
CMPT 295Parallelism and Vector Instructions

CMPT 295 Week 9

CMPT 295Parallelism and Vector Instructions

Parallelism and Vector Instructions

WARNING: Lab 9, Ass 5 work with fixed-length vector

intrinsics. Not RISC-V

- Most concepts carry over, if not programming details

- RISC-V supports variable length vectors.

Lab 9 and ASS 5 do not

CMPT 295Parallelism and Vector Instructions

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Arrays & structs
Integers & floats
RISC V assembly
Procedures & stacks
Executables
Memory & caches
Parallelism
Processor Pipeline
Performance

CMPT 295Parallelism and Vector Instructions

What is a computer program?

for (int i = 0; i < N; i++){
output[i] = x[i] * y[i];

}

CMPT 295Parallelism and Vector Instructions

What is a computer program?
a0: &x[0], a1: &y[0], a2:
&result[0], a5: N
t1 = 0: loop index i
loop:
load x[i] and y[i]
lw a4,0(a0)
lw a3,0(a1)
multiplication
mul a4,a4,a3
store word
sw a4,0(a2)
Bump pointers
addi a0,a0,4
addi a1,a1,4
addi a2,a2,4
addi t1, t1, 1
bne t1,a5,loop

Processor executes instruction

referenced by the program counter

(PC)
(executing the instruction will modify machine

state: contents of registers, memory, CPU

state, etc.)

Move to next instruction …

Then execute it…

And so on…

PC

CMPT 295Parallelism and Vector Instructions

Scalar Loop

for (i = 0; i < N; i++){
output[i] = x[i] * y[i];

}

for (i = 0; i < N; i=i+VLEN){
output[i:i+VLEN-1] =
x[i:i+VLEN-1] * y[i:i+VLEN-1];

}

Vector Loop (data parallelism)

CMPT 295Parallelism and Vector Instructions

7

CMPT 295Parallelism and Vector Instructions

How many total ins?

N * 9

How many useful inst?

4* N (LD,LD,MUL,ST)

How many useless (maintenance) inst?

5*N

for (i = 0; i < N; i++){
output[i] = x[i] * y[i];

}

a0: &x[0], a1: &y[0], a2:
&result[0], a5: N
t1 = 0: loop index i
loop:
load x[i] and y[i]
lw a4,0(a0)
lw a3,0(a1)
multiplication
mul a4,a4,a3
store word
sw a4,0(a2)
Bump pointers
addi a0,a0,4
addi a1,a1,4
addi a2,a2,4
addi t1, t1, 1
bne t1,a5,loop

CMPT 295Parallelism and Vector Instructions

9

How many total ins?

N * 9 / VLEN

How many useful ins ?

4*N/VLEN

How many useless inst?

5*N / VLEN

VLEN : Vector length

for (i = 0; i < N; i=i+VLEN){
output[i:i+VLEN-1] =
x[i:i+VLEN-1] * y[i:i+VLEN-1];

}

CMPT 295Parallelism and Vector Instructions

Why Parallelism?

Why Efficiency?

CMPT 295Parallelism and Vector Instructions

A parallel computer is a collection of processing elements

that cooperate to solve problems quickly

We care about performance

We care about efficiency

We’re going to use multiple

processing element to get it

CMPT 295Parallelism and Vector Instructions

Speedup
One major motivation of using parallel processing: Speedup

For a given problem:

speedup = execution time (using 1 elements)

execution time (using P elements)

CMPT 295Parallelism and Vector Instructions

Parallel Model: Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

add.vv v3, v1, v2

VECTOR

(N operations)

❖ Vector processors have high-level operations that work
on linear arrays of numbers: "vectors"

CMPT 295Parallelism and Vector Instructions

Parallel Model:Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

add.vv v3, v1, v2

VECTOR

(N operations)

❖ Vector processors have high-level operations that work
on linear arrays of numbers: "vectors"

out[0] = x[0]+y[0]
out[1] = x[1]+y[1]
….

out[0:VLEN-1] = x[0:VLEN-1] + Y[0:VLEN-1]

out[VLEN:2*VLEN-1] = x[VLEN:2*VLEN-1]
+ y[VLEN:2*VLEN-1]

CMPT 295Parallelism and Vector Instructions

Vector Registers

❖ 32 vector data registers, v0-v31,
each VLEN bits long

❖ Vector length register vl
❖Vector type register vtype

15

v31

vl

vtype

Vector length register

Vector data registers

VLEN bits per vector register,
(implementation-dependent)

v0

Vector type register

❖ Vector register file

▪ Each register is an array of elements

▪ Size of each register determines
maximum vector length

▪ Vector length register determines vector
length for a particular operation

❖ Multiple parallel execution units =
“lanes”
(sometimes called “pipelines” or
“pipes”)

CMPT 295Parallelism and Vector Instructions

Baseline CPU

ALU 0

Scalar Reg

Fetch PC
mul a4,a4,a3

(scalar)

CMPT 295Parallelism and Vector Instructions

Vector CPU: Add arithmetic units
to increase compute capability

Single instruction, multiple data
ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Fetch InsFetch PC
vmul v4,v4,v3

Vector Reg

- Parallelism: Multiple data elements

- Efficiency: Fetch single instruction

Same instruction broadcast on all ALUs

Each instruction updates/reads multiple

elements from vector register

CMPT 295Parallelism and Vector Instructions

Virtual Processor Vector Model

❖ Vector operations are SIMD
(single instruction multiple data) operations

❖ Each element is computed by a virtual processor (VP)

❖ Number of VPs given by vector length

▪ vector control register

CMPT 295Parallelism and Vector Instructions

Vector Architectural State

General

Purpose

Registers

Flag

Registers

(32)

VP0 VP1 VP#vlr-1

vr0

vr1

vr31

vf0

vf1

vf31

#vdw bits

1 bit

Virtual Processors (#vir)

vcr0

vcr1

vcr31

Control

Registers

32 bits

CMPT 295Parallelism and Vector Instructions

for (i = 0; i < N; i++){
output[i] = x[i] + y[i];

}

loop:
load x[i] and y[i]
lw a5,0(a2)
lw a6,0(a3)
addition
add a5,a5,a6
store word
sw a5,0(a1)
Bump pointers
addi a1,a0,4
addi a2,a1,4
addi a3,a2,4
addi a3,a2,4
sub a0,a0,1
bnez a0, loop

Scalar Code

loop: # t0=VLEN
load x[I,i+VLEN], y[] vle32.v v8, (a2)
vle32.v v16, (a3)
addition
vadd.vv v24,v8,v16
store res[i:i+VLEN]
vse32.v v24,(a1)
Bump pointers
slli t1,t0,2
add a2, a2,t1
add a3,a3,t1
add a1,a1,t1
Bump loop by vlen
sub a0,a0,t0
bnez a0, loop

Vector Code

for (i = 0; i < N;i=i+VLEN){
output[i:i+VLEN] =
x[i:i+VLEN] + y[i:i+VLEN];

}

CMPT 295Parallelism and Vector Instructions

Masking and Conditional Ops

- Disable unwanted vector lanes
- Conditional branches where different operations for

different vector elements
- Handling tail/left-over elements when software array

length not multiple of vector width.

CMPT 295Parallelism and Vector Instructions

Tail Processing
Remaining = N
for (i = 0; i < N;){
int VLEN;
if (N-i > MAX_VLEN)

VLEN = MAX_VLEN
else

VLEN = N-i

setvl(VLEN)

res[i:i+VLEN] =
x[i:i+VLEN] + y[i:i+VLEN];

}

loop:

vsetvli t0, a0, e32 # Set VLEN
load x[I,i+VLEN], y[] vle32.v v8, (a2)
vle32.v v16, (a3)
addition
vadd.vv v24,v8,v16
store res[i:i+VLEN]
vse32.v v24,(a1)
Bump pointers
slli t1,t0,2
add a2, a2,t1
add a3,a3,t1
add a1,a1,t1
Bump loop by vlen
sub a0,a0,t0
bnez a0, loop

CMPT 295Parallelism and Vector Instructions

Time
1 2 8

ALU 1 ALU 2 ALU 8

<unconditional code>

float x = A[i];

if (x > 0) {

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

} else {

float tmp = kMyConst1;

x = 2.f * tmp;
}

<resume unconditional code>

result[i] = x;

What about conditional branches?
Assume logic below is to be executed for each
element in input array ‘A’ producing output
into array ‘result’

CMPT 295Parallelism and Vector Instructions

1 2 8

ALU 1 ALU 2 ALU 8

T T F T F F F F

<unconditional code>

float x = A[i];

if (x > 0) {

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

} else {

float tmp = kMyConst1;

x = 2.f * tmp;
}

<resume unconditional code>

result[i] = x;

What about conditional branches?
Time

Assume logic below is to be executed for each
element in input array ‘A’ producing output
into array ‘result’

CMPT 295Parallelism and Vector Instructions

1 2 8

ALU 1 ALU 2 ALU 8

T T F T F F F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

<unconditional code>

float x = A[i];

if (x > 0) {

} else {

}

<resume unconditional code>

result[i] = x;

Mask discard output of ALUs
Time

Not All ALUs do useful work
Worst case: 1/8 peak performance

Assume logic below is to be executed for each
element in input array ‘A’ producing output
into array ‘result’

CMPT 295Parallelism and Vector Instructions

1 2 8

ALU 1 ALU 2 ALU 8

T T F T F F F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

<unconditional code>

float x = A[i];

if (x > 0) {

} else {

}

<resume unconditional code>

result[i] = x;

After branch continue normal execution
Time

Assume logic below is to be executed for each
element in input array ‘A’ producing output
into array ‘result’

CMPT 295Parallelism and Vector Instructions

Terminology

▪ Instruction stream coherence (“coherent execution”)
- Same instruction sequence applies to all elements operated upon simultaneously

- Coherent execution is necessary for efficient use of SIMD processing resources

- Coherent execution IS NOT necessary for efficient parallelization across cores,
since each core has the capability to fetch/decode a different instruction stream

▪ “Divergent” execution
- A lack of instruction stream coherence

CMPT 295Parallelism and Vector Instructions

New RISC-V “V” Vector Extension

❖ Standard extension to the RISC-V ISA

▪ An updated form of Cray-style vectors for modern
microprocessors

▪ Appearing in commercial implementations from Alibaba,
Andes, Semidynamics, SiFive, …

▪ Basis of European supercomputer initiative (EPI)

❖ Following slides present short tutorial on current
standard
▪ https://github.com/riscv/riscv-v-spec

CMPT 295Parallelism and Vector Instructions

RISC-V Scalar State

30

Program counter (pc)

32x32/64-bit integer registers (x0-x31)
• x0 always contains a 0

Floating-point (FP), adds 32 registers (f0-
f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit IEEE FP)

FP status register (fcsr), used for FP
rounding mode & exception reporting

ISA string options:
• RV32I (XLEN=32, no FP)
• RV32IF (XLEN=32, FLEN=32)
• RV32ID (XLEN=32, FLEN=64)
• RV64I (XLEN=64, no FP)
• RV64IF (XLEN=64, FLEN=32)
• RV64ID (XLEN=64, FLEN=64)

CMPT 295Parallelism and Vector Instructions

Vector Extension Additional State

❖ 32 vector data registers, v0-v31,
each VLEN bits long

❖ Vector length register vl
❖ Vector type register vtype
❖ Other control registers:
▪ vstart

• For trap handling

▪ vrm/vxsat

• Fixed-point rounding mode/saturation

• Also appear in separate vcsr

▪ vlenb

• Gives vector length in bytes (read-only)

31

v31

vl

vtype

Vector length register

Vector data registers

VLEN bits per vector register,
(implementation-dependent)

v0

Vector type register

CMPT 295Parallelism and Vector Instructions

Vector Type Register (vtype)

32

vsew[2:0] field encodes standard element width
(SEW) in bits of elements in vector register (SEW =
8*2vsew)

vlmul[2:0] encodes vector register length
multiplier (LMUL = 2vlmul = 1/8 - 8)

Ideally, info would be in instruction encoding, but no space in 32-bit instructions.
Planned 64-bit encoding extension would add these as instruction bits.

vta specifies tail-agnostic

vma specifies mask-agnostic

CMPT 295Parallelism and Vector Instructions

Example Vector Register Data Layouts (LMUL=1)

CMPT 295Parallelism and Vector Instructions

Usually use register-immediate form, vsetvli, to set vtype parameters.
Immediate-immediate form, vsetivli, used when vector length known statically
The register-register version vsetvl is usually used only for context save/restore

Instruction
encoding

Setting vector configuration, vsetvli/vsetivli/vsetvl

34

vsetvli rd, rs1, e8 # Set SEW=8, vl=min(VLEN/SEW,rs1), rd=vl

Requested application vector length
Resulting machine
vector length
setting

vtype parameters (SEW,LMUL,TA,MA)
encoded as immediate in instruction

The vset{i}vl{i} configuration instructions set the vtype register, and also set
the vl register, returning the vl value in a scalar register

CMPT 295Parallelism and Vector Instructions

Vector Length Multiplier, LMUL

35

▪ Gives fewer but longer vector registers
– Called “vector register groups” – operate as single vectors

– Must use even register names only for LMUL=2 (v0,v2,..), and every
fourth register for LMUL=4 (v0,v4, …), etc.

▪ Used for
– 1) to increase efficiency by using longer vectors

– 2) accommodate mixed-width operations (e.g., masks)

LMUL=2

LMUL=4

CMPT 295Parallelism and Vector Instructions

Simple stripmined vector memcpy
example

36

Unit-stride
vector load
elements
(bytes)

Unit-stride
vector store
elements
(bytes)

Set configuration,
calculate vector strip
length

Same binary machine code can run on machines with any VLEN!

CMPT 295Parallelism and Vector Instructions

Vector Unit-Stride Loads/Stores

37

for i = 0 to VLEN - 1
vd[i] = load(rs1 + i)

CMPT 295Parallelism and Vector Instructions

Vector Strided Load/Store Instructions

for i = 0 to VLEN - 1
vd[i] = load(rs1 + i*rs2)

CMPT 295Parallelism and Vector Instructions

Vector Indexed Loads/Stores

39

Index data width encoded in
instruction, while data size
encoded in vtype.vsew field

for i = 0 to VLEN - 1
vd[i] = load(rs1 + vs2[i])

CMPT 295Parallelism and Vector Instructions

CMPT 295Parallelism and Vector Instructions

LMUL=8 stripmined vector memcpy
example

41

Unit-stride
vector load
bytes

Unit-stride
vector store
bytes

Set configuration,
calculate vector strip
length

Binary machine code can run on machines with any VLEN!

Combine eight
vector registers into
group
(v0,v1,…,v7)

CMPT 295Parallelism and Vector Instructions

Masking

❖ Nearly all operations can be optionally under a mask (or
predicate) held in vector register v0

❖ A single vm bit in instruction encoding selects whether
unmasked or under control of v0

❖ Integer and FP compare instructions provided to set
masks into any vector register

❖ Can perform mask logical operations between any
vector registers

CMPT 295Parallelism and Vector Instructions

Vector Integer Add Instructions

43

CMPT 295Parallelism and Vector Instructions

Integer Compare Instructions

44

CMPT 295Parallelism and Vector Instructions

Mask Logical Operations

45

CMPT 295Parallelism and Vector Instructions

Agnostic vs Undisturbed

46

vsetvli t0, a0, e32, m1, ta, ma

ta – Tail

agnostic

tu – Tail

undisturbed

ma – Mask

agnostic

mu – Mask

undisturbed

