
Parallel Programming



export void sinx( uniform int  N,  
                 uniform int terms,  
                 uniform float* x,

              uniform float* result) {
// assume N % programCount = 0
for (uniformint i=0; i<N; i+=programCount) {

float numer = x[idx] * x[idx] * x[idx];  
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom  numer 
*= x[idx] * x[idx];  denom *= (2*j+2) 
* (2*j+3);  sign *= -1;

}
result[idx] = value;

}
}

ISPC abstractions

int idx = i + programIndex;
float value = x[idx];

This is an ISPC function. 

It contains a loop nest. 

Which iterations of the 
loop(s) are parallelized  by 
ISPC? Which are not?



Program instances (that run in parallel) were  
created when the sinx() ispc function was called
#include 
“sinx_ispc.h”

int N = 
1024;  int 
terms = 5;
float* x = new float[N];  
float* result = new 
float[N];

// initialize x here

// execute ISPC code  
sinx(N, terms, x, result);

Call to sinx()
Begin executing 
programCount
instances of sinx() (ISPC 
code)

Sequential execution (C 
code)

sinx() returns.
Completion of ISPC program 
instances.  Resume sequential 
execution

1 2 3 4 5 6 7 8

Sequential 
execution  (C 
code)


Each *instance* will run the code in the ispc 
function sinx serially.  (parallelism exists because 
there are multiple program instances,  not in the 
code that defines an ispc function)
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Creating a parallel program
▪ Thought process:


1.Identify work that can be performed in parallel

2.Partition work (and also data associated with the 

work)

3.Manage data access, communication, and 

synchronization

▪ A common goal is maximizing speedup *


For a fixed computation:

Speedup( P processors ) =
Time (1 processor)

Time (P processors)

* Other goals include high efficiency (cost, area, 
power, etc.)  or working on bigger problems than 
can fit on one machine



Problem decomposition

▪ Break up problem into tasks that can be carried 
out in parallel


▪ In general: create at least enough tasks to 
keep all execution  units on a machine busy


Key challenge of 
decomposition:  

identifying dependencies

(or... a lack of dependencies)



A simple example

N

▪ Consider a two-step computation on a N x 
N image 
- Step 1: multiply brightness of all pixels by two 

(independent computation on each pixel) 
- Step 2: compute average of all pixel values 

▪ Sequential implementation of program 
- Both steps take ~ N2 time, so total time is ~ 2N2 
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Speedup ≤  2

First attempt at parallelism (P processors)
▪ Strategy: 
- Step 1: execute in parallel 
- time for phase 1: N2/P 
- Step 2: execute serially 
- time for phase 2: N2 

▪ Overall performance: 
Speedup
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Parallelizing step 2
▪ Strategy: 

▪ Step 1: execute in parallel time for phase 1: N2/P 

▪ Step 2: compute partial sums in parallel, combine results 
serially time for phase 2: N2/P + P 

▪ Overall performance: 
- Speedup
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Note: speedup → P when N >> P 
1

overhead of parallel 
algorithm:  combining the 
partial sums

Parallel 
program

N2/P P



Decomposition

▪ Who is responsible for decomposing a 
program into  independent tasks?

- In most cases: the programmer


▪ Automatic decomposition of sequential programs 
continues  to be a challenging research problem

(very difficult in general case)

- Compiler must analyze program, identify dependencies


-	 What if dependencies are data dependent (not known at 
compile time)?


- Researchers have had modest success with simple loop nests

- The “magic parallelizing compiler” for complex, general-purpose 

code has not  yet been achieved
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Assignment

▪ Assigning tasks to threads **

- Think of “tasks” as things to do

- Think of threads as “workers”

▪ Goals: achieve good workload balance, reduce 
communication costs


▪ Can be performed statically (before application is 
run), or  dynamically as program executes


▪ Although programmer is often responsible for 
decomposition, many  languages/runtimes take 
responsibility for assignment.



ISPC Demos
export void sinx(

uniform int N,  
uniform int terms,  
uniform float x[],
uniform float result[])

{
// assumes N % programCount = 0
for (uniform int i=0; i<N; i+=programCount)
{

int idx = i + programIndex;  
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];  
uniformint denom = 6; // 3!
uniformint sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom;  
numer *= x[idx] * x[idx];  
denom *= (2*j+2) * (2*j+3);  
sign *= -1;

}
result[i] = value;

}
}

Programmer-managed assignment: 

Static assignment 
Assign iterations to ISPC program instances in  
interleaved fashion

export void sinx(
uniform int N,  
uniform int terms,  
uniform float x[],
uniform float result[])

{
foreach (i = 0 ... N)
{

float value = x[i];
float numer = x[i] * x[i] * x[i];  
uniformint denom = 6; // 3!  
uniformint sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom;  
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);  
sign *= -1;

}
result[i] = value;

}
}

Loop assignment 
foreach construct exposes independent work to system  
System-manages assignment of iterations (work) to ISPC  
program instances (abstraction leaves room for dynamic  
assignment, but current ISPC implementation is static)



Example 2: static assignment using 
C++11  threads
void my_thread_start(int N, int terms, float* x, float* 
results) {
sinx(N, terms, x, result); // do work

}

void parallel_sinx(int N, int terms, float* x, float* 

result) {  int half = N/2.

// launch thread to do work on first half of array  
std::thread t1(my_thread_start, half, terms, x, 
result);

// do work on second half of array in main 
thread  sinx(N - half, terms, x + half, 
result + half);

t1.join();
}

Decomposition of work by loop iteration 

Programmer-managed static 
assignment 
This program assigns loop iterations to 
threads  in a blocked fashion 
(first half of array assigned to the 
spawned  thread, second half 
assigned to main thread)



Orchestration
▪ Involves:


- Structuring communication

- Adding synchronization to preserve dependencies if 

necessary

- Organizing data structures in memory

- Scheduling tasks


▪ Goals: reduce costs of communication/sync, 
preserve locality  of data reference, reduce 
overhead, etc.


▪ Machine details impact many of these decisions

- If synchronization is expensive, programmer might use it 

more sparsely



Dynamic assignment using ISPC tasks

void foo(uniform float* 
input,  uniform 
float* output,  
uniform int N)

{
// create a bunch of tasks
launch[100] my_ispc_task(input, output, 
N);

}

Worker  
thread 0

Worker  
thread 1

Worker  
thread 2

Worker  
thread 3

List of tasks:


Implementation of task assignment to threads: after completing current task,  
worker thread inspects list and assigns itself the next uncompleted task.

task 0 task 1 task 2 task 3 task 4 . . . task 99

Next task 
ptr

ISPC runtime assigns 
tasks to  worker threads
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Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware units


▪ Example 1: mapping by the operating system

- e.g., map pthread to HW execution context on a CPU core


▪ Example 2: mapping by the compiler

- Map ISPC program instances to vector instruction lanes


▪ Example 3: mapping by the hardware

- Map CUDA thread blocks to GPU cores (future lecture)


▪ Some interesting mapping decisions:

- Place related threads (cooperating threads) on the same 

processor  (maximize locality, data sharing, minimize costs of 
comm/sync)


- Place unrelated threads on the same processor (one might be bandwidth 
limited and  another might be compute limited) to use machine more efficiently



A  parallel programming example



A 2D-grid based solver
▪ Problem: solve partial differential equation (PDE) on (N+2) x (N+2) grid

▪ Solution uses iterative algorithm:


-	Perform Gauss-Seidel sweeps over grid until convergence

N

Grid solver example from: Culler, Singh, 
and Gupta

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j]

+ A[i,j+1] + A[i+1,j]);



Grid solver algorithm 
C-like pseudocode for sequential algorithm is provided below

const int 
n;  float* 
A;

// assume allocated for grid of N+2 x N+2 
elements

void solve(float* A) {

float diff, prev;  bool 
done = false;

while (!done) { // outermost loop: iterations
diff = 0.f;
for (int i=1; i<n i++) { // iterate over non-border points of grid  
for (int j=1; j<n; j++) {
prev = A[i,j];
A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] +

A[i,j+1] + A[i+1,j]);
diff += fabs(A[i,j] - prev); // compute amount of change

}
}

// quit if 
converged

if (diff/(n*n) < 
TOLERANCE)  done = 
true;}

}



Step 1: identify dependencies  
(problem decomposition phase)

N

N
..
.

.. .
Each row element depends on 
element to left. 

Each row depends on previous 
row.

Note: the dependencies illustrated 
on this  slide are grid element data 
dependencies in  one iteration of 
the solver (in one iteration of  the 
“while not done” loop)



Step 1: identify dependencies  
(problem decomposition phase)

N

N
..... .

There is independent work along the 
diagonals! 

Good: parallelism exists!
Possible implementation strategy:


1.Partition grid cells on a diagonal 
into tasks


2.Update values in parallel

3.When complete, move to next 

diagonal

Bad: independent work is hard to 
exploit 

Not much parallelism at beginning and 
end of  computation.

Frequent synchronization (after 
completing  each diagonal)



Let’s make life easier on ourselves

▪ Idea: improve performance by changing the algorithm 
to one  that is more amenable to parallelism

- Change the order that grid cell cells are updated

- New algorithm iterates to same solution 

(approximately),  but converges to solution 
differently

-	Note: floating-point values computed are different, but solution still 
connverges to within threshold


- Yes, we needed domain knowledge of Gauss-Seidel 
method  for solving a linear system to realize this 
change is  permissible for the application



New approach: reorder grid cell 
update via  red-black coloring

N

N

Update all red cells in 
parallel


When done updating red 
cells ,  update all black 
cells in parallel  (respect 
dependency on red cells)

Repeat until 
convergence



Possible assignments of work to processors

Question: Which is better? Does it matter? 
Answer: it depends on the system this program is running on



Consider dependencies (data flow)
1. Perform red cell update in parallel 
2. Wait until all processors done with update 
3. Communicate updated red cells to other 

processors 
4. Perform black cell update in parallel 
5. Wait until all processors done with update 
6. Communicate updated black cells to other 

processors 
7. Repeat

Compute red cells

Compute black cells

P1 P2 P3 P4



Communication resulting from assignment

= data that must be sent to P2 each iteration

Blocked assignment requires less data to be communicated 
between processors



Three ways to think about 
writing this  program

▪ Data parallel


▪ SPMD / shared address space


▪ Message passing (will wait until a 
future class)



Data-parallel expression of solver



Data-parallel expression of grid solver 
Note: to simplify pseudocode: just showing red-cell update

Decomposition:  
updating individual 
grid  elements 
constitute

Assignment: ???

Orchestration: handled by system 
(builtin communication primitive: reduceAdd) 

Orchestration: 
handled by system 
(End of for_all block is implicit wait for 
all  workers before returning to 
sequential control)

const int n;

float* A = allocate(n+2, n+2)); // allocate grid

void solve(float* A) {

bool done = false;  
float diff = 0.f;  
while (!done) {
for_all (red cells (i,j)) {

float prev = A[i,j];

reduceAdd(diff, abs(A[i,j] - prev));
}

if (diff/(n*n) < TOLERANCE)  
done = true;

}
}



Shared address space (with SPMD 
threads)  expression of solver



Shared address space expression of solver
SPMD execution model

▪  
▪

Programmer is responsible for 
synchronization  Common 
synchronization primitives:


- Locks (provide mutual 
exclusion): only one  thread in 
the critical region at a time


- Barriers: wait for threads to reach 
this point

Compute red cells

Compute black cells

P1 P2 P3 P4



Shared address space solver (pseudocode in SPMD execution model)

Value of threadId is different 
for  each SPMD instance: use 
value to  compute region of 
grid to work on

Each thread computes the 
rows it is  responsible for 
updating

Assume these are global 
variables  (accessible to all 
threads) 

Assume solve function is 
executed by  all threads. 
(SPMD-style)

int myMin = 1 + (threadId * n / NUM_PROCESSORS);  
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {  
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {  
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;  
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));  
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);  
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}



Shared address space solver (SPMD execution 
model)

Compute partial sum per 
worker 

Now only only lock once per thread, 
not once  per (i,j) loop iteration!

Improve performance by 
accumulating  into partial sum 
locally, then complete  global 
reduction at the end of the  
iteration.

int myMin = 1 + (threadId * n / NUM_PROCESSORS);  
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {  
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {  
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;  
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));  
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);  
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}



Barrier synchronization primitive
▪ barrier(num_threads)

▪ Barriers are a conservative way to 
express  dependencies

▪ Barriers divide computation into phases

▪ All computations by all threads before the 

barrier  complete before any computation in 
any thread  after the barrier begins

-	In other words, all computations after 

the  barrier are assumed to depend on 
all  computations before the barrier

Compute red cells

Compute black cells

P1 P2 P3
P4



Shared address space solver (SPMD execution 
model)

Why are there three 
barriers?

int myMin = 1 + (threadId * n / NUM_PROCESSORS);  
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {  
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {  
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;  
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));  
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);  
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}



 int
 bool

 n;
 done  =  false;

 //  grid  size

 LOCK myLock;
 BARRIER  myBarrier;
 float  diff[3]; //  global  diff,  but  now  3  copies variables in successive loop iterations
 float  *A  =  allocate(n+2,  n+2);

 void  solve(float*  A)  {
float  myDiff; //  thread  local  variable
int  index  =  0; //  thread  local  variable

diff[0]  =  0.0f;
 barrier(myBarrier,  NUM_PROCESSORS); //  one-time  only:  just  for  init

 while  (!done)  {
myDiff  =  0.0f;
//
//  perform  computation  (accumulate  locally  into  myDiff)
//
lock(myLock);
 diff[index]  +=  myDiff; //  atomically  update  global  diff

 unlock(myLock);
 diff[(index+1)  %  3]  =  0.0f;
 barrier(myBarrier,  NUM_PROCESSORS);
 if  (diff[index]/(n*n)  <  TOLERANCE)

break;
 index  =  (index  +  1)  %  3;

 }

Remove barriers and tradeoff space



▪ Data-parallel programming model

- Synchronization:


- Single logical thread of control, but iterations of forall loop may be

parallelized by the system (implicit barrier at end of forall loop 
body)


- Communication

- Implicit in loads and stores (like shared address space)

- Special built-in primitives for more complex communication patterns:


e.g., reduce


▪ Shared address space

- Synchronization:


- Mutual exclusion required for shared variables (e.g., via locks)

- Barriers used to express dependencies 


- Communication

- Implicit in loads/stores to shared variables

Solver implementation in two programming models



Summary

▪ Aspects of creating a parallel program

- Decomposition to create independent work, assignment 

of work to

workers, orchestration (to coordinate processing of work 
by workers),  mapping to hardware


- We’ll talk a lot about making good decisions in each of 
these phases in  the coming lectures (in practice, they are 
very inter-related)



