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Parallelism and Vector Instructions

WARNING: Lab 9, Ass 5 work with fixed-length vector 

intrinsics. Not RISC-V

- Most concepts carry over, if not programming details

- RISC-V supports variable length vectors.                                

Lab 9 and ASS 5 do not 
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Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer 
system:

OS:

Memory & data
Arrays & structs
Integers & floats
RISC V assembly
Procedures & stacks
Executables
Memory & caches
Parallelism
Processor Pipeline
Performance 



CMPT 295Parallelism and Vector Instructions

What is a computer program?

for (int i = 0; i < N; i++){
output[i] = x[i] * y[i];

}
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What is a computer program?
# a0: &x[0], a1: &y[0], a2: 
&result[0], a5: N
# t1 = 0: loop index i
loop:
# load x[i] and y[i]
lw a4,0(a0)
lw a3,0(a1)
# multiplication
mul a4,a4,a3
# store word
sw a4,0(a2)
# Bump pointers
addi a0,a0,4
addi a1,a1,4
addi a2,a2,4
addi t1, t1, 1
bne t1,a5,loop

Processor executes instruction  

referenced by the program  counter 

(PC)
(executing the instruction will modify  machine 

state: contents of registers,  memory, CPU 

state, etc.)

Move to next instruction …

Then execute it…

And so on…

PC
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Scalar Loop

for (i = 0; i < N; i++){
output[i] = x[i] * y[i];

}

for (i = 0; i < N; i=i+VLEN){
output[i:i+VLEN-1] =
x[i:i+VLEN-1] * y[i:i+VLEN-1];

}

Vector Loop (data parallelism)
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How many total ins? 

N * 9

How many useful inst? 

4* N (LD,LD,MUL,ST)

How many useless (maintenance) inst?

5*N

for (i = 0; i < N; i++){
output[i] = x[i] * y[i];

}

# a0: &x[0], a1: &y[0], a2: 
&result[0], a5: N
# t1 = 0: loop index i
loop:
# load x[i] and y[i]
lw a4,0(a0)
lw a3,0(a1)
# multiplication
mul a4,a4,a3
# store word
sw a4,0(a2)
# Bump pointers
addi a0,a0,4
addi a1,a1,4
addi a2,a2,4
addi t1, t1, 1
bne t1,a5,loop
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How many total ins? 

N * 9 / VLEN

How many useful ins ? 

4*N/VLEN

How many useless inst? 

5*N / VLEN

VLEN : Vector length

for (i = 0; i < N; i=i+VLEN){
output[i:i+VLEN-1] =
x[i:i+VLEN-1] * y[i:i+VLEN-1];

}
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Why Parallelism?

Why Efficiency?
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A parallel computer is a collection of processing elements  

that cooperate to solve problems quickly

We care about performance  

We care about efficiency

We’re going to use multiple

processing element to get it
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Speedup
One major motivation of using parallel processing: Speedup

For a given problem:

speedup            = execution time (using 1 elements)

execution time (using P elements)
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Parallel Model: Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

add.vv v3, v1, v2

VECTOR

(N operations)

❖ Vector processors have high-level operations that work 
on linear arrays of numbers: "vectors"
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Parallel Model:Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

add.vv v3, v1, v2

VECTOR

(N operations)

❖ Vector processors have high-level operations that work 
on linear arrays of numbers: "vectors"

out[0] = x[0]+y[0]
out[1] = x[1]+y[1]
….

out[0:VLEN-1] = x[0:VLEN-1] + Y[0:VLEN-1]

out[VLEN:2*VLEN-1] = x[VLEN:2*VLEN-1] 
+ y[VLEN:2*VLEN-1]
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Vector Registers

❖ 32 vector data registers, v0-v31, 
each VLEN bits long

❖ Vector length register vl
❖Vector type register vtype

15

v31

vl

vtype

Vector length register

Vector data registers

VLEN bits per vector register, 
(implementation-dependent)

v0

Vector type register

❖ Vector register file

▪ Each register is an array of elements

▪ Size of each register determines 
maximum vector length

▪ Vector length register determines vector 
length for a particular operation

❖ Multiple parallel execution units = 
“lanes”
(sometimes called “pipelines” or 
“pipes”)    
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Baseline CPU

ALU 0

Scalar Reg

Fetch PC
mul a4,a4,a3

(scalar)
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Vector CPU: Add arithmetic units
to increase compute capability

Single instruction, multiple data
ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Fetch InsFetch PC
vmul v4,v4,v3

Vector Reg

- Parallelism: Multiple data elements

- Efficiency: Fetch single instruction

Same instruction broadcast on all ALUs

Each instruction updates/reads multiple 

elements from vector register 
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Virtual Processor Vector Model

❖ Vector operations are SIMD 
(single instruction multiple data) operations

❖ Each element is computed by a virtual processor (VP)

❖ Number of VPs given by vector length

▪ vector control register
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Vector Architectural State

General

Purpose

Registers

Flag

Registers

(32)

VP0 VP1 VP#vlr-1

vr0

vr1

vr31

vf0

vf1

vf31

#vdw bits

1 bit

Virtual Processors (#vir)

vcr0

vcr1

vcr31

Control

Registers

32 bits
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for (i = 0; i < N; i++){
output[i] = x[i] + y[i];

}

loop:
# load x[i] and y[i]
lw a5,0(a2)
lw a6,0(a3)
# addition
add a5,a5,a6
# store word
sw a5,0(a1)
# Bump pointers
addi a1,a0,4
addi a2,a1,4
addi a3,a2,4
addi a3,a2,4
sub  a0,a0,1 
bnez a0, loop

Scalar Code

loop: # t0=VLEN
# load x[I,i+VLEN], y[] vle32.v v8, (a2)
vle32.v v16, (a3) 
# addition
vadd.vv v24,v8,v16 
# store res[i:i+VLEN]
vse32.v v24,(a1) 
# Bump pointers
slli t1,t0,2
add a2, a2,t1
add a3,a3,t1
add a1,a1,t1
# Bump loop by vlen
sub a0,a0,t0
bnez a0, loop

Vector Code

for (i = 0; i < N;i=i+VLEN){
output[i:i+VLEN] =
x[i:i+VLEN] + y[i:i+VLEN];

}
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Masking and Conditional Ops

- Disable unwanted vector lanes 
- Conditional branches where different operations for 

different vector elements
- Handling tail/left-over elements when software array 

length not multiple of vector width.
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Tail Processing
Remaining = N
for (i = 0; i < N;){
int VLEN;
if (N-i > MAX_VLEN)

VLEN = MAX_VLEN 
else 

VLEN = N-i

setvl(VLEN)

res[i:i+VLEN] =
x[i:i+VLEN] + y[i:i+VLEN];

}

loop:

vsetvli t0, a0, e32 # Set VLEN
# load x[I,i+VLEN], y[] vle32.v v8, (a2)
vle32.v v16, (a3) 
# addition
vadd.vv v24,v8,v16 
# store res[i:i+VLEN]
vse32.v v24,(a1) 
# Bump pointers
slli t1,t0,2
add a2, a2,t1
add a3,a3,t1
add a1,a1,t1
# Bump loop by vlen
sub a0,a0,t0
bnez a0, loop
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Time
1 2 . . . . . . 8

ALU 1 ALU 2 . . . . . . ALU 8

<unconditional code>

float x = A[i];  

if (x > 0) {

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

} else {

float tmp = kMyConst1;

x = 2.f * tmp;
}

<resume unconditional code>

result[i] = x;

What about  conditional branches?
Assume logic below is to be executed for each 
element in input array ‘A’ producing output 
into array ‘result’
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1 2 . . . . . . 8

ALU 1 ALU 2 . . . . . . ALU 8

T T F T F F F F

<unconditional code>

float x = A[i];  

if (x > 0) {

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

} else {

float tmp = kMyConst1;

x = 2.f * tmp;
}

<resume unconditional code>

result[i] = x;

What about  conditional branches?
Time

Assume logic below is to be executed for each 
element in input array ‘A’ producing output 
into array ‘result’
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1 2 . . . . . . 8

ALU 1 ALU 2 . . . . . . ALU 8

T T F T F F F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

<unconditional code>

float x = A[i];  

if (x > 0) {

} else {

}

<resume unconditional code>

result[i] = x;

Mask discard output of ALUs
Time

Not All ALUs do useful work
Worst case: 1/8 peak performance

Assume logic below is to be executed for each 
element in input array ‘A’ producing output 
into array ‘result’
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1 2 . . . . . . 8

ALU 1 ALU 2 . . . . . . ALU 8

T T F T F F F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

<unconditional code>

float x = A[i];  

if (x > 0) {

} else {

}

<resume unconditional code>

result[i] = x;

After branch continue normal execution
Time

Assume logic below is to be executed for each 
element in input array ‘A’ producing output 
into array ‘result’
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Terminology

▪ Instruction stream coherence (“coherent execution”)
- Same instruction sequence applies to all elements operated upon simultaneously

- Coherent execution is necessary for efficient use of SIMD processing resources

- Coherent execution IS NOT necessary for efficient parallelization across cores,  
since each core has the capability to fetch/decode a different instruction stream

▪ “Divergent” execution
- A lack of instruction stream coherence
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New RISC-V “V” Vector Extension

❖ Standard extension to the RISC-V ISA

▪ An updated form of Cray-style vectors for modern 
microprocessors

▪ Appearing in commercial implementations from Alibaba, 
Andes, Semidynamics, SiFive, …

▪ Basis of European supercomputer initiative (EPI)

❖ Following slides present short tutorial on current 
standard
▪ https://github.com/riscv/riscv-v-spec
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RISC-V Scalar State

30

Program counter (pc)

32x32/64-bit integer registers (x0-x31)
• x0 always contains a 0

Floating-point (FP), adds 32 registers (f0-
f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit IEEE FP)

FP status register (fcsr), used for FP 
rounding mode & exception reporting

ISA string options:
• RV32I (XLEN=32, no FP)
• RV32IF (XLEN=32, FLEN=32)
• RV32ID (XLEN=32, FLEN=64)
• RV64I (XLEN=64, no FP)
• RV64IF  (XLEN=64, FLEN=32)
• RV64ID  (XLEN=64, FLEN=64)
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Vector Extension Additional State

❖ 32 vector data registers, v0-v31, 
each VLEN bits long

❖ Vector length register vl
❖ Vector type register vtype
❖ Other control registers:
▪ vstart

• For trap handling

▪ vrm/vxsat

• Fixed-point rounding mode/saturation

• Also appear in separate vcsr

▪ vlenb

• Gives vector length in bytes (read-only)

31

v31

vl

vtype

Vector length register

Vector data registers

VLEN bits per vector register, 
(implementation-dependent)

v0

Vector type register
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Vector Type Register (vtype)

32

vsew[2:0] field encodes standard element width 
(SEW) in bits of elements in vector register (SEW = 
8*2vsew )

vlmul[2:0] encodes vector register length 
multiplier (LMUL = 2vlmul = 1/8 - 8)

Ideally, info would be in instruction encoding, but no space in 32-bit instructions.
Planned 64-bit encoding extension would add these as instruction bits.

vta specifies tail-agnostic

vma specifies mask-agnostic
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Example Vector Register Data Layouts (LMUL=1)
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Usually use register-immediate form, vsetvli, to set vtype parameters.
Immediate-immediate form, vsetivli, used when vector length known statically
The register-register version vsetvl is usually used only for context save/restore

Instruction 
encoding

Setting vector configuration, vsetvli/vsetivli/vsetvl

34

vsetvli rd, rs1, e8 # Set SEW=8, vl=min(VLEN/SEW,rs1), rd=vl

Requested application vector length
Resulting machine 
vector length 
setting

vtype parameters (SEW,LMUL,TA,MA) 
encoded as immediate in instruction

The vset{i}vl{i} configuration instructions set the vtype register, and also set 
the vl register, returning the vl value in a scalar register
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Vector Length Multiplier, LMUL

35

▪ Gives fewer but longer vector registers
– Called “vector register groups” – operate as single vectors

– Must use even register names only for LMUL=2 (v0,v2,..), and every 
fourth register for LMUL=4 (v0,v4, …), etc.

▪ Used for 
– 1) to increase efficiency by using longer vectors

– 2) accommodate mixed-width operations (e.g., masks)

LMUL=2

LMUL=4
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Simple stripmined vector memcpy
example

36

Unit-stride 
vector load 
elements 
(bytes)

Unit-stride 
vector store 
elements 
(bytes)

Set configuration, 
calculate vector strip 
length

Same binary machine code can run on machines with any VLEN!
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Vector Unit-Stride Loads/Stores

37

for i = 0 to VLEN - 1 
vd[i] = load(rs1 + i)
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Vector Strided Load/Store Instructions

for i = 0 to VLEN - 1 
vd[i] = load(rs1 + i*rs2) 
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Vector Indexed Loads/Stores

39

Index data width encoded in 
instruction, while data size 
encoded in vtype.vsew field

for i = 0 to VLEN - 1 
vd[i] = load(rs1 + vs2[i]) 
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LMUL=8 stripmined vector memcpy
example

41

Unit-stride 
vector load 
bytes

Unit-stride 
vector store 
bytes

Set configuration, 
calculate vector strip 
length

Binary machine code can run on machines with any VLEN!

Combine eight 
vector registers into 
group
(v0,v1,…,v7)
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Masking

❖ Nearly all operations can be optionally under a mask (or 
predicate) held in vector register v0

❖ A single vm bit in instruction encoding selects whether 
unmasked or under control of v0

❖ Integer and FP compare instructions provided to set 
masks into any vector register

❖ Can perform mask logical operations between any 
vector  registers
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Vector Integer Add Instructions

43
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Integer Compare Instructions

44
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Mask Logical Operations

45
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Agnostic vs Undisturbed

46

vsetvli t0, a0, e32, m1, ta, ma

ta – Tail 

agnostic 

tu – Tail 

undisturbed

ma – Mask 

agnostic 

mu – Mask 

undisturbed


