Week 7 - Summary CMPT 295

Aside: Registers are Inside the Processor

Processor Memory
Input
<
Control Enable?
Read/Write
i t]
Program
Datapath
Address
| PC >
— Bytes
=Registers
Write Data >
Arthmetic & Logic unit Data
Read Data Output
m I 1] 1 ig
\ l ‘ /
|

Processor-Memory Interface I/0-Memory Interfaces

(i=0;1i < 4) (i=0;1i < 4)

sum += var sum += A[il

Week 7 - Summary CMPT 295

Week 7 - Summary

Processor-Memory Gap

Performance

CMPT 295

100,000
“Moore’s Law”
B S O TN RTS o MPrOC | e o
L e 55%/year
(2X/1.5yr) \v
L 1000 I G maeeeessneem s
Processor-Memory
100 | e el Performance Gap.
(grows 50%/year)
10 e B B e o e e B B e e e L B e A B e o o R A o B A B S e e A B e A R TR d S e e M
_.424—-0”7‘0"’*+
1 | | | | |
1980 1985 1990 1995 2000 2005 2010
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Ill has two cache levels on chip (2X/10yrs)

Week 7 - Summary CMPT 295

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

Main
Memory

CPU | Reg

Problem: lots of waiting on memory

Week 7 - Summary CMPT 295

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

Main
Memory

CPU | Reg Cache

Solution: caches
Smaller memories, closer to CPU - faster

Week 7 - Summary CMPT 295

General Cache Mechanics

* Smaller, faster, more expensive

Cache 7 9 14 3 memory
* Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 » Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

Note: Cache “blocks” can also be referred to as cache “lines” 8

Week 7 - Summary CMPT 295

General Cache Concepts: Hit

CPU
Data in block b is needed
Request: 14
Block b is in cache:
Hit!
Cache 7 9 14 3
Data is returned to CPU
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 000000000000 OCGOCGOGOO

Week 7 - Summary CMPT 295

General Cache Concepts: Miss

CPU
Data in block b is needed
Request: 12
Block b is not in cache:
Miss!
Cache 7 12 14 3
Block b is fetched from
12 Request: 12 memory
Block b is stored in cache
* Placement policy:
Memory 0 1 2 3 determines where b goes
4 5 6 7 * Replacement policy:
3 5 10 11 determ_lnes whlch block
gets evicted (victim)
12 13 14 15
0000000000000 00000 Data is returned to CPU

10

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently
» Temporal locality: block
= Recently referenced items are likely
to be referenced again in the near future ﬁ
+» Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

+» How do caches take advantage of this?

11

Week 7 - Summary CMPT 295

Example: Any Locality?

sum = 0;
for (1 = 0; 1 < n; 1i++)
{

sum += af[i];

}

return sum;

«~ Data:
"= Temporal: sumreferenced in each iteration
= Spatial: array a [] accessed in stride-1 pattern

<+ Instructions:

= Temporal: Cycle through loop repeatedly
= Spatial: Reference instructions in sequential order

12

CMPT 295

What Impacts Cache Hits/Misses?

< Access Pattern

for(i=0;i<8;i++) vs. for(i=0;i<8;i=i+2)

+» Data layout
int a[8] vs. short a[8]
int a[8] vs. int a[16]

+» Cache Geometry

Direct mapped vs. Set Associative (more later..)

13

Week 7 - Summary CMPT 295

14

Int. Stride 1

// Block size 64 bytes

int a[8];
for (i = 0; i < 8; i++) {
tmp = alil;

Number of elements per block = 64/4 = 16
-it:Access = 7.8 (Hit Rate)
Miss:Access = 1:8 (Miss Rate)

If we change loop to “i<16” and change array definition
to int a[16], how would hit rate change?

eeeeeeeeeeeee

Short Stride 1

// Block size 64 bytes

short al[20];

for (1 = 0; 1 < 20; i++) {
tmp = alil;

Number of elements per block = 64/2 = 32
Hit:Access = 19:20
Miss:Access = 1:20

eeeeeeeeeeeee

Int Stride 2

// Block size 64 bytes

int al[l16];
for (i = 0; i < 16: i=i+2) {
tmp = alil;

Number of elements per block = 64/4 = 16
Accessed Elements per block = 16/2 = 8
Hit:Access = 7.8

Miss:Access = 1.8

Caching Basics

+» Caching in general
= Successively higher levels contain “most used” data from
lower levels
= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
= |deal case: found in cache (hit)

= Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

18

Week 7 - Summary CMPT 295

An Example Memory Hierarchy

explicitly program-controlled
registers & (e.g. refer to exactly %t1, %t2)

on-chip L1
]f‘m:"er' cache (SRAM) program sees “memory”’;
aster, .
more expensive hardware manages caching

off-chip L2 i

ransparentl

per byte cache (SRAM) P y
Larger, main memory
slower, (DRAM)
cheaper
per byte local secondary storage

(local disks)

remote secondary storage
(distributed file systems, web servers)

23

Week 7 - Summary CMPT 295

Cache Performance

» Time for a memory operation depends on cache parameters:
1. Hittime: Time to access cache on a cache hit
2. Miss rate: Average misses per memory instruction
3. Miss Penalty: Time to get data after a miss

» Average Memory Access Time (AMAT): average time to access
memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

99% hit rate can be twice as good as 97% hit rate!
= Assume HT of 1 ns and MP of 100 ns

" 97%: AMAT =1 +0.03 x 100 = 4 ns

= 99%: AMAT =1 +0.01 x 100 =2 ns

24

Can we have more than one cache?

+» Why?
= Avoid going to memory, reduce miss penalty

+ Typical performance numbers:

= Miss Rate
« L1 MR =3-10%
« L2 Global MR = Quite small (e.g. < 1%), depending on parameters, etc.
L2 (Local) MR typically larger than L1 MR (filtered by L1 hits)
= Hit Time
« L1 HT =4 clock cycles
« L2 HT = 10 clock cycles
= Miss Penalty

« MP =50-200 cycles for missing in L2 & going to main memory

- Trend: increasing! e

Week 7 - Summary CMPT 295

Example Cache Hierarchy

Processor package

__

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

i Core 0 Core 3 ' Block size:

' 64 bytes for all caches

! Regs Regs :

L1 I-cache and D-cache:
| lps || L11s 11p$ | | 11 | | 32 KiB, 8-way,

: Access: 4 cycles

. L2 unified cache:

: L2 unified cache L2 unified cache : 256 KiB, 8-way,
Access: 11 cycles

Main memory

26

CMPT 295

Internal Cache Organization

+» We want to store data efficiently in the cache.

+» We also need to quickly find data in the cache when
we nheed it.

+» Address Splitting:
" Determine where data goes in the cache.
" Check if the data is already in the cache.
= Access the exact piece of data we need.

27

CMPT 295

Cache Organization

+ Block Size (K): Unit of transfer between $ and Mem

= Given in bytes and always a power of 2 (e.g. 64 B)
= Blocks consist of adjacent bytes (differ in address by 1)
= Exact byte within a block of data.

«» Offset field

" Low-order log,(K) = k bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
2 Block Number = (address) mod (Block Size)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

28

Week 7 - Summary CMPT 295

Block based Addressing vs Byte Addressing

m — k bits k bits
Block Number (4 bits) 2 bits

| ‘ | Main Memory (64bytes, 16 blocks)

Byte Pointer

Byte Number (6 bits for 64 byte memory)

29

Week 7 - Summary CMPT 295

How to identify different blocks in cache?

o fori=0to N /= 0-0x000000 Block: 0000
| |=1- 0x000004 Block: 0001
Calculate(A[i]) |=2- 0x000008 Block: 0002

IJ;Zqz :g :](._)'](3: 112 Cache (16 bytes, 4 blocks)

call calculate = Block si.ze: 4B
SW a0, 0(s2)] Cache size: 16B
addi s2, s2, 4 [T]

addi s0,s0,-1

addi sl, sl, 4 Main Memory (64bytes, 16 blocks)

i LBB1 2

30

CMPT 295

Mapping Memory Address to Cache

+» CPU sends load/store address, address breakdown:

m-bit address: Tag (1) Set (s) Offset (k)

\ J
|
Block Number

= Set Index field tells you where to look in cache

o field lets you check that data is the block you want

= Offset field selects specified start byte within block

" k =1log,(K); s = log,(C/(K*E)); t=m -s -k

= K: Block Size (bytes), E: Associativity; C: Cache Size (bytes)
< Book Shelf Analogy

= Block: page within a book

= Set Index: Which shelf took look at

= Tag: Unique QRcode or Barcode for every book

31

Week 7 - Summary CMPT 295

Tags Differentiate Blocks in Cache

Memory Cache

Block Addr Block Data :
oooo [Block size (K) = 4B

0000

0001 o100 b i | Associativity (E) = 1
8812 1010 Cache size (C) = 16B
0100 1111 [#Blocks = C/K = 4
0101

0110 .

0111 + Offset bits k = log,(K)

1000] .

L001 + Set index bits s = log,(#Sets)

1010 — |Og2(C/(K*E))

1011 .

1100 + Tag = rest of address bits

1123 = fbits=m—s — k

1111

® Check this during a cache lookup
32

Week 7 - Summary CMPT 295

Cache Organization
= Cache Size = #Blocks x Block Size

= ##Sets x Associativity x Block Size

Tag (1) Set (s) Offset (k)
Match ==

Ways (i.e., associativity, #blocks/set)

Block

Sets

33

Week 7 - Summary CMPT 295

Tags Differentiate Blocks in Same Index

Memory Cache
Block Addr Block Data Index Tag Block Data
oooo [T T 1 ~00 [00 T
0001 11 01 I Here K=4B
0010 [T T 1 10 [o1 1T 1 | [[andC/K=4
0011 L 11 |o1 Lo |
0100 [1 1
0101 L
gﬂg L | + Offset bits k = log,(K) =2
1000 | , | + Set index bits s = log,(#Sets)
1001 111
1000 [1 1 1 =2
el T A + Tag = rest of address bits
1100 T ’
o1y Lo " fbits=m—s — k
1110 -7 . .
1111 [1t 1 ® Check this during a cache lookup

34

Week 7 - Summary CMPT 295

block size: 16 B

Example Placement capacity: 8 blocks

address: 16 bits

+» Where would data from address 0x1833 be placed?
= Binary: Ob 0001 1000 0011 0011

= m—S—k §S= logZ(C/(K * E)) k = logz (K)

m-bit address: Tag (1) Index (s) Offset (k)
s=7 s=7 s=7 s=0
Direct-mapped 2-way set associative 4-way set associative Fully associative
Set Tag Data Set Tag Data Set Tag Data Set Tag Data
° 0
0 0
2 1
3
4 2
5
1
o 3
7

35

Week 7 - Summary CMPT 295

CaChe Read g Locate set

Check if any line in set
is valid and has

E = blocks/lines per set matching tag: hit
~ A ~ 3) Locate data starting
r at offset
[3 I J
Address of byte in memory:
oo B bits s bits | k bits
5= #Ssets< eee tag set block
=2 index offset
(2N N)
[3 I J
\.
data begins at this offset
v tag OJ1)2] eccee- K-1
— _
valid bit M

K = bytes per block 26

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:
v tag ol1l213lals]e]l7 ,
eblts 0..01 100
v tag ol1l213lals]e]l7 ,
find set
S =25 set}
v tag ol1l213lals]e]l7
(I I)
v tag ol1l213lals]e]l7
\.

37

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
B bits 0..01 | 100

valid? + match?: yes = hit

Vv tag Oj112}1314\|5]16]7

block offset

38

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
B bits 0..01 | 100

valid? + match?: yes = hit

v tag ol1]2]3]4]|5]6]|7
block offset
int (4 B)is here
(48) This is why we
want alighment!

No match? Then old line gets evicted and replaced

39

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

G bits 0..01 | 100

v] | tag | lolzl2]3]als]el7]| ILv] | tee) [o]al2]3]4]5]6]7
] [Cee) [o]al2l3Ta]s 6 [7)| | [v] [e) [o]al2]3]4ls]6]7]] — find set
v] | tag | lo]zl2]3]als]el7)| [Lv] | tee | lo]al2]3]4]5]6]7
oo o0
v] | tag | lo]zl2]3]als]el7)| [Lv] | tee | lo]al2]3]4]5]6]7

40

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

v] Ltag | [o]al2l3]als]el7)| [Lv] | tee | [o]al2]3]4]ls5]e]l7]| —

block offset

41

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

v] Ltag | |olzf2]3]a]5]6]7 v| | _tag | lo]a]2]3]a]s]6]7|] —

block offset

short int (2B)is here

No match?
* Onelinein setis selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

42

Example Code Analysis Problem

+» Assuming the cache starts cold (all blocks invalid) and
sum is stored in a register, calculate the miss rate:

"= m=12 bits, C =256B,K=32B,E =2

#define SIZE 8

long ar[SIZE] [SIZE], sum = 0; // &ar=0x800
for (int 1 = 0; 1 < SIZE; i++)
for (int j = 0; J < SIZE; j++)

sum += ar[1][7J]>;

43

Row Major

for (1 =0; 1 < 4; i++) {
for (j = 0; j < 4; j++) {
Ali] []]

Hits: N-1 (N: number of elements per block)

Week 7 - Summary CMPT 295

int sum array rows (int a[M] [N]) M =3, N=4

{ alo][0]||alo][1]||al0][2]||alO][3]
int i, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1][3]

for (1 = 0; 1 < M; 1i++)
for (j = 0; 3 < N; J++) a[2][0]|| al2][1]||al2][2]] |al2][3]

sum += afli][73];

Access Pattern: 1)] a[0] [0]

LELUEn S stride = ? 2)| aro7 1]

: 3)| at0112]
4)| al0] [3]

Layout in Memory 5)| al1][0]
a a a a a a a a a a a a 6) a[l} [l]
ro1|rorfrorfrorfrrifrrifrri|{rrifr21|r21|{r21|r21 7| alllfz]
to1|rx1fc21|e31]cor|rx1fr21{r31]ro1|r11|r21|r31 8) al1]1[3]
| | | [ar217107
76 92 108 10)| al2] [1]
11)| ar2112]

12)| a[21 3]

45

eeeeeeeeeeeee

Column Major

for (1 =0; i < 4; i++) {
for (j = 0; j < 4; j++) {
A[j]I[4i]

Hits: 0

Week 7 - Summary CMPT 295

int sum array cols(int a[M] [N]) M =3, N=4

{ alo][0]||alo][1]||al0][2]||alO][3]
int i, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1][3]

for (3 = 0; J < N; Jj++)
for (1 = 0; 1 < M; 1i++4) al2][o]||al2][1]]|al2][2]||al2](3]
sum += afli][73];

Access Pattern: 1)l a[0] [O]

CeLun S stride = ? 2)[al1110]

) 3)[ar21 0]
4)] al0] [1]

Layout in Memory S)falllll]
a a a a a a a a a a a a 6) a[2] [1]
ro1|ro1frorfrorfra|raa|rar|raifcarfranfr21fral 7)) aloliz]
(o3|cr21fr21]r31fcor|r11|r21{r31}ro1|r11|r21|r3l 8) all][2]
|] | falz] (2]
76 92 108 10)| al0] [3]
1) all][3]

12)[a[27 3]

47

Week 7 - Summary CMPT 295

Cache Organization
= Cache Size = #Blocks x Block Size

= ##Sets x Associativity x Block Size

Tag (1) Set (s) Offset (k)
Match ==

Ways (i.e., associativity, #blocks/set)

Block

Sets

48

CMPT 295

Peer Instruction Question

+» We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A.

B. 4

C. 8

D. 16

E. We're lost...

+ If addresses are 16 bits wide, how wide is the Tag
field?

49

CMPT 295

Other Questions

+» We have a cache with block size of 128 B. Cache is 4-
way set-associative and has 8 sets. How big is the
cache? (What is the cache capacity)?

50

CMPT 295

Other Questions

+» A 4KB Cache is 4-way set associative with 64 B blocks.
Which bits are used for set index? (Also: How many
sets does the cache have?)

51

CMPT 295

Other Questions

+» A 32KB Cache is 8-way set associative and has 16 sets.
Which bits are used for byte offset? (Also: What is the
block size?)

52

CMPT 295

Other Questions

+ A direct-mapped cache uses 4 bits for set index and 6
bits for byte offset. How big is the cache?

53

Cache Miss Classification: The 3Cs

 Compulsory: (Many names: cold start, process
migration (switching processes), 15t reference)

— First access to block impossible to avoid;
Effect is small for long running programs

* Capacity:

— Cache cannot contain all blocks accessed by the
program, i.e., misses in a fully associative cache.

* Conflict: (collision)

— Multiple memory locations mapped to the same
cache set (not enough associativity)

CMPT 295

Week 7 - Summar y CMPT 295

Hit, Compulsory, Capacity or Conflict Miss

<+~ ¢ 0x00000004

<« ¢ Ox00000005
e 0x00000068

<+ ¢ Ox000000C8
<+ ¢ 0x00000068
<+ ¢ Ox000000DD
<+ ¢ 0x00000045
<+~ ¢ 0x00000004
<+ ¢ Ox000000C8

55

Week 7 - Summar y CMPT 295

Hit, Compulsory, Capacity or Conflict Miss

+ ¢ 0x00000004, Compulsory

+~ ¢ 0x00000005
e 0x00000068, Compulsory

+ ¢ 0x000000C8, Compulsory
+» ¢ 0x00000068
+ ¢ 0x000000DD, Compulsory
+ ¢ 0x00000045, Compulsory
+» ¢ 0x00000004
+» ¢ 0x000000C8

56

Week 7 - Summar y CMPT 295

Hit, Compulsory, Capacity or Conflict Miss

+ ¢ 0x00000004, Compulsory

+~ ¢ 0x00000005
e 0x00000068, Compulsory

+ ¢ 0x000000C8, Compulsory
+» ¢ 0x00000068

+ ¢ 0x000000DD, Compulsory
+ ¢ 0x00000045, Compulsory
<+ ® 0x00000004, Capacity

<+ ¢ Ox000000CS8, Capacity

57

Week 7 - Summar y CMPT 295

Hit, Compulsory, Capacity or Conflict Miss

+ ¢ 0x00000004, Compulsory

+~ ¢ 0x00000005, Hit
e 0x00000068, Compulsory

+ ¢ 0x000000C8, Compulsory
+» ¢ 0x00000068

+ ¢ 0x000000DD, Compulsory
+ ¢ 0x00000045, Compulsory
<+ ® 0x00000004, Capacity

<+ ¢ Ox000000CS8, Capacity

58

Week 7 - Summar y CMPT 295

Hit, Compulsory, Capacity or Conflict Miss

+ ¢ 0x00000004, Compulsory

+» ¢ 0x00000005, N/A
e 0x00000068, Compulsory

+ ¢ 0x000000C8, Compulsory
+» ¢ 0x00000068, Conflict

+ ¢ 0x000000DD, Compulsory
+ ¢ 0x00000045, Compulsory
<+ ® 0x00000004, Capacity

<+ ¢ Ox000000CS8, Capacity

59

Week 7 - Summary CMPT 295

Cache Code Analysis Problem

Cache-A Direct-mapped, 4KB, 64 sets

Cache-B Set-associative, 4KB, 2 ways, 32 sets
int size = 4096; // int is 4 bytes
int al[size];
long long int a long[size]; // long long int is 8 bytes
/* loop 1 */
for (int 1 = 0; 1 < size; 1++) {
ali] = 1i;
}
/* loop 2 */
for (long long int 1 = 0; 1 < size; 1i++) {
a longf[i] = 1;
}
/* loop 3 */
for (int 1 = 0; 1 < size/2; 1 += 1) {
al(size/2)+i] = alil;

}
Question: What are hit rates for loop1, loop 2 (assume loop 1 has run), loop3
(assume both previous loops have run).

60

