HONOR CODE
Questions Sheet.
A. Easy. Arrays. 6 points
 Q1-6
B. Hard. RISCV Blackbox. 6 Points
 7. What is the minimum set of registers need to be stored onto the stack at this point Point 1. ? [1]
 8. What is the minimum set of registers need to be stored onto the stack at this point: Point 2. ? [1]
 9. What is the minimum set of registers need to be restored from the stack at this point: Point 3 ? [1]
 10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at `line 6: CHECK`. What does result contain when your program pauses at the breakpoint? [3]
C. RISC-V Instructions Encoding [5 points]
 11. For the instruction line 2: `bgt t0, x0, end`. What is the immediate [1]
 12. Line 2:What is actual opcode, rs1 and rs2 (not pseudo-names) ? [1]
 14. What is the immediate field of line 8: `jal x0,loop` ? [1]
 15. What is the instruction corresponding to `0xFE9FF06F` ? [1]
D. Easy. RISC-V Custom Opcodes. 4 points
 16. What is the minimum bits would be required for the opcode field? [1]
 17. If the opcode bits were 5. what is the maximum number of registers. [1]
 18. What is the smallest range of immediate that an I instruction can use ? Opcode bits is same as Q16. Assume that register width is same as Q17. [1]
 19. What is the offset in terms of bytes for a jal instruction. Assume instruction start in 4 byte aligned offsets. Opcode bits is same as Q16. Assume that register width is same as Q17. [1]
E. Easy. Floating Point. 5 points
 20. What is the bias for the exponent ? [1]
 21. What is the smallest non-zero positive value that can be represented? (Normalized form) [1]
 22. How do you represent the number 3.5 ? [1]
 23. How do you represent -2^{-25} [1]
 24. How many numbers can this 12 bit floating point represent in the range $1 \leq f < 8$).
F. Easy 2s complement [5]
 25. Represent 0b10110100 as hexadecimal, unsigned decimal, and 2s complement decimal [1]
 26. What is the number of bits needed to represent a 3 digit base-6 number ? [1]
 27. Lets use MSB (most-significant bit) for sign (1- positive 0-ve) How many numbers can be represented ? [1]
 28. What base 6 number XXX represents 0? (That is, your answer needs to have 3 base-6 characters.)? [1]
 2006
G. Easy Lets C [7]
 29. What type of address does node.next->next->data point to? [1]
 30. What type of address does &add point to? [1]
31. What type of address does node.next->data point to? [1]
32. What type of address does node.prev->prev->data points to? [1]
32. What type of address does &node.prev->data points to? [1]
34. How many bytes of memory are allocated but not free()d by this program, if any? [3]

H. RISC-V Instruction II [6]
35. What does this sequence do. Explain? [2]
36. What does this sequence do. Explain? [2]
37. What does this sequence do. Explain? [2]

HONOR CODE

- I have not used any online resources during the exam.
- I have not obtained any help either from anyone in the class or outside when completing this exam.
- No sharing of notes/slides/textbook between students.
- NO SMARTPHONES.

Questions Sheet.

Read all of the following information before starting the exam:

- For each question fill out the appropriate choice or write text on page. Also type clearly on in the exam on the appropriate text.
- IF THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF THE MULTIPLE-CHOICE ANSWER IS CORRECT, WE WILL READ THE WRITTEN PORTION.
- 1 pt Qs (0 or 1). 2 or 3pt Qs (if no explanation only 1 pt.)
- Show all work, clearly and in order, if you want to get full credit.
- We reserve the right to take off points if we cannot see how you logically got to the answer (even if your final answer is correct). 1 or 2 sentences atmost.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point.
- I will take points off for rambling and for incorrect or irrelevant statements.
A. Easy. Arrays. 6 points

Q1-6

Given the multi-dimensional array of type int, fill in the table below. Assume pointers and ints are of size 4 bytes.
If value is unknown, write unknown.

<table>
<thead>
<tr>
<th>Access</th>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Array[2][0]</td>
<td>0x200</td>
<td>20</td>
</tr>
<tr>
<td>2. Array[1][-1]</td>
<td>0x10C</td>
<td>3</td>
</tr>
<tr>
<td>3. Array[2][20]</td>
<td>0x250</td>
<td>34</td>
</tr>
<tr>
<td>4. Array[3]</td>
<td>0x100C</td>
<td>0x240</td>
</tr>
<tr>
<td>5. Array[4][-16]</td>
<td>0x240</td>
<td>30</td>
</tr>
<tr>
<td>6. Array[3][16]</td>
<td>0x280</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

B. Hard. RISCV Blackbox. 6 Points

Assume we have two arrays input and output. Answer questions below

```c
int input[6] = {0x0, 0x5, 0x3, 0x4, 0x2, 0x1};
int result[6] = {0,0,0,0,0,0};
```

You can assume a0:input a1:result a2:8
7. What is the minimum set of registers need to be stored onto the stack at this point Point 1. ? [1]

t0,t1,t2,t3 or t0-t3 and a0-a1

8. What is the minmum set of registers need to be stored onto the stack at this point: Point 2. ? [1]

s0,s1,ra. 12 bytes

9. What is the minmum set of registers need to be restored from the stack at this point: Point 3 ? [1]

s0,s1,ra. 12 bytes

10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at `line 6: CHECK". What does result contain when your program pauses at the breakpoint? [3]

result = {0,1,4,2,3,5}
C. RISC-V Instructions Encoding [5 points]

Consider the standard RISC-V encoding below. Standard 32 bit instructions. Answer questions below.

```
loop:
  bgt t0, x0, end
  lw s0, 0(a0)
  addi s0, s0, 1
  sw s0, 0(a0)
  addi a0, a0, 4
  addi t0, t0, -1
  jal x0, loop
  end:
  addi a0, a0, 10
  ecall
```

11. For the instruction line 2: \texttt{bgt \ t0, x0, end}. What is the immediate [1]

28 or 0x1C

12. Line 2: What is actual opcode, rs1 and rs2 (not pseudo-names)? [1]

 \begin{itemize}
 \item Hint: \texttt{bgt with x0} is a pseudo-instruction. Convert to actual instruction before finding opcode.
 \item 0000000 - 0x5 or 00101 (rs2)
 \item - 0x0 or 00000 (x0) rs1
 \item - Opcode: 1100011 (0x63)
 \end{itemize}

 \begin{itemize}
 \item 100 (f3) f7 (N/A)
 \end{itemize}

 \text{Imm: 011100}

14. What is the immediate field of line 8: \texttt{jal \ x0, loop}? [1]

 -24

15. What is the instruction corresponding to \texttt{0xFE9FF06F}? [1]

 jal x0, loop

D. Easy. RISC-V Custom Opcodes. 4 points

Prof. Shriraman is designing a new CPU with fewer operations. He decides to adapt and rethink the design of RISC-V instruction. He only needs to support 17 different operations: ADD, MUL, XOR, OR, NOT, SUB,
ACC, LD, SW, LUI, ADDI, MULI, XORI, SUBI, JAL, BEQ, and BLT. He decides that each instruction should be 17 bits wide.

The fields in each instruction are listed below (no funct3 and funct7)

- **R-type**: rs2, rs1, [rd = rs1], opcode
 - (rd = rs1 and hence can be excluded in the instruction e.g., add x6, x6, x5)
- **I-type and Loads**: imm, rs1, [rd = rs1], opcode
 - (rd = rs1 and hence can be excluded e.g., addi x6, x6, 5)
- **S-type**: imm, rs2, rs1, opcode
- **B-type**: imm, [rs2 = zero] rs1, opcode
 - (rs2 can be excluded since it is hardcode to zero. Only comparisons against the zero registers e.g., beq zero, x6, label)
- **U-type**: imm, rd, opcode
- **UJ-type**: imm, rd, opcode

16. What is the minimum bits would be required for the opcode field? [1]

5

17. If the opcode bits were 5. what is the maximum number of registers. [1]

We only need to store 2 registers since rs1 = rd always.
17 - 5 bits = 12 bits (2 registers). 6 bits per register. Maximum of 64 registers.

18. What is the smallest range of immediate that an I instruction can use?
Opcode bits is same as Q16. Assume that register width is same as Q17. [1]

17 - (5 + 6) = 6 bits. -32 - 31

19. What is the offset in terms of bytes for a jal instruction. Assume instruction start in 4 byte aligned offsets. **Opcode bits is same as Q16. Assume that register width is same as Q17.** [1]

17 - (6 + 5) = -32 - 31 offset instructions.
4 byte boundary. -128 - 124

E. Easy. Floating Point. 5 points

The TAs get tired of having to convert floating-point values into 32 bits. As a result they propose the following smaller floating-point representation which is useful in a number of machine learning applications. It consists of a total of 12 bits as show below.

Exponent is biased similar to conventional floating point.
<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>6 bits.</td>
<td>5 bits.</td>
</tr>
</tbody>
</table>

20. What is the bias for the exponent? [1]

31

21. What is the smallest non-zero positive value that can be represented? (Normalized form) [1]

\[2^{-30} \]

22. How do you represent the number 3.5? [1]

0x418

2*1.75

0 100000 11000

0 Exp 0b100000 Mantissa 11000

23. How do you represent \(-2^{-25}\) [1]

0x8c0

1 000110 00000

24. How many numbers can this 12 bit floating point represent in the range 1 ≤ f < 8).

Hint: Write does the floating point expressions for 1 and 8 and the answer should be apparent. [1]

1 - 0x3e0
2 - 0x400 (32 numbers)
4 - 0x420 (32 numbers)
8 - 0x440 (32 numbers)

96 numbers.

F. Easy 2s complement [5]

25. Represent 0b10110100 as hexadecimal, unsigned decimal, and 2s complement decimal [1]
Hex: 0xB4
Unsigned: 180
2s Complement: -76

26. What is the number of bits needed to represent a 3 digit base-6 number? [1]

8 bits. Max= 555_6 = 0 - 215 (216 numbers).

27. Let's use MSB (most-significant bit) for sign (1= positive, 0= negative) How many numbers can be represented? [1]

36

28. What base 6 number XXX represents 0? (That is, your answer needs to have 3 base-6 characters.)? [1]

Hint

255_6

A 8-bit bias-encoded number presented in class has a bias of -127 so that roughly half the numbers are negative, but there's one more positive than negative number i.e., [-127 to +128]. Using an equivalent scheme for choosing the bias,

There is one more positive number
Hence answer is 255_6

000_6
100_6
200_6
300_6
400_6
500_6

G. Easy Lets C [7]

For this problem, assume all pointers and integers are 4 bytes and all characters are 1 byte. Consider the following C code (all the necessary #include directives are omitted). C structs are properly aligned in memory and all calls to malloc succeed.
For all of these questions, assume we are analyzing them right before main returns.

29. What type of address does node.next->next->data point to? [1]

- Stack address ✓
- Heap address
- Static address
- Code address

30. What type of address does &add point to? [1]

- Stack address
- Heap address
- Static address
- **Code address ✓**

31. What type of address does node.next->data point to? [1]

- Stack address
- Heap address
- **Static address ✓**
- Code address
32. What type of address does node.prev->prev->data points to? [1]
- Stack address ✓
- Heap address
- Static address
- Code address

32. What type of address does &node.prev->data points to? [1]
- Stack address
- Heap address ✓
- Static address
- Code address

34. How many bytes of memory are allocated but not free()d by this program, if any? [3]

63 bytes.

Each node will be sizeof(entry) == 12 bytes. We have allocated 4 nodes so 48 bytes.
We also made a calloc of 15 bytes (Since the compiler knows the length of the s array since it is stored on the stack which is 13 characters plus \0 so 14 bytes long). This means that we have allocated: 63 bytes.

H. RISC-V Instruction II [6]

35. What does this sequence do. Explain? [2]

```c
int input[6] = {0,5,4,3,2,1}
```
a0=input

1 addi a1,zero,1
2 slli a1,a1,2
3 add a2,a0,a1
4 sw zero,0(a2)

Answer: input[1]=0
input = {0,0,4,3,2,1}

36. What does this sequence do. Explain? [2]

```c
int input[6] = {0,5,4,3,2,1}
```
a0=input
37. What does this sequence do. Explain? [2]

int input[6] = {0,5,4,3,2,1}

a0=input

Answer: input[5]=0
input = {0,5,4,3,2,0}
Accesses array[array[1]]=0

1 addi a1,zero,2
2 slli a1,a1,2
3 add a2,a0,a1
4 lw a3,a2(a2)
5 slli a3,a3,2
6 add a4,a0,a3
7 addi a4,a4,4
8 sw zero,a4(a4)

Answer: input[5]=0
input = {0,5,4,3,2,0}
Indirect array access.
Accesses array[array[2]+1].