
CMPT 295Week 7 - Summary

CMPT 295 Week 7

CMPT 295Week 7 - Summary

Aside: Registers are Inside the Processor

Processor

Control

Datapath

PC

Registers
Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write Data

Read Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

2

CMPT 295Week 7 - Summary

3

for(i=0;i < 4)
sum += A[i]

for(i=0;i < 4)
sum += var

CMPT 295Week 7 - Summary

4

for (i = 0; i < 4){
for(j = 0; < 4) {

A[i][j]

for (i = 0; i < 4){
for(j = 0; < 4) {

A[j][i]

CMPT 295Week 7 - Summary

Processor-Memory Gap

5

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CMPT 295Week 7 - Summary

Problem: Processor-Memory Bottleneck

6

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Problem: lots of waiting on memory

CMPT 295Week 7 - Summary

Problem: Processor-Memory Bottleneck

7

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Solution: caches
Smaller memories, closer to CPU → faster

Cache

CMPT 295Week 7 - Summary

General Cache Mechanics

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

Note: Cache “blocks” can also be referred to as cache “lines”

CMPT 295Week 7 - Summary

General Cache Concepts: Hit

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is needed
Request: 14

14

Block b is in cache:
Hit!

Data is returned to CPU

CPU

CMPT 295Week 7 - Summary

General Cache Concepts: Miss

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is needed
Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CPU

CMPT 295Week 7 - Summary

Why Caches Work

v Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

v Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

v Spatial locality:
§ Items with nearby addresses tend

to be referenced close together in time

v How do caches take advantage of this?
11

block

block

CMPT 295Week 7 - Summary

Example: Any Locality?

v Data:
§ Temporal: sum referenced in each iteration
§ Spatial: array a[] accessed in stride-1 pattern

v Instructions:
§ Temporal: Cycle through loop repeatedly
§ Spatial: Reference instructions in sequential order

12

sum = 0;
for (i = 0; i < n; i++)
{
 sum += a[i];
}
return sum;

CMPT 295Week 7 - Summary

What Impacts Cache Hits/Misses?

v Access Pattern
 for (i = 0; i < 8; i++) vs. for (i = 0; i < 8; i=i+2)

v Data layout
 int a[8] vs. short a[8]
 int a[8] vs. int a[16]

v Cache Geometry
 Direct mapped vs. Set Associative (more later..)

13

CMPT 295Week 7 - Summary

DEMO

14

CMPT 295Week 7 - Summary

// Block size 64 bytes
int a[8];
for (i = 0; i < 8; i++) {

tmp = a[i];

Number of elements per block = 64/4 = 16
Hit:Access = 7:8 (Hit Rate)
Miss:Access = 1:8 (Miss Rate)

If we change loop to “i<16” and change array definition
to int a[16], how would hit rate change?

CMPT 295Week 7 - Summary

// Block size 64 bytes
short a[20];
for (i = 0; i < 20; i++) {

tmp = a[i];

Number of elements per block = 64/2 = 32
Hit:Access = 19:20
Miss:Access = 1:20

CMPT 295Week 7 - Summary

// Block size 64 bytes
int a[16];
for (i = 0; i < 16; i=i+2) {

tmp = a[i];

Number of elements per block = 64/4 = 16
Accessed Elements per block = 16/2 = 8
Hit:Access = 7:8
Miss:Access = 1:8

CMPT 295Week 7 - Summary

v Caching in general
§ Successively higher levels contain “most used” data from

lower levels
§ Exploits temporal and spatial locality
§ Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

v Cache Performance
§ Ideal case: found in cache (hit)
§ Bad case: not found in cache (miss), search in next level
§ Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty
18

Caching Basics

CMPT 295Week 7 - Summary

An Example Memory Hierarchy

23

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled
(e.g. refer to exactly %t1, %t2)

Smaller,
faster,
more expensive
per byte

program sees “memory”;
hardware manages caching

transparently

CMPT 295Week 7 - Summary

Cache Performance
v Time for a memory operation depends on cache parameters:

1. Hit time: Time to access cache on a cache hit
2. Miss rate: Average misses per memory instruction
3. Miss Penalty: Time to get data after a miss

v Average Memory Access Time (AMAT): average time to access
memory considering both hits and misses

 AMAT = Hit time + Miss rate × Miss penalty
 (abbreviated AMAT = HT + MR × MP)

v 99% hit rate can be twice as good as 97% hit rate!
§ Assume HT of 1 ns and MP of 100 ns
§ 97%: AMAT = 1 + 0.03 x 100 = 4 ns
§ 99%: AMAT = 1 + 0.01 x 100 = 2 ns

24

CMPT 295Week 7 - Summary

Can we have more than one cache?

v Why?
§ Avoid going to memory, reduce miss penalty

v Typical performance numbers:
§ Miss Rate

• L1 MR = 3-10%
• L2 Global MR = Quite small (e.g. < 1%), depending on parameters, etc.
• L2 (Local) MR typically larger than L1 MR (filtered by L1 hits)

§ Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

§ Miss Penalty
• MP = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

25

CMPT 295Week 7 - Summary

Example Cache Hierarchy

26

Regs

L1 D$ L1 I$

L2 unified cache

Core 0

Regs

L1 D$ L1 I$

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 I-cache and D-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CMPT 295Week 7 - Summary

Internal Cache Organization

v We want to store data efficiently in the cache.
v We also need to quickly find data in the cache when

we need it.

v Address Splitting:
§ Determine where data goes in the cache.
§ Check if the data is already in the cache.
§ Access the exact piece of data we need.

27

CMPT 295Week 7 - Summary

Cache Organization

v Block Size (𝐾): Unit of transfer between $ and Mem
§ Given in bytes and always a power of 2 (e.g. 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)
§ Exact byte within a block of data.

v Offset field
§ Low-order log! 𝐾 = 𝒌 bits of address tell you which byte

within a block
• (address) mod 2! = 𝑛 lowest bits of address

v Block Number = (address) mod (Block Size)

28

Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒌 bits𝒎− 𝒌 bits

CMPT 295Week 7 - Summary

Block based Addressing vs Byte Addressing

29

Main Memory (64bytes, 16 blocks)

Block Number (4 bits) 2 bits
𝒌 bits𝒎− 𝒌 bits

Byte Number (6 bits for 64 byte memory)
𝑩𝒚𝒕𝒆	𝑷𝒐𝒊𝒏𝒕𝒆𝒓

CMPT 295Week 7 - Summary

How to identify different blocks in cache?
v for i = 0 to N
 Calculate(A[i])

30

i = 0 – 0x000000 Block: 0000
i = 1 - 0x000004 Block: 0001
i = 2 - 0x000008 Block: 0002
……………

Main Memory (64bytes, 16 blocks)

Cache (16 bytes, 4 blocks)

Block size: 4B
Cache size: 16B

CMPT 295Week 7 - Summary

Mapping Memory Address to Cache
v CPU sends load/store address, address breakdown:

§ Set Index field tells you where to look in cache
§ Tag field lets you check that data is the block you want
§ Offset field selects specified start byte within block
§ k = log2(K); s = log2(C/(K*E)); t = m - s - k
§ K: Block Size (bytes), E: Associativity; C: Cache Size (bytes)

v Book Shelf Analogy
§ Block: page within a book
§ Set Index: Which shelf took look at
§ Tag: Unique QRcode or Barcode for every book

31

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Set (𝒔)

CMPT 295Week 7 - Summary

Tags Differentiate Blocks in Cache

v Offset bits 𝒌 = log2(K)
v Set index bits s = log2(#Sets)

 = log2(C/(K*E))
v Tag = rest of address bits

§ 𝒕 bits = 𝒎− 𝑠	 − 𝒌
§ Check this during a cache lookup

32

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache

0000

0100

1010

1111

Block size (K) = 4B
Associativity (E) = 1
Cache size (C) = 16B
#Blocks = C/K = 4

CMPT 295Week 7 - Summary

Cache Organization
§ Cache Size = #Blocks x Block Size
 = #Sets x Associativity x Block Size

33

Block

Sets

Ways (i.e., associativity, #blocks/set)

Tag (𝒕) Offset (𝒌)Set (𝒔)

Match ==

CMPT 295Week 7 - Summary

Tags Differentiate Blocks in Same Index

v Offset bits 𝒌 = log2(K) = 2
v Set index bits s = log2(#Sets)

 = 2
v Tag = rest of address bits

§ 𝒕 bits = 𝒎− 𝑠	 − 𝒌
§ Check this during a cache lookup

34

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CMPT 295Week 7 - Summary

Example Placement

v Where would data from address 0x1833 be placed?
§ Binary: 0b 0001 1000 0011 0011

35

𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 = log! 𝐶/(𝐾 ∗ 𝐸) 𝒌 = log! 𝐾𝒕 = 𝒎–𝒔–𝒌

𝒔 = ? 𝒔 = ?

Set Tag Data

0

Fully associative
𝒔 = 0

CMPT 295Week 7 - Summary

Cache Read

36

0 1 2 K-1tagv

𝒕 bits 𝒔 bits 𝒌 bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
 = 2𝒔

𝐸 = blocks/lines per set

𝐾 = bytes per block

CMPT 295Week 7 - Summary

Example: Direct-Mapped Cache (𝐸 = 1)

37

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

𝑆 = 2𝒔 sets

CMPT 295Week 7 - Summary

Example: Direct-Mapped Cache (𝐸 = 1)

38

𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CMPT 295Week 7 - Summary

Example: Direct-Mapped Cache (𝐸 = 1)

39

𝒕 bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CMPT 295Week 7 - Summary

Example: Set-Associative Cache (𝐸 = 2)

40

𝒕 bits 0…01 100
Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way: Two lines per set
Block Size 𝐾 = 8 B

CMPT 295Week 7 - Summary

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸 = 2)

41

𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

tag

2-way: Two lines per set
Block Size 𝐾 = 8 B Address of short int:

CMPT 295Week 7 - Summary

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (𝐸 = 2)

42

𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐾 = 8 B

CMPT 295Week 7 - Summary

Example Code Analysis Problem

v Assuming the cache starts cold (all blocks invalid) and
sum is stored in a register, calculate the miss rate:
§ 𝑚 = 12 bits, 𝐶 = 256 B, 𝐾 = 32 B, 𝐸 = 2

 #define SIZE 8

 long ar[SIZE][SIZE], sum = 0; // &ar=0x800
 for (int i = 0; i < SIZE; i++)
 for (int j = 0; j < SIZE; j++)
 sum += ar[i][j];

43

CMPT 295Week 7 - Summary

for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {

A[i][j]

Cache: 256 bytes. 16x256 image
Hits: N-1 (N: number of elements per block)
Misses: 1024

CMPT 295Week 7 - Summary

45

Access Pattern:
stride = ?

M = 3, N=4

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];

 return sum;
}

CMPT 295Week 7 - Summary

Cache: 256 bytes. 16x256 image
Hits: 0
Misses: 4096

for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {

A[j][i]

CMPT 295Week 7 - Summary

47

76 92 108

Layout in Memory
a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

M = 3, N=4
a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];

 return sum;
}

CMPT 295Week 7 - Summary

Cache Organization
§ Cache Size = #Blocks x Block Size
 = #Sets x Associativity x Block Size

48

Block

Sets

Ways (i.e., associativity, #blocks/set)

Tag (𝒕) Offset (𝒌)Set (𝒔)

Match ==

CMPT 295Week 7 - Summary

Peer Instruction Question

v We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16
E. We’re lost…

v If addresses are 16 bits wide, how wide is the Tag
field?

49

CMPT 295Week 7 - Summary

Other Questions

v We have a cache with block size of 128 B. Cache is 4-
way set-associative and has 8 sets. How big is the
cache? (What is the cache capacity)?

50

CMPT 295Week 7 - Summary

Other Questions

v A 4KB Cache is 4-way set associative with 64 B blocks.
Which bits are used for set index? (Also: How many
sets does the cache have?)

51

CMPT 295Week 7 - Summary

Other Questions

v A 32KB Cache is 8-way set associative and has 16 sets.
Which bits are used for byte offset? (Also: What is the
block size?)

52

CMPT 295Week 7 - Summary

Other Questions

v A direct-mapped cache uses 4 bits for set index and 6
bits for byte offset. How big is the cache?

53

CMPT 295Week 7 - Summary

Cache Miss Classification: The 3Cs

• Compulsory: (Many names: cold start, process
migration (switching processes), 1st reference)
– First access to block impossible to avoid;

Effect is small for long running programs
• Capacity:
– Cache cannot contain all blocks accessed by the

program, i.e., misses in a fully associative cache.
• Conflict: (collision)
– Multiple memory locations mapped to the same

cache set (not enough associativity)

54

CMPT 295Week 7 - Summary

Hit, Compulsory, Capacity or Conflict Miss

v • 0x00000004
v • 0x00000005

• 0x00000068
v • 0x000000C8
v • 0x00000068
v • 0x000000DD
v • 0x00000045
v • 0x00000004
v • 0x000000C8

55

CMPT 295Week 7 - Summary

Hit, Compulsory, Capacity or Conflict Miss

v • 0x00000004, Compulsory
v • 0x00000005

• 0x00000068, Compulsory
v • 0x000000C8, Compulsory
v • 0x00000068
v • 0x000000DD, Compulsory
v • 0x00000045, Compulsory
v • 0x00000004
v • 0x000000C8

56

CMPT 295Week 7 - Summary

Hit, Compulsory, Capacity or Conflict Miss

v • 0x00000004, Compulsory
v • 0x00000005

• 0x00000068, Compulsory
v • 0x000000C8, Compulsory
v • 0x00000068
v • 0x000000DD, Compulsory
v • 0x00000045, Compulsory
v • 0x00000004, Capacity
v • 0x000000C8, Capacity

57

CMPT 295Week 7 - Summary

Hit, Compulsory, Capacity or Conflict Miss

v • 0x00000004, Compulsory
v • 0x00000005, Hit

• 0x00000068, Compulsory
v • 0x000000C8, Compulsory
v • 0x00000068
v • 0x000000DD, Compulsory
v • 0x00000045, Compulsory
v • 0x00000004, Capacity
v • 0x000000C8, Capacity

58

CMPT 295Week 7 - Summary

Hit, Compulsory, Capacity or Conflict Miss

v • 0x00000004, Compulsory
v • 0x00000005, N/A

• 0x00000068, Compulsory
v • 0x000000C8, Compulsory
v • 0x00000068, Conflict
v • 0x000000DD, Compulsory
v • 0x00000045, Compulsory
v • 0x00000004, Capacity
v • 0x000000C8, Capacity

59

CMPT 295Week 7 - Summary

Cache Code Analysis Problem
v Cache-A Direct-mapped, 4KB, 64 sets
v Cache-B Set-associative, 4KB, 2 ways, 32 sets
 int size = 4096; // int is 4 bytes
 int a[size];
 long long int a_long[size]; // long long int is 8 bytes
 /* loop 1 */
 for (int i = 0; i < size; i++) {
 a[i] = i;
 }
 /* loop 2 */
 for (long long int i = 0; i < size; i++) {
 a_long[i] = i;
 }
 /* loop 3 */
 for (int i = 0; i < size/2; i += 1) {
 a[(size/2)+i] = a[i];
 }

Question: What are hit rates for loop1, loop 2 (assume loop 1 has run), loop3
(assume both previous loops have run).

60

