loop Mapped to RISC-V Assembly

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)
 sum += A[i];

add x9, x8, x0 # x9=&A[0]
 add x10, x0, x0 # sum=0
 add x11, x0, x0 # i=0
 addi x13,x0, 20 # x13=20
Loop:
 bge x11,x13,Done
 lw x12, 0(x9) # x12=A[i]
 add x10,x10,x12 # sum+=
 addi x9, x9,4 # &A[i+1]
 addi x11,x11,1 # i++
 j Loop
Done:

30

CMPT 295L06 – RISC V - I

C to RISCV Practice

• Let’s put our all of our new RISCV knowledge
to use in an example: “Fast String Copy”

• C code is as follows:
 /* Copy string from p to q */
 char *p, *q;
 while((*q++ = *p++) != ‘\0’) ;

• What do we know about its structure?
– Single while loop
– Exit condition is an equality test

31

CMPT 295L06 – RISC V - I

C to RISCV Practice

• Start with code skeleton:
copy String p to q
p→s0, q→s1 (pointers)
Loop: lb $t0,0($s0) # $t0 = *p
 sb $t0,0($s1) # *q = $t0
 addi $s0,$s0,1 # p = p + 1
 addi $s1,$s1,1 # q = q + 1
 beq $t0,$0,Exit # if *p==0, go to Exit
 j Loop # go to Loop
Exit: # N chars in p => N*6 instructions

32

t0 = *p
*q = t0
p = p + 1
q = q + 1
if *p==0, go to Exit
go to Loop

CMPT 295L06 – RISC V - I

C to RISCV Practice

• Fill in lines:
copy String p to q
p→s0, q→s1 (pointers)
Loop: lb $t0,0($s0) # t0 = *p
 sb $t0,0($s1) # *q = t0
 addi $s0,$s0,1 # p = p + 1
 addi $s1,$s1,1 # q = q + 1
 beq $t0,$0,Exit # if *p==0, go to Exit
 j Loop # go to Loop
Exit: # N chars in p => N*6 instructions

33

lb t0,0(s0)
sb t0,0(s1)
addi s0,s0,1
addi s1,s1,1
beq t0,0,Exit

CMPT 295L06 – RISC V - I

C to RISCV Practice

• Finished code:
copy String p to q
p→$s0, q→$s1 (pointers)
Loop: lb t0,0(s0) # t0 = *p
 sb t0,0(s1) # *q = t0
 addi s0,s0,1 # p = p + 1
 addi s1,s1,1 # q = q + 1
 beq t0,x0,Exit # if *p==0, go to Exit
 j Loop # go to Loop
Exit: # N chars in p => N*6 instructions

34

CMPT 295L06 – RISC V - I

C to RISCV Practice

• Alternate code using bne:
copy String p to q
p→s0, q→s1 (pointers)
Loop: lb t0,0(s0) # t0 = *p
 sb t0,0(s1) # *q = t0
 addi s0,s0,1 # p = p + 1
 addi s1,s1,1 # q = q + 1
 bne t0,x0,Loop # if *p!=0, go to Loop
N chars in p => N*5 instructions

35

CMPT 295L06 – RISC V - I

Other Common Assembly Patterns

v A common loop in RISC-V includes initialization,
a condition check, a loop body, and a branch
back to the condition check.

36

 li t0, 0 # Initialize counter t0 to 0
 li t1, 10 # Upper limit 10

loop:
 bge t0, t1, end # i < 10.
 # Loop body (do something)

 addi t0, t0, 1 # increment loop index
 j loop # Jump back to the start of the loop

end:
 # Loop end

CMPT 295L06 – RISC V - I

Other Common Assembly Patterns

v A common loop in RISC-V includes initialization,
a condition check, a loop body, and a branch
back to the condition check.

37

 la t0, array # Load base address of array into t0
 li t1, 5 # Number of elements in the array
 li t3, 0 # i = 0

loop:
 bge t3, t1, end # If i >= number of elements, exit loop
 slli t4, t3, 2 # Calculate offset (index * 4, assuming 4-byte elements)
 add t5, t0, t4 # Calculate address of array[index]
 lw t6, 0(t5) # Load array[index] into t6
 addi t3, t3, 1 # i++
 j loop

end:

CMPT 295L06 – RISC V - I

Other Common Assembly Patterns

v For a 2D array with rows and cols, the address of
array[i][j] is calculated as:

v Address = base_address + (i*#col+j)*sizeof(type)

38

t0= &array, t1 = # of cols t2=i, t3=j . X = a[i][j]

 mul t5, t2, t1 # Row offset (row * cols)
 add t5, t5, t3 # Add column index
 slli t5, t5, 2 # Multiply by sizeof(type). Assume int here.
 add t6, t0, t5 # Base_address + absolute offset.
 lw t7, 0(t6) # Load array[row][col] into t7

CMPT 295L06 – RISC V - I

84056

39

