HONOR CODE

- I have not used any online resources during the exam.
- I have not obtained any help either from anyone in the class or outside when completing this exam.
- No sharing of notes/slides/textbook between students.

Questions Sheet.

Read all of the following information before starting the exam:

- For each question fill out the appropriate choice or write text on page. Also type clearly on in the exam on the appropriate text.
- IF THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF THE MULTIPLE-CHOICE ANSWER IS CORRECT, WE WILL READ THE WRITTEN PORTION.
- 1 pt Qs (0 or 1). 2 or 3pt Qs (if no explanation only 1 pt.)
- Show all work, clearly and in order, if you want to get full credit.
- We reserve the right to take off points if we cannot see how you logically got to the answer (even if your final answer is correct). 1 or 2 sentences atmost.
- I will take points off for rambling and for incorrect or irrelevant statements.
- HONOR CODE
- Questions Sheet.
 - A. Easy. Array. 6 points
 - Q1-6
 - B. Hard. RISC-V Blackbox. [6 Points]
 - 7. What is the minimum set of registers need to be stored onto the stack at this point Point 1. ? [1]
 - 8. What is the minmum set of registers need to be stored onto the stack at this point: Point 2. ? [1]
 - 9. What is the minimum set of registers need to be restored from the stack at this point: Point 3 ? [1]
 - 10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at "line 6: CHECK". What does result contain when your program pauses at the breakpoint? [3]
 - C. Easy. RISC-V Instructions Encoding. [5 points]
 - 11. For the instruction line 2: `bgt t0, x0, end`. What is the immediate [1]
 - 12. Line 2: What is actual opcode, rs1 and rs2 (not pseudo-names) ? [1]
14. What is the immediate field of line 8: jal x0,loop? [1]
15. What is the instruction corresponding to 0xFE9FF06F? [1]

D. Moderate. RISC-V Custom Opcodes. 4 points
16. What is the minimum bits would be required for the opcode field? [1]
17. If the opcode bits were 5. what is the maximum number of registers. [1]
18. What is the smallest range of immediate that an I instruction can use? Opcode bits is same as Q16. Assume that register width is same as Q17. [1]
19. What is the offset in terms of bytes for a jal instruction. Assume instruction start in 4 byte aligned offsets. Opcode bits is same as Q16. Assume that register width is same as Q17. [1]

E. Easy. Floating Point. 5 points
20. What is the bias for the exponent? [1]
21. What is the smallest non-zero positive value that can be represented? (Normalized form) [1]
22. How do you represent the number 3.5? [1]
24. How many numbers can this 12 bit floating point represent in the range $1 \leq f < 8$.

F. Easy 2s complement [5]
25. What is 0b10110100 as hexadecimal, unsigned decimal, and 2s complement? [1]
26. What is the number of bits needed to represent a 3 digit base-6 number? [1]
27. Lets use MSB (most-significant bit) for sign (1- positive 0-ve) How many numbers can be represented? [1]
28. What base 6 number XXX represents 0? (That is, your answer needs to have 3 base-6 characters.)? [1]

G. Easy Lets C [7]
29. What type of address does node.next->next->data point to? [1]
30. What type of address does &add point to? [1]
31. What type of address does node.next->data point to? [1]
32. What type of address does node.prev->prev->data points to? [1]
33. What type of address does &node.prev->data points to? [1]
34. How many bytes of memory are allocated but not free()d by this program, if any? [2]

H. RISC-V Instruction II [6]
35. What does this sequence do. Explain? [2]
36. What does this sequence do. Explain? [2]
37. What does this sequence do. Explain? [2]
A. Easy. Array. 6 points

Q1-6

Given the multi-dimensional array of type int, fill in the table below. Assume pointers and ints are of size 4 bytes.
If value is unknown, write unknown.

<table>
<thead>
<tr>
<th>Access</th>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1. Array[2][0]</td>
<td>0x100</td>
<td>0</td>
</tr>
<tr>
<td>Q2. Array[1][-1]</td>
<td>0x200</td>
<td>20</td>
</tr>
<tr>
<td>Q3. Array[2][20]</td>
<td>0x240</td>
<td>30</td>
</tr>
<tr>
<td>Q4. Array[3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5. Array[4][-16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6. Array[3][16]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Hard. RISCV Blackbox. [6 Points]

Assume we have two arrays input and output. Answer questions below

```c
1  int input[6] = {0x0, 0x5, 0x3, 0x4, 0x2, 0x1};
2  int result[6] = {0,0,0,0,0,0};
```

You can assume a0:input a1:result a2:6
7. What is the minimum set of registers need to be stored onto the stack at this point Point 1.? [1]

8. What is the minimum set of registers need to be stored onto the stack at this point: Point 2.? [1]

9. What is the minimum set of registers need to be restored from the stack at this point: Point 3.? [1]
10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at `line 6: CHECK`. What does result contain when your program pauses at the breakpoint? [3]

C. Easy. RISC-V Instructions Encoding. [5 points]

Consider the standard RISC-V encoding below. Standard 32 bit instructions. Answer questions below:

```assembly
loop:            
  bgt t0, x0, end
  lw s0, 0(a0)
  addi s0, s0, 1
  sw s0, 0(a0)
  addi a0, a0, 4
  addi t0, t0, -1
  jal x0, loop
end:            
  addi a0, a0, 10
ecall
```

11. For the instruction line 2: `bgt t0, x0, end`. What is the immediate [1]

12. Line 2: What is actual opcode, rs1 and rs2 (not pseudo-names)? [1]

14. What is the immediate field of line 8: jal x0,loop? [1]

15. What is the instruction corresponding to 0xFE9FF06F? [1]

D. Moderate. RISC-V Custom Opcodes. 4 points

Prof. Shriraman is designing a new CPU with fewer operations. He decides to adapt and rethink the design of RISC-V instruction. He only needs to support 17 different operations: ADD, MUL, XOR, OR, NOT, SUB, ACC, LD, SW, LUI, ADDI, MULI, XORI, SUBI, JAL, BEQ, and BLT. He decides that each instruction should be 17 bits wide.

The fields in each instruction are listed below (no funct3 and funct7):

- R-type: rs2,rs1,[rd=rs1],opcode
 - (rd = rs1 and hence can be excluded in the instruction e.g., add x6,x6,x5)
- I-type and Loads: imm,rs1,[rd=rs1],opcode
 - (rd = rs1 and hence can be excluded e.g., addi x6,x6,5)
- S-type: imm,rs2,rs1,opcode
- B-type: imm,[rs2=zero]rs1,opcode
 - (rs2 can be excluded since it is hardcode to zero. Only comparisons against the zero registers e.g., beq zero,x6,label)
- U-type: imm,rd,opcode
- UJ-type: imm,rd,opcode
16. What is the minimum bits would be required for the opcode field? [1]

- 5
- 6
- 7
- 8
- Not enough info to calculate

17. If the opcode bits were 5, what is the maximum number of registers. [1]

- 8
- 16
- 32
- 64
- 128
- Not enough info to calculate

18. What is the smallest range of immediate that an I instruction can use? Opcode bits is same as Q16. Assume that register width is same as Q17. [1]

- -1024 — +1023
- -1023 — +1024
- -32 — +31
- -64 — +63
- -128 — +127
- Not enough info to calculate

19. What is the offset in terms of bytes for a jal instruction. Assume instruction start in 4 byte aligned offsets. Opcode bits is same as Q16. Assume that register width is same as Q17. [1]

- -1024 — +1023
- -1023 — +1024
- -32 — +31
- -64 — +63
- -128 — +127
- Not enough info to calculate

E. Easy. Floating Point. 5 points

The TAs get tired of having to convert floating-point values into 32 bits. As a result they propose the following smaller floating-point representation which is useful in a number of machine learning applications. It consists of a total of 12 bits as show below. Exponent is biased similar to conventional floating point.
<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>6 bits.</td>
<td>5 bits.</td>
</tr>
</tbody>
</table>

20. What is the bias for the exponent? [1]

21. What is the smallest non-zero positive value that can be represented? (Normalized form) [1]

22. How do you represent the number 3.5? [1]

24. How many numbers can this 12 bit floating point represent in the range $1 \leq f < 8$.)
F. Easy 2s complement [5]

25. What is 0b10110100 as hexadecimal, unsigned decimal, and 2s complement [1]

26. What is the number of bits needed to represent a 3 digit base-6 number? [1]

27. Let's use MSB (most-significant bit) for sign (1- positive 0- negative) How many numbers can be represented? [1]

28. What base 6 number XXX represents 0? (That is, your answer needs to have 3 base-6 characters.)? [1]

Hint: A 8-bit bias-encoded number presented in class has a bias of -127 so that roughly half the numbers are negative. but there's one more positive than negative number i.e., [-127 to +128]. Using an equivalent scheme for choosing the bias,

G. Easy Let's C [7]

For this problem, assume all pointers and integers are 4 bytes and all characters are 1 byte. Consider the following C code (all the necessary #include directives are omitted). C structs are properly aligned
in memory and all calls to malloc succeed.

```c
typedef struct entry {
    void *dat;
    struct entry *next;
    struct entry *prev;
} entry;

void add(entry *list, void *data) {
    entry *n = (entry *)malloc(sizeof(entry));
    n->data = data;
    n->next = list;
    n->prev = list->prev;
    list->prev->next = n;
    list->prev = n;
}

int main() {
    char *r = "CMPT 295";
    char s[] = "CMPT 295";
    entry node;
    node.next = &node;
    node.prev = &node;
    add(&node, r);
    add(&node, s);
    add(&node, &node);
    add(&node, calloc(sizeof(s) + 1, sizeof(char)));
}
```

For all of these questions, assume we are analyzing them right before main returns.

29. What type of address does node.next->next->data point to? [1]?

- Stack address
- Heap address
- Static address
- Code address

30. What type of address does &add point to? [1]

- Stack address
- Heap address
- Static address
- Code address

31. What type of address does node.next->data point to? [1]
32. What type of address does node.prev->prev->data points to? [1]

- Stack address
- Heap address
- Static address
- Code address

33. What type of address does &node.prev->data points to? [1]

- Stack address
- Heap address
- Static address
- Code address

34. How many bytes of memory are allocated but not free()d by this program, if any? [2]

```
```

H. RISC-V Instruction II [6]

35. What does this sequence do. Explain? [2]

```c
int input[6] = {0,5,4,3,2,1}
a0=input
```

```
1 | addi a1,zero,1
2 | slli a1,a1,2
3 | add  a2,a0,a1
4 | sw   zero,0(a2)
```

```
```
36. What does this sequence do. Explain? [2]

```c
int input[6] = {0,5,4,3,2,1}
int result[6] = {0,0,0,0,0,0}

a0=input, a1=result
```

1. addi a1, zero, 1
2. slli a1, a1, 2
3. add a2, a0, a1
4. lw a3, 0(a2)
5. slli a3, a3, 2
6. add a4, a0, a3
7. sw zero, 0(a4)

37. What does this sequence do. Explain? [2]

```c
int input[6] = {0,5,4,3,2,1}
a0=input
```

1. addi a1, zero, 2
2. slli a1, a1, 2
3. add a2, a0, a1
4. lw a3, 0(a2)
5. slli a3, a3, 2
6. add a4, a0, a3
7. addi a4, a4, 4
8. sw zero, 0(a4)