HONOR CODE

¢ | have not used any online resources during the exam.

¢ | have not obtained any help either from anyone in the class or outside when completing this exam.
¢ No sharing of notes/slides/textbook between students.

* NO SMARTPHONES.

* CANVAS ANSWERS WILL BE LOCKED AFTER 1ST TRY.

Questions Sheet.

Read all of the following information before starting the exam:

¢ For each question fill out the appropriate choice or write text on Canvas page. Also type clearly on in the exam on the appropriate text.

e |F THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF THE MULTIPLE-CHOICE ANSWER IS CORRECT,
WE WILL READ THE WRITTEN PORTION.

¢ Show all work, clearly and in order, if you want to get full credit.

¢ | reserve the right to take off points if | cannot see how you logically got to the answer (even if your final answeris correct).

¢ Circle or otherwise indicate your final answers.

¢ Please keep your written answers brief; be clear and to the point.

* | will take points off for rambling and for incorrect or irrelevant statements. This test has six problems.

HONOR CODE
Questions Sheet.
Section Virtual Memory 22 points. Canvas Q1-Q22
o Common questions. Canvas Q1-Q2
o For the virtual address 0x2cade0 answer the following Canvas Q3-Q12
o For the virtual address 0x301754 answer the following. Canvas Q13-Q22
B. Section Cache | Questions. 15 points. Canvas Q23-Q25
C. Section Cache Il Questions. 20 points. Canvas Q26-Q31
D. RISC-V Pipeline 20 points. Canvas Q32-Q41
E. RISC-V Datapath 20 points. Canvas Q42-Q51
F. RISC-V Program 10 points. Canvas Q52-Q53

Section Virtual Memory 22 points. Canvas Q1-Q22

Refer slide deck L21-VM-III Week 8 if you need to.

The chart below shows how memory accesses are treated in a system. The table below describes the parameters int he memory system.

Please use the data below to answer question groups Q1,Q2,Q3,Q4 on canvas.

CAUTION: When converting from binary to hex you can always pad the MSB
e.g., 10 1010 (6 bit field) in hex is 0010 1010 (2 @s padded in MSB)

is @x2a .
request from CPU: n-bit virtual address
h 4
split to access TLB: TLB Indexl Page Offset
(on TLB miss) access PT: | Virtual Page Number I Page offset
TRANSLATION
m-bit physical X
address: | Physical Page Number] Page offset
h h 4

split to access cache: Cache Index| Offset

Parameter
Physical address bits
Size of page

Virtual address bits

TLB Sets
TLB Ways

TLB Size

Cache block
Cache size
Cache Sets

Cache Ways

Terminology

¢ VPN - Virtual page number

¢ Index (Set index of cache or TLB)
¢ PPN - Physical page number

¢ INVALID. TLB entry is invalid

e TLB-T (TLB Tag)

Value
18
1KB or 1024 bytes

22

16 entries
16 bytes
256 bytes
4

4

LB

TLB-T:[0xe8] Index:[0x0]
TLB-T:[0x2fa] Index:[0x1]
TLB-T:[0x71] Index:[0x2]

TLB-T:[0x2ca] Index:[0x3]

TLB-T:[0x23c] Index:[0x0]
TLB-T:[0x2fc] Index:[0x1]
TLB-T:[0x5] Index:[0x2]

TLB-T:[0x2db] Index:[0x3]

TLB-T:[0x1ce] Index:[0x0]
TLB-T:[0x301] Index:[0x1]
TLB-T:[0x236] Index:[0x2]

TLB-T:[0x21a] Index:[0x3]

TLB-T:[0x118] Index:[0x0]
TLB-T:[0xf] Index:[0x1]
TLB-T:[0x298] Index:[0x2]

TLB-T:[0x29d] Index:[0x3]

Page Table (Partial)

CAUTION: Only partial table relevant to the questions are shown.

VPN

O0xb2b

0x8e9

0xc05

0x2db

0x738

0x3a0

Oxbe9

0x1c6

0x8f0

Oxbf1

0x016

Way 0

Way 1

Way 2

Way 3

0x70

0x8d

Oxbd

0x13

0x9d

0x91

0x47

0x99

PPN

INVALID

0x8d

INVALID

0x70

INVALID

Oxbd

INVALID

INVALID

INVALID

0x33

INVALID

Ox1f

0x91

Oxfa

0x99

0x13

PPN

PPN

PPN

Valid

PPN

Cache

e WayO

Way 0

Tag:
[0x917]
Index:
[0x0]

Tag:
[0x8d5]
Index:
[0x1]

Tag:
[0x707]
Index:
[0x2]

Tag:
[0x7b7]
Index:
[0x3]

e Way 1

Way 1

Tag:
[0x133]
Index:
[0x0]

Tag:
[0x761]
Index:
[0x1]

Tag:
[0x336]
Index:
[0x2]

Tag:
[Oxbaf]
Index:
[Ox3]

0

Oxe8

Oxed

Ox5a

0x57

Ox4f

0xb9

0x27

Oxcb

0x13

0x2b

0xd9

Oxb4

Oxa0

0xO0f

0x90

Ox7d

0x9e

0x0d

0xc9

Ox4c

0x34

0x68

0x08

Ox7e

0x26

0xd3

0x38

Oxda

0x03

0x06

0x04

0x48

Oxaf

0xa0

0x50

Ox4a

0x7c

Oxed

0x50

0x04

0xc5

0xb2

Oxba

Oxbb

0x72

0xb7

Oxbe

0x40

0x72

0xO0f

0x35

0xc6

0x20

Oxad

0xd8

Oxba

0x44

0x9a

0x0c

0x25

0x46

0x7d

0x7b

0x33

Oxbc

0xe9

Ox4c

0x8c

0x12

Oxca

0x92

0x79

0x6d

Ox7e

0x8c

0x5f

Oxbd

Oxb1

0x08

Oxca

10

0x78

0xc8

0xd7

Ox7a

10

0x7b

0x83

0x9b

0x50

11

0x50

0x0e

Oxc7

0x24

11

0x74

0x10

Oxb7

Ox1d

12

0x66

Ox1e

Oxaa

0xd5

12

Oxbe

Oxa2

0Ox6d

0x4f

13

0ox2f

0x13

0x79

Oxac

13

Oxf7

0x9e

Oxe1

0xf5

14

0x66

Oxea

0ox2f

Oxc4

14

0x38

0x9f

Oxc2

Oxbd

15

0x8f

Ox6a

0x0d

0xc3

15

0x11

0xd8

Ox2e

0x8e

e Way 2

Way 2

Tag:
[0x39]
Index:
[Ox0]

Tag:
[0xdcO0]
Index:
[0x1]

Tag:
[Ox1f8]
Index:
[0x2]

Tag:
[Oxfab]
Index:
[0x3]

e Way 3

Way 3

Tag:
[0x2b0]
Index:
[0x0]

Tag:
[0xbdd]
Index:
[0x1]

Tag:
[Ox47c]
Index:
[Ox2]

Tag:
[0x815]
Index:
[0x3]

Oxe6

0x47

Oxce

Oxee

0x35

0xc5

Oxbe

0x27

0x03

Ox8f

Oxbd

Oxef

0x76

0x87

0xdo

0x3f

0x8b

0x7a

Oxa3

Oxe6

0x31

0x52

Oxfa

Oxce

Ox4f

Ox8f

0xd5

Oxcd

Oxa3

0x27

Oxd1

0xd8

Oxcc

0x70

0x22

0x00

0x23

0x94

Oxad

0xc7

0x42

0x57

0x46

Oxe7

0x54

Oxcd

0x91

Ox1d

0x16

Oxbd

0xb9

0Ox3f

0x74

Oxe4

Oxb4

Oxbe

Oxa7

0x90

0x27

0xd9

Oxle

0x53

Oxb4

0x2¢c

0xdo

Oxef

Oxee

0x65

Oxci

Oxeb

0x2c

Oxab

0x8d

Oxec

0x57

0xdO0

0x16

Oxb5

0x43

0x4f

10

0x9b

0x5f

0x28

Oxcc

10

0xd3

Oxa2

Oxce

0x0d

11

Ox7d

Oxb4

0Oxe8

0x60

11

0x18

0xd9

0x45

0x13

12

0x9e

Ox1e

Ox7a

0x27

12

0x59

0x28

0xc0

0x55

13

0x10

0x62

0x27

0x80

13

Oxfb

0x61

Oxdb

Oxde

14

0x36

Oxe8

ox2f

0x7b

14

Oxdf

0x34

0x73

Oxa5

15

0x9d

0xd6

0x3c

0xe3

15

Ox2a

0x43

0x44

Oxed

Common questions. Canvas Q1-Q2
1. How many bits is the VPN ?
. 12
2. How many bits is the PPN ?

e 8

For the virtual address 0x2cadeO answer the following Canvas Q3-Q12

What is the VPN
* Oxb2b
What is the TLB tag.

e Ox2ca

¢ |sita TLB hit or miss
o Hit

¢ |s it a page fault
o NO

¢ What is the PPN ?
o 0x70

¢ what is the cache tag ?
o 0x707

¢ what is the cache index
o 0x2

¢ What is the byte offset
o 0x0

¢ Is it a cache hit or miss
o Hit

e What is the data byte
o 0Oxb5a

For the virtual address 0x301754 answer the following. Canvas Q13-Q22

¢ What is the VPN
o 0xc05

e What is the TLB tag.
o 0x301

¢ |sita TLB hit or miss
o Hit

¢ [s it a page fault
o NO

e What is the PPN ?
o Oxbd

¢ what is the cache tag ?
o Oxbdd

e what is the cache index
o 0x1

¢ What is the byte offset
o Ox4

¢ |s it a cache hit or miss
o Hit

e What is the data byte
o 0x94 (Correct). If you answered None of the above or 0x27 you got points.

B. Section Cache | Questions. 15 points. Canvas Q23-Q25

Refer L14-Cache I if you have to

Let the A[0] be at 0x00000 and B[0] be at 0x10000. The size of an integer is 4 bytes. Size of each array is 1024 ints. Describe the behavior of the
following code when run on the cache and answer the questions. Assume that there is 1 level of cache and it is completely empty when starting this
program. The size of the cache is 2 KB, 16 sets, 16 ways and 8 byte blocks.

1 | int A[1024], B[1024];

2 | void loops() {

3 // Loop 1

4 for (int index = @; index < 32; index++) {
5 B[index] = oxff;

6 A[index] = oxff;

7 }

8 // Loop 2

9 for (int index = 32; index < 1024 index++) {
10 B[index] = B[index - 16] + A[index - 16] ;
11 A[index] = B[index - 8] + A[index - 8] ;
12 }

13 |}

14 | 1 level of cache

15 Fommmm - - +

16 | | 16 sets |

17 | 16 ways |

18 | | 8 byte block]|

19 Fommmmm e - +

20

23. What is the miss rate for loop 1? (Assume that only loop 1 runs). 5 points

1/2

Miss/Hit Pattern is MMHH.The hit rate is 50%.

24. What is in the cache at the end of loop 1?7 5 points

A[0:31], B[0:31]

25. What is the miss rate for loop 2 ? Assume that loop 1 has already run to completion and has warmed up the cache. 5 points

Hit rate: 10/12
Miss rate: 2/12 or 1/6

The miss/hit pattern is H A (index - 8) H A(index-16) M (A-index) H HM (iteration=0), HHHHHH (iteration 1).
Each 6 accesses are from one iteration of the for loop.
10/12 accesses

In the first iteration of loop 2, B[index-16], Alindex-16], B[index-8] and A[index-8] are already in the cache (since loop 1 has run,
see answer to question 24). (index=32 so B[16], A[16], B[24], A[24] are all in the cache)

B[32] and A[32] are not in the cache. So in this iteration you have 4 hits and 2 misses.

In the second iteration, since each block has 8 bytes (2 ints), B[33] and A[33] are now in the cache since they were brought in
during the first loop iteration when you accessed B[32] and A[32]. So the second iteration has 6 hits.

So after two iterations you have 10 hits and 2 misses.

This pattern repeats for the 3rd and 4th iterations (miss on A[34] and B[34] and hit on all the others), and continues to repeat for
all other pairs of iterations in loop 2.

extra: How does the 16 ways work, what elements are stored in each way?
Each way stores a different block that belongs to the same cache set. All ways in a set have the same set index bits but
different tag bits. Please review the cache lecture (week 7) for more details about set-associative caches.

C. Section Cache Il Questions. 20 points. Canvas Q26-Q31

1 | int src[2048]; Address - 0x0000
2 | int dest[2048]; Address - ©x1000
3 | for (int 1 = 0; i<2048; i += 4) {
4 b[i] = a[i];

5 |}

6

7 | Cache Parameters

8

9 | sizeof(int) - 4 bytes

10 | 1 level of cache

11 e il +

12 | | 512 byte |

13 | |Direct mapped |

14 | |32 bytes/block or 8 ints|

15 e el +

16

17 | Cache layout

18

19 1 way (Direct mapped)

20 Fommmm e - +

21 | (32 byte or 8 int)|

22 Fommmm e - +

23 | |

24 F--mmmmm e - +

25 |16 | |

26 | sets+-----------oo-ooo- +

26. Assuming the total size of the physical address is 32 bits. What is the number of bits required by tag, index and offset (4 points)
Tag: 23 Index: 4 Offset: 5

27. What is the hit rate of this direct-mapped cache? (4 points)

0 . BJ[i] conflicts with A[i]. Direct mapped cache. A is brought in and then B is brought in and evicts A. Nothing hits.

28. What type of misses occur (Conflict, Compulsory, Capacity) ? (2 points)

Conflict and Compulsory.

29. Now consider a 2-way set associative cache. 512 bytes. 8 words/block.
What is the hit rate ? (4 points)

1/2. MMHH

A[0] and A[3] fall in the same cache line

B[0] and B[3] fall in the same cache line . i+=4 means you access every fourth element. A block has 8 words and you access 2.30.
What type of misses occur (Conflict, Compulsory, Capacity) ? (2 points)

Compulsory

31. Now consider a 4-way set associative cache. 512 bytes. 8 words/block.
What is the hit rate ? (4 points)

1/2

D. RISC-V Pipeline 20 points. Canvas Q32-Q41

Refer slide deck L29-Hazard Week 11 if you need to.

Consider a typical 5-stage (Fetch,Decode,EXecute,Memory,WriteBack) pipeline.Assume pipeline registers exist where the dotted lines are

alu

PC

pc+4

Instruction Fetch

(IF

wh

IMEM

inst[11:7

inst[19:1

I
I
I
I
1| inst[24:2
I
I
I

Instruction Decode/ I
Register Read

I ID

\A4

ALU Execute
EX

This pipeline is more simple than the one you dealt with in the assignment.

¢ Forwarding/Bypassing is not implemented; dependent instructions will have to wait in the ID stage.

(CAUTION: In lecture we illustrated dependent instructions waiting in the IF stage)

Memory Access

Write Back

MEM wWB

¢ Following a branch, the next instructions always fetches from PC+4 until the branch is resolved in the WB stage

(CAUTION: Note that the lecture slides resolved branch in the EX stage). Flush the pipeline if branch is taken.

¢ We can read and write from the same registers or memory location in the same clock cycle. Any memory location can be accessed

Answer questions based on the following program

addi x9, xo, oxF
addi x18, x0, ©
beq x9, x18, exit
1w x9, 10(x8)
xor x9, x9, x18
exit:

sw X9, 10(x8)

N o v~ wN R

#

Instruction
Instruction
Instruction
Instruction
Instruction

uih wN R

Instruction 6

Hint: Start by creating a pipeline sheet similar to Assignment 6 (with pen and paper)

J Ins-Cycde 2
addi x9, x0, 0xF D EX
addi x18, x0. 0 IF [1n]
beg x8, x18, sxit IF
bw %9, 10(=8)
wor 38, x9, x18
sw %8, 10{x8)

3

4 5 3
MEM WB
EX MEM WB
D D D EX
IF IF IF o

IF

7 a
MEM WE
EX MEM
D D

9 10 " 12 13 14
WE
D EX MEM WE
IF D D D EX MEM

32. In which cycle does addi x18,x0,@ (instruction 2) run the EX stage ?

Cycle 4.

383. In which cycle does beq x9,x18,exit (instruction 3) read the registers?

Cycle 6. beq reads register x18 and instruction 2 writes register x18.

WE

ashriram
Sticky Note
sw should start IF at cycle 8?
Pipeline sheet missed that). So it remains stalled in IF for two cycles (until xor leaves ID) then stalls two more cycles in ID.

ashriram
Sticky Note
It stalls in ID for two extra cycles (like the question mentions). In the pipeline discussion from class and assignment 6, it would stall in IF and not proceed to ID until its dependences are satisfied (cycle 6 where instruction 2 finishes WB).

After a branch, you fetch the next sequential instruction (at address PC+4) so instruction 4 goes to IF in cycle 3. Then if the branch turns out to be taken (in EX), you stall the subsequent instructions and start fetching from the correct target address of the branch in the next cycle (after branch finishes EX).

34. In which cycle does the 1w x9, 10(x8) (instruction 4) start the IF stage ?

Cycle 4 or Cycle 6 depending on whether beq stalled in IF or ID.

35. In which cycle does the 1w x9, 10(x8) read the registers ?

Cycle 7.

36. In which cycle does the xor x9, x9, x18 (instruction 5) reach the IF stage ?Cycle 7.
37. In which cycle does the xor x9,x9,x18 (instruction 5) read the registers ?

Cycle 10. Not until lw reaches the WB stage. xor is dependent on the load.
load writes x9. xor reads x9

38. In which stage is sw x9, 10(x8) stalled and how many cycles?

ID and spends 3 cycles in it (2 cycles of which are stalls).

Now when comparing to baseline pipeline (forwarding/bypassing implemented, branch resolves in EX etc). Then sw would start at IF 8 (but here it starts
at 10 so 2 additional cycles). Then further 2 cycles for ID (so total 4 cycles).

39. In which cycle does the sw x9, 10(x8) (instruction 6) write the memory location ?Cycle 15

40. How many instructions are stalled due to data hazards ?

3

41. How many cycles do we have stall in total for this program ? i.e., Consider a program with 6 instruction and no hazards and ran to completion in T
cycles. This program completed in T_hazard cycles. What is (T_hazard - T)?

6

The first thing to notice for this question is that the datapath does not implement bypassing. Recall that instructions read their registers in stage ID, and
write registers in WB. These restrictions mean that if instruction B needs a register that instruction A writes, then B can start the ID stage in the same
cycle.

Instruction 2: This doesn’t have any data dependencies, so we just need to worry about structural hazards. It can start as soon as the IF stage is
available (cycle 2.

Instruction 3: This instruction reads register x18 which was written by the previous instruction. Therefore we must wait until the previous has reached
its WB stage before running beq’s ID stage (c6).

Instruction 4: Iw s1 0xc(s0):At this point, the result of the branch doesn’t matter because it is always predicted to be not taken. Also, the branch doesn’t
write any registers,so we don’t have any data dependencies and can start as soon as the stages are available. In this case, the fetch can start on c4,
but the decode has to wait until beq is in the EX stage. (Cycle 7)

Instruction 5: This instruction cannot start until the load instruction is in the ID stage.

Instruction 6: Data hazard on instruction 5. Store reads register x9, xor calculates register x9. Branch is not taken so all instructions can continue
running.

IF branch is taken, then we have to wait till WB to flush (following instructions may enter the pipeline)

|.|n5-CycIe 1 2 3 4 5 6 7 8 9 10 11 12 13
addi x9, x0, OxF IF D EX MEM WB

addi x18, x0, OxF IF D EX MEM wB

beq x9, x18, exit IF 1D D 1D EX MEM WB

Iw x9, 10(x8) IF IF IF D EX EX

xor x9, x9, x18 IF D 1D

sw x9, 10(x8) IF IF IF ID EX MEM wB

E. RISC-V Datapath 20 points. Canvas Q42-Q51

We wish to introduce a new instruction into our RISC-V datapath.
RELU . This is related to the relu operation in assignment 3. The instruction works as follows.

rd_rs2, is a register that acts as a source
and destination register
RELU rd_rs2, offset(rsil)
if (@<=R[rd_rs2])
MEM[R[rs1]+offset] = R[rd_rs2]
else
MEM[RS[rsl1]+offset] = ©
R[rd_rs2] = ©

00 NGOV A WN R

It combines the semantics of branch, load and store.

¢ Like aload it performs arithmetic using the ALU for calculating Rlrs1]l+offset the memory address to be modified.

¢ Like a store it updates the MEM[address] with a value (either rd or 0).

¢ Like a branch it performs comparison. However the operands used are different. In a typical branch operation A<=B A is obtained from rs1 and B
is obtained from rd_rs2. In RELU, A is always 0 and B is rd_rs2.

¢ Typically, the branch comparison will modify PC. However, here the branch comparison influences what value is stored to Memory, either R[rd_rs2]
or 0.

¢ Further, the branch comparison influences the value of rd in a load operation, if the branch comparison fails the R[rd_rs2] is 0.

Caution 1: In a typical RISC-V instruction rs2 field is used as source only and rd as destination only.
In this case we are using the rd field also as a source when performing the comparison operation line 4

and writing to memory (line 5). We are also using rd field as a destination register in line 8.

Given the single cycle datapath below, select the correct modifications in parts such that the datapath executes correctly for this new instruction (and
all other instructions!). You can make the following assumptions:

¢ We have a new control signal RELU which is 1 if the instruction being decoded is a RELU
¢ ALUsel is add when we have a RELU instruction
¢ The immediate generate sign extends the offset similar to load instructions.

Caution 2: Pay careful attention to which input line is 1 and which line is @ in the muxes.
Some muxes choose top-most input as @, some choose bottom-most input as @

Hint: YOU DO NOT REQUIRE TRUTH TABLES
Try writing down in plain english or reading out the logic

to yourself e.g, !(A<=B) is A is not equal to B and A is not LT (less than) B

Baseline Pipeline

pc+4
Regl] pc| Mux-A alu
"0 bataD .
atla 2
alu 1 inst] Reg[rs1] ALU DMEM .
inst[11:7
0 AddrD / ddr b
pc+4 ¢ im0 b0 Branch Reg[rsZ].O\ T > DataR 0 w
' st Comp. ux-B _)IDataW mem W
inst[24:20] JAddrB DataBler—> »1 A
A
A L\(’ (!
N
Imm. | limmzLo]
Gen
¥ A\ A 4
PCSel inst[31:0] ImmSel RegWEn UNEQ LT BSel ASel ALUSel MemRW WBSel
Pipeline with RELU (Red boxes indicate questions)
Mux-A pc+d
+4 Reg[] pc alu
wb >11
DataD al
> Reg[rs1
IMEM| "7 haaro hdar b
Reg[rs2] N > DataR Sl
AddrA Data/ >[0 |
Q45 Mux-B IDWaMtQMW mem A\
AddrB Data) A
Q44 b - <l VT
Q46
Q49 |=Q 47
Imm. T Timh31:0]
IGen
T I
PCSel inst[31:0] ImmSel RegWEn UNEQLT BSel ASel ALUSel | MemRW WBSe

RELU : 1 if RELU instruction, 0 otherwise

42. What type of instruction is RELU ?

|-type Load. 1 source, 1 destinaton, 1 immediate. However the instruction also uses rd as a rs2 for branch comparisons and writing to memory.
We use rd as rs2 since rs2 is the only register that is forwarded to memory as well in stores.

43. Which instruction field can be written to memory in the baseline pipeline?
rs2

44. Consider the following modifications to the source Regl] inputs. Which configuration will allow this instruction to execute correctly without
breaking the ex-ecution of other instructions in our instruction set?

Rd (destination) -

oy Addr B :RSZE(destinatibh)
RS2 (Operand B)-

.0 (constant
Zero)

RELU

(d) No change from baseline
RS2 (destination) ——Addr &

A.
45, Consider the following modifications to the Branch . Which con-figuration will allow this instruction to execute correctly without breaking the ex-
ecution of other instructions in our instruction set? Branch calculates A==B and A<B

@ 7 (b) (©)

‘BranchComp

DataA EQ
0— il DataB - - LT

Data B — Branch :

BranchComp Data A
DataA EQ

DataB T
Branch

DataA
DataB HLE
Branch

‘RELU" -

(d) No change from baseline

Data A ‘BranchComp-

Data B

A. All branches are comparisons of type A==B? or A<B? Here if RELU we set A = 0 and B = R[Rs2] (default
behavior). So we are comparine 0 < R[rs2]?, 0 == R[Rs2]. If we say NOT (== OR <) i.e, Not
(0<R[rs2]) AND NOT (0<R[Rszj, . Then it is strictly greater 0 >R[rs2]. The else part of the block

46. Consider the following modifications to the DMEM inputs. Which configuration will allow this instruction to execute correctly without breaking the

execution of other instructions in our instruction set?

C. If RELU and 0 > R[rs2] then pick 0 as the value to be written to memory, otherwise then block pick R[rs2]. If
not RELU also pick R[rs2] e.g., for store instructions
47. Consider the following modifications to the DMEM control signal. Which configuration will allow this instruction to execute correctly without

breaking the execution of other instructions in our instruction set?

(a) (b) (©) (d)
RELU RELU RELU
MemRW MemRW: MemRW
D.
48. Consider the following modifications to the WB . Which configuration will allow this instruction to execute correctly
(a) (b) () (d)
ZERQ
—PC+4—p| i» wb —PC+4—p| —PC+4—p|
—ALU—»] wb —PC+4—p| —ALU—p-] wb —ALU—p-]
—MEM—3p| —ALU—p-| —MEM—p-| —MEM—p»
T ZERO__, —MEM—p T ZERQ_, T ZERQ_,
WBSel T wesel wasel
RELU WBSel
IEQ AND ILT
RELU IEQ AND ILT RELU
RELU
EQ LT
EQ LT

C. If RELU and 0 > R[rs2] then pick 0 as the value to be written to register (the else part of
the RELU instruction). If 0<= R[rs2] then does not matter what we pick cause we are

going to be disabling RegWen (see next question). If not RELU, pick default.
49. Consider the following modifications to the RegWwEn mux inputs. Which configuration will allow this instruction to execute

correctly

(@)

(€) (d)

RegWEn RegWEn RegWEn

“|iEQ AND ILT 'EQ AND ILT IEQ OR ILT

Rew RELU

EQ LT EQ LT EQ LT

B. If RELU and 0 > R[rs2] then pick 0 as the value to be written to register (the else part of the RELU
instruction). If 0<= R[rs2] then does not matter what we pick cause we are going to be disabling RegWen
(see next question). If not RELU, pick default.

50. What is the value of ASel?0 (We are using the ALU to calculate rs1+offset. The address for memory)

51. What is the value of BSel?1

F. RISC-V Program 10 points. Canvas Q52-Q53

We will be introducing a new instruction called lwa in RISC-V. In baseline RISCV the loads calculate addresses using an immediate and register.
However, in many programs typically the address is calculated using 2 registers. The semantics of the 1wa instruction (lwa rd,rs1,rs2) are dst =
MEM][rs1+rs2] e.g., lets say a0=0x4 a1=0x1000 Ilwa a2,a1,a0. a2 = MEM[0x1004]

You want to impress your friend, so you predict the result of executing the program as it is written, just by looking at it. If the program is guaranteed to
execute without crashing, describe what it prints, otherwise explain the bug that may cause a crash.

1 | .globl main

2 | .data

3 | a: .string "skayaks"

4 | table: .string "ZYXWVUTSRQPONMLKJIIHGFEDCBA12345"
5 | init: .string "XXXXXXX" # 7 Xs

6

7 .text

g8 | loop_header:

9 lbu s2, 0(a@) # Read character ch
10 beqz s2, end

11 addi s7,a0,0

12 addi a0,a0,1

13 la s4,table

14 | loop:

15 addi s1, s2, -97 #

16 andi s2,s2,0x1F # andi performs bitwise & 1lwa
17 s2,s2,s4 # New instruction

18 sb s2, 0(al)

19 addi a1,al,1

20 j loop_header

21

22 | end:

23 ret

24

25 | main:

26 la ao, a

27 la al,init

28 jal loop_header

29 1i a@,10

30 ecall

52. What 8 memory locations are modified. 5 points

0x10000028-0x1000002F

skayaks\O - 8 characters

ZYXWVUTSRQPONMLKJIHGFEDCBA12345\0 - 32 characters

The init starts at byte 40. or 0x28 from the base address of the data segment
0x10000000. a" will not be modified as branch will jump back to loop header.

53. What is the value in those memory locations. 5 points

GOYAYOG

We simply take the bottom 5 bits of the byte value of each letter and then use it as an idex to lookup the table. e.g., the bottom 5 bits of S is 19. Using table
as an array of 31 characters. Position number 19 is G.

You need to trace the value of each register in this code as it runs.
a0 starts with the address of string a 'skayaks' and is incremented by 1 inside the loop (line 12)
a1l starts with the address of string init (7 Xs) and is incremented by 1 inside the loop (line 19)

Each loop iteration: You load a character into s2 from string a at a time (read s then k then a etc.) (line 9) and exit if you read the end of string character (line
10) s4 stores the address of string table (line 13)

subtract 97 (ascii for a) from s2, so now s1 contains the order of the letter in the alphabet (line 15)

extract the last five bits from the character in s2 (line 16)

Use s2 as an index into table to get the character in position s2 (line 17)

You store that character into the corresponding character in string init (line 18)

So you basically copy the letters from table into init, where the index of the leter you write is the same as the order of the corresponding letter of string a in
the alphabet.

ashriram
Sticky Note
You need to trace the value of each register in this code as it runs.
a0 starts with the address of string a 'skayaks' and is incremented by 1 inside the loop (line 12)
a1 starts with the address of string init (7 Xs) and is incremented by 1 inside the loop (line 19)

Each loop iteration:
You load a character into s2 from string a at a time (read s then k then a etc.) (line 9) and exit if you read the end of string character (line 10)
s4 stores the address of string table (line 13)
subtract 97 (ascii for a) from s2, so now s1 contains the order of the letter in the alphabet (line 15)
extract the last five bits from the character in s2 (line 16)
Use s2 as an index into table to get the character in position s2 (line 17)
You store that character into the corresponding character in string init (line 18)

So you basically copy the letters from table into init, where the index of the letter you write is the same as the order of the corresponding letter of string a in the alphabet.

Dec HxOct Char Dec Hx Oct Himl Chr [Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0000 NUL jnull) 32 20 040 Zpace| 64 40 100 @ @ | 95 60 140 `
1 1 00l 50H {start of heading) 33 21 041 ! ! 65 41 101 A A | 97 61 141 a &
2z 2 002 5T (start of text) 34 22 042 " 7 66 42 102 «#66; B | 95 62 142 «#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 C C | 99 £3 143 c C
4 4004 EOT {end of transmizsion) 36 24 044 $ § 6% 44 104 «#68; D |100 g4 144 «$l00; d
§ 5 005 ENQ (enquiry) 37 25 045 %) % 59 45 105 E E [101 65 145 e &
6 6 006 ACK [acknowledge) 38 26 046 & & 70 46 106 F F [10Z 66 146 f €
7 7 007 BEL (bell) 39 27 047 ' " 7L 47 107 G G |10 67 147 g O
5 8§ 010 BS (backapace) 40 25 050 () | 72 48 110 H H |104 68 150 h h
9 9 011 TAE (horizontal tab) 41 29 051 l;) 73 49 111 I I |105 69 151 i 1
10 & 012 LF (NL line feed, new line)| 42 24 052 * ¥ 74 4k 112 J T (106 64 152 j 1]
11 B 013 ¥T (wertical tah) 43 2B 053 +) + 75 4B 113 K K [107 6B 153 k E
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 ,d; , 76 40 114 L L |108 6C 154 i 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M [109 6D 155 m m
14 E 018 50 (shift out) 46 ZE 056 s#46; . 75 4E 116 N N [110 6E 156 n n
15 F 017 I (shift in) 47 2F 057 / / 79 4F 117 O 0 [111 6F 157 &#lll; o
16 10 020 DLE {data link escape) 43 30 060 0 0 30 50 120 P P [112 70 160 p b
17 11 021 DC1 {device control 1) 49 31 061 1 1 8L 51 121 Q 0 [113 71 161 q o
15 12 022 DCZ (device control 2) 50 32 062 2 2 G2 52 l22 R R [114 72 162 &#ll4; ©
19 13 023 DC3 {device control 3) 51 33 063 3: 3 83 53 123 S 5 [115 73 163 &#ll5; =
20 14 024 DC4 (device control 4) 52 34 064 4 4 G4 54 1zd T T [116 74 164 &#ll6; ©
2l 15 025 NAK (negative acknowledge) 53 35 065 5 5 g5 55 125 U U [117 75 165 l17; u
22 16 026 SYN {(synchronous idle) 54 36 066 6) 6 86 56 126 V VW 1158 76 166 &#ll8; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 g7 57 127 W W 119 77 167 w W
24 1§ 030 CAN (cancel) 56 38 070 8 & 85 58 130 X ¥ [l20 78 170 &#l20; x
25 19 031 EM (end of medium) 587 39 071 9: 2 89 59 131 Y T (121 79 171 y ¥
26 lh 032 SUB (substitute) 58 34 072 : : 90 54 132 Z I |122 7A 172 &#l22; 2
27 1B 033 ESC (escape) 59 3B 073 ; ; 9l 5B 133 &«#91; [|123 7B 173 { !
25 1C 034 F& (file separator) 60 3C 074 s#60) < 02 5C 134 \ % (124 7C 174 | |
29 1D 035 G5 (group sSeparator) 6l 3D 075 l; = 93 5D 135] 1 |125 7D 175 })
30 1E 038 B3 {record separator) 62 3E 076 > > 94 SE 136 «#94; ~ |126 7E 176 ~ ~
31 1F 037 US (unit separator) 63 3F 077 ? 7 Q5 5F 137 U _ |127 7F 177 «#127; DEL

Source: www.LookupTables.com

