Branch: master v Find file = Copy path

riscv-asm-manual / riscv-asm.md

m luismarques Fix typo (#26)

ea95459 on Dec 3, 2019

10 contributors % u - @ B m ; 3,]

Raw = Blame History L & [

514 lines (406 sloc) 16.7 KB

RISC-V Assembly Programmer's Manual

Copyright and License Information

The RISC-V Assembly Programmer's Manual is

© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017 Alex
Bradbury asb@lowrisc.org

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full license
text is available at https://creativecommons.org/licenses/by/4.0/.

Command-Line Arguments

I think it's probably better to beef up the binutils documentation rather than duplicating it here.

Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on which
extensions are included: The general registers (with the program counter), control registers, floating point
registers (F extension), and vector registers (V extension).

General registers

The RV32I base integer ISA includes 32 registers, named xe to x31 . The program counter pC is separate
from these registers, in contrast to other processors such as the ARM-32. The first register, xe , has a
special function: Reading it always returns 0 and writes to it are ignored. As we will see later, this allows
various tricks and simplifications.

In practice, the programmer doesn't use this notation for the registers. Though x1 to x31 are all equally
general-use registers as far as the processor is concerned, by convention certain registers are used for
special tasks. In assembler, they are given standardized names as part of the RISC-V application binary
interface (ABI). This is what you will usually see in code listings. If you really want to see the numeric
register names, the -m argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 Zero hardwired to O, ignores writes n/a
x1 ra return address for jumps no
X2 sp stack pointer yes
x3 ap global pointer n/a
x4 tp thread pointer n/a
x5 10 temporary register 0 no
X6 1 temporary register 1 no
X7 12 temporary register 2 no
x8 sOorfp saved register O or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument0 no
x11 al return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 ad function argument 4 no
x15 ab function argument 5 no
x16 a6 function argument 6 no
x17 a’ function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 7 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 13 temporary register 3 no
x29 t4 temporary register 4 no
x30 15 temporary register 5 no

x31 16 temporary register 6 no

Register ABI Use by convention Preserved?

pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman "The RISC-V Reader"
(2017)

As a general rule, the saved registers se to si11 are preserved across function calls, while the argument
registers ae to a7 and the temporary registers te to té6 are not. The use of the various specialized
registers such as sp by convention will be discussed later in more detail.

Control registers

(TBA)

Floating Point registers (RV32F)
(TBA)

Vector registers (RV32V)

(TBA)

Addressing

Addressing formats like %pcrel_lo(). We can just link to the RISC-V PS ABI document to describe what the
relocations actually do.

Instruction Set

Official Specifications webpage:
e https://riscv.org/specifications/
Latest Specifications draft repository:

¢ https://github.com/riscv/riscv-isa-manual

Instructions

RISC-V User Level ISA Specification

https://riscv.org/specifications/

RISC-V Privileged ISA Specification

https://riscv.org/specifications/privileged-isa/

Instruction Aliases

ALIAS line from opcodes/riscv-opc.c

To better diagnose situations where the program flow reaches an unexpected location, you might want to
emit there an instruction that's known to trap. You can use an uNIMp pseudo-instruction, which should trap
in nearly all systems. The de facto standard implementation of this instruction is:

e C.UNIMP : @000 . The all-zeroes pattern is not a valid instruction. Any system which traps on invalid
instructions will thus trap on this univp instruction form. Despite not being a valid instruction, it still fits
the 16-bit (compressed) instruction format, and so eeee eeee is interpreted as being two 16-bit unimp
instructions.

e UNIMP : Ceee1073 . Thisis an alias for CSRRW x@, cycle, x@ .Since cycle is aread-only CSR, then
(whether this CSR exists or not) an attempt to write into it will generate an illegal instruction exception.
This 32-bit form of unIMP is emitted when targeting a system without the C extension, or when the

.option norvc directive is used.

Pseudo Ops

Both the RISC-V-specific and GNU .-prefixed options.

The following table lists assembler directives:

Directive Arguments Description

.align integer align to power of 2 (alias for .p2align)

file "filename" emit filename FILE LOCAL symbol table

.globl symbol_name emit symbol_name to symbol table (scope GLOBAL)

local symbol_name emit symbol_name to symbol table (scope LOCAL)

.comm symbol_name,size,align emit common object to .bss section

.common symbol_name,size,align emit common object to .bss section

.ident "string" accepted for source compatibility

section [{.text, .data,.rodata, bss}] emit section (if not present, default .text) and make
current

.size symbol, symbol accepted for source compatibility

text emit .text section (if not present) and make current

.data emit .data section (if not present) and make current

e emit .rodata section (if not present) and make
current

.bss emit .bss section (if not present) and make current

.string "string" emit string

.asciz "string" emit string (alias for .string)

Directive
.equ
.macro
.endm
type
.option
.byte
.2byte
.half
.short
Abyte
.word
.long
.8byte
.dword
.quad
.dtprelword
.dtpreldword
.sleb128
.uleb128
.p2align
.balign

.Zero

Arguments
name, value

name arg1 [, argn]

symbol, @function
{rvc,norvc,pic,nopic,push,pop}
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression [, expression]*
expression

expression
p2,[pad_val=0],max
b,[pad_val=0]

integer

Assembler Relocation Functions

Description

constant definition

begin macro definition \argname to substitute
end macro definition

accepted for source compatibility
RISC-V options

8-bit comma separated words

16-bit comma separated words
16-bit comma separated words
16-bit comma separated words
32-bit comma separated words
32-bit comma separated words
32-bit comma separated words
64-bit comma separated words
64-bit comma separated words
64-bit comma separated words
32-bit thread local word

64-bit thread local word

signed little endian base 128, DWARF
unsigned little endian base 128, DWARF
align to power of 2

byte align

zero bytes

The following table lists assembler relocation expansions:

Assembler Notation

Y%hi(symbol)

Y%lo(symbol)

Y%pcrel_hi(symbol)

Y%pcrel_lo(label)

Y%tprel_hi(symbol)

Description
Absolute (HI20)
Absolute (LO12)

PC-relative (HI20)

PC-relative (LO12)

TLS LE "Local Exec"

Instruction / Macro
lui

load, store, add
auipc

load, store, add

lui

Assembler Notation Description Instruction / Macro

Y%tprel_lo(symbol) TLS LE "Local Exec" load, store, add
Y%tprel_add(symbol) TLS LE "Local Exec" add
Y%tls_ie_pcrel_hi(symbol) * TLS IE "Initial Exec" (HI20) auipc

%tls_gd_pcrel_hi(symbol) * TLS GD "Global Dynamic" (HI20) auipc

%got_pcrel_hi(symbol) * GOT PC-relative (HI20) auipc

* These reuse %pcrel_lo(label) for their lower half

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the
symbol table of the compiled module.

loop:
j loop

Numeric labels are used for local references. References to local labels are suffixed with 'f' for a forward
reference or 'b' for a backwards reference.

Absolute addressing
The following example shows how to load an absolute address:

.section .text
.globl _start

_start:
lui ae, %hi(msg) # load msg(hi)
addi ae, ae, %lo(msg) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:
.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:

9: 000005bh7 lui al,oxo
@: R_RISCV_HI20 msg

4: 00858593 addi al,a1,8 # 8 <.L21>
4: R_RISCV_LO12_I msg

Relative addressing

The following example shows how to load a PC-relative address:

.section .text
.globl _start

_start:

1: auipc a0, %pcrel_hi(msg) # load msg(hi)
addi a@, ao, %pcrel_lo(lb) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:
.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:

0: 00000597 auipc al,oxe
0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi al,al,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_T .L11

GOT-indirect addressing

The following example shows how to load an address from the GOT:

.section .text
.globl _start

_start:

1: auipc a0, %got_pcrel_hi(msg) # load msg(hi)
1d a0, %pcrel_lo(1lb)(a@) # load msg(lo)
jal ra, puts

2: j 2b

.section .rodata
msg:
.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:

0: 00000517 auipc a0,0x0
0: R_RISCV_GOT_HI20 msg
4: 00053503 1d 20,0(a0) # @ <_start>

4: R_RISCV_PCREL_LO12_T .L11

Load Immediate

The following example shows the 1i pseudo instruction which is used to load immediate values:

.section .text
.globl _start
_start:

.equ CONSTANT, Oxcafebabe

1i a@, CONSTANT

which generates the following assembler output as seen by objdump:

0000000000000000 <_start>:

0: 00032537 lui a0,0x32

4: bfb50513 addi a0,an,-1029

8: 00e51513 s11i a0, a0, 0xe

C abe50513 addi a0,a0,-1346
Load Address

The following example shows the 1a pseudo instruction which is used to load symbol addresses:

.section .text
.globl _start
_start:

la a0, msg
.section .rodata

msg:
.string "Hello World\n"

which generates the following assembler output and relocations for non-PIC as seen by objdump:

0000000000000000 <_start>:

0: 00000517 auipc a0,0x0
0: R_RISCV_PCREL_HI20 msg
4: 00850513 addi 20,a0,8 # 8 <_start+ox8>

4: R_RISCV_PCREL_LO12_T .L11

and generates the following assembler output and relocations for PIC as seen by objdump:

0000000000000000 <_start>:

0: 00000517 auipc a20,0x0
@: R_RISCV_GOT_HI2@ msg
4: 00053503 1d 20,0(a0) # 0 <_start>

4: R_RISCV_PCREL_LO12 I .L@

Constants

The following example shows loading a constant using the %hi and %lo assembler functions.

.equ UART_BASE, 0x40003000

lui ao, %hi(UART_BASE)
addi a@, a®, %lo(UART BASE)

This example uses the 1i pseudoinstruction to load a constant and writes a string using polled IO to a
UART:

.equ UART_BASE, 0x40003000
.equ REG_RBR, ©

.equ REG_TBR, @

.equ REG_IIR, 2

.equ IIR_TX_RDY, 2

.equ IIR_RX_RDY, 4

.section .text
.globl _start

start:

auipc a@, %pcrel_hi(msg) # load msg(hi)
addi a@, a@, %pcrel_lo(lb) # load msg(lo)
jal ra, puts

j 3b

1i a2, UART_BASE

lbu a1, (a@)

beqz a1, 3f

1bu a3, REG_IIR(a2)
andi a3, a3, IIR_TX_RDY
beqz a3, 2b

sb al, REG_TBR(a2)

addi a@, a0, 1

j 1b

ret

.section .rodata
msg:

.string "Hello World\n"

Floating-point rounding modes

For floating-point instructions with a rounding mode field, the rounding mode can be specified by adding an
additional operand. e.g. fcvt.w.s with round-to-zero can be written as fcvt.w.s ae, fae, rtz.If
unspecified, the default dyn rounding mode will be used.

Supported rounding modes are as follows (must be specified in lowercase):

rne :
rtz :
rdn :

rup :

rmm

dyn :
used)

round to nearest, ties to even
round towards zero
round down

round up

: round to nearest, ties to max magnitude

dynamic rounding mode (the rounding mode specified in the frm field of the fcsr registeris

Control and Status Registers

The following code sample shows how to enable timer interrupts, set and wait for a timer interrupt to occur:

.equ RTC_BASE,
.equ TIMER_BASE,

setup machine

g auipc
addi
csrrw

set mstatus.MI
1i
csrrs

set mie.MTIE=1
1i
csrrs

read from mtim
1i
1d

write to mtime
1i
1li
add
sd

loop
loop:
wfi
j loop

break on inter

mtvec:
csrrc t
bgez to,
slli to,
srli to,
1i t1, 7
bne to,
j pass

pass:
la a0, p
jal puts
j shutdo

fail:
la a0, f
jal puts
j shutdo

.section .rodata

pass_msg:
.string

fail_msg:
.string

0x40000000
0x40004000

trap vector

t0, %pcrel_hi(mtvec) # load mtvec(hi)
t0, t0, %pcrel_lo(1b) # load mtvec(lo)
zero, mtvec, to

E=1 (enable M mode interrupt)
to, 8
zero, mstatus, to

(enable M mode timer interrupts)
to, 128
zero, mie, tO

e
a0, RTC_BASE
al, 0(aov)

cmp
a0, TIMER_BASE
t0, 1000000000

al, al, teo
al, 0(aov)

rupt
0, mcause, zero
fail # interrupt causes are less than zero
to, 1 # shift off high bit
to, 1

check this is an m_timer interrupt
t1, fail

ass_msg

wn

ail _msg

wn

"PASS\n"

"FAIL\n"

