
Parallel Programming

export void sinx(uniform int N,
 uniform int terms,
 uniform float* x,

 uniform float* result) {
// assume N % programCount = 0
for (uniformint i=0; i<N; i+=programCount) {

float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom numer
*= x[idx] * x[idx]; denom *= (2*j+2)
* (2*j+3); sign *= -1;

}
result[idx] = value;

}
}

ISPC abstractions

int idx = i + programIndex;
float value = x[idx];

This is an ISPC function.

It contains a loop nest.

Which iterations of the
loop(s) are parallelized by
ISPC? Which are not?

Program instances (that run in parallel) were
created when the sinx() ispc function was called
#include
“sinx_ispc.h”

int N =
1024; int
terms = 5;
float* x = new float[N];
float* result = new
float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

Call to sinx()
Begin executing
programCount
instances of sinx() (ISPC
code)

Sequential execution (C
code)

sinx() returns.
Completion of ISPC program
instances. Resume sequential
execution

1 2 3 4 5 6 7 8

Sequential
execution (C
code)

Each *instance* will run the code in the ispc
function sinx serially. (parallelism exists because
there are multiple program instances, not in the
code that defines an ispc function)

Decomposition

Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel
Threads **
(“workers”)

Parallel
program

(communicati
ng threads)

Execution
on parallel
machine

** I had to pick a
term

Creating a parallel program
▪ Thought process:

1.Identify work that can be performed in parallel

2.Partition work (and also data associated with the

work)

3.Manage data access, communication, and

synchronization

▪ A common goal is maximizing speedup *

For a fixed computation:

Speedup(P processors) =
Time (1 processor)

Time (P processors)

* Other goals include high efficiency (cost, area,
power, etc.) or working on bigger problems than
can fit on one machine

Problem decomposition

▪ Break up problem into tasks that can be carried
out in parallel

▪ In general: create at least enough tasks to
keep all execution units on a machine busy

Key challenge of
decomposition:

identifying dependencies

(or... a lack of dependencies)

A simple example

N

▪ Consider a two-step computation on a N x
N image
- Step 1: multiply brightness of all pixels by two

(independent computation on each pixel)
- Step 2: compute average of all pixel values

▪ Sequential implementation of program
- Both steps take ~ N2 time, so total time is ~ 2N2

N

Execution
time

Pa
ra

lle
lis

m

N
2

N
21

Speedup ≤ 2

First attempt at parallelism (P processors)
▪ Strategy:
- Step 1: execute in parallel
- time for phase 1: N2/P
- Step 2: execute serially
- time for phase 2: N2

▪ Overall performance:
Speedup

Execution
time

Pa
ra

lle
lis

m

1

P

Execution
time

Pa
ra

lle
lis

m

N
2

N
21

P

N2/P

Parallel program

N2

Sequential
program

Parallelizing step 2
▪ Strategy:

▪ Step 1: execute in parallel time for phase 1: N2/P

▪ Step 2: compute partial sums in parallel, combine results
serially time for phase 2: N2/P + P

▪ Overall performance:
- Speedup

Execution
time

Pa
ra

lle
lis

m

N2/
PP

Note: speedup → P when N >> P
1

overhead of parallel
algorithm: combining the
partial sums

Parallel
program

N2/P P

Decomposition

▪ Who is responsible for decomposing a
program into independent tasks?

- In most cases: the programmer

▪ Automatic decomposition of sequential programs
continues to be a challenging research problem

(very difficult in general case)

- Compiler must analyze program, identify dependencies

-	 What if dependencies are data dependent (not known at
compile time)?

- Researchers have had modest success with simple loop nests

- The “magic parallelizing compiler” for complex, general-purpose

code has not yet been achieved

Assignment
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel
Threads **
(“workers”)

Parallel
program

(communicati
ng threads)

Execution
on parallel
machine

** I had to pick a
term

Assignment

▪ Assigning tasks to threads **

- Think of “tasks” as things to do

- Think of threads as “workers”

▪ Goals: achieve good workload balance, reduce
communication costs

▪ Can be performed statically (before application is
run), or dynamically as program executes

▪ Although programmer is often responsible for
decomposition, many languages/runtimes take
responsibility for assignment.

ISPC Demos
export void sinx(

uniform int N,
uniform int terms,
uniform float x[],
uniform float result[])

{
// assumes N % programCount = 0
for (uniform int i=0; i<N; i+=programCount)
{

int idx = i + programIndex;
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];
uniformint denom = 6; // 3!
uniformint sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom;
numer *= x[idx] * x[idx];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
result[i] = value;

}
}

Programmer-managed assignment:

Static assignment
Assign iterations to ISPC program instances in
interleaved fashion

export void sinx(
uniform int N,
uniform int terms,
uniform float x[],
uniform float result[])

{
foreach (i = 0 ... N)
{

float value = x[i];
float numer = x[i] * x[i] * x[i];
uniformint denom = 6; // 3!
uniformint sign = -1;

for (uniform int j=1; j<=terms; j++)
{

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
result[i] = value;

}
}

Loop assignment
foreach construct exposes independent work to system
System-manages assignment of iterations (work) to ISPC
program instances (abstraction leaves room for dynamic
assignment, but current ISPC implementation is static)

Example 2: static assignment using
C++11 threads
void my_thread_start(int N, int terms, float* x, float*
results) {
sinx(N, terms, x, result); // do work

}

void parallel_sinx(int N, int terms, float* x, float*

result) { int half = N/2.

// launch thread to do work on first half of array
std::thread t1(my_thread_start, half, terms, x,
result);

// do work on second half of array in main
thread sinx(N - half, terms, x + half,
result + half);

t1.join();
}

Decomposition of work by loop iteration

Programmer-managed static
assignment
This program assigns loop iterations to
threads in a blocked fashion
(first half of array assigned to the
spawned thread, second half
assigned to main thread)

Orchestration
▪ Involves:

- Structuring communication

- Adding synchronization to preserve dependencies if

necessary

- Organizing data structures in memory

- Scheduling tasks

▪ Goals: reduce costs of communication/sync,
preserve locality of data reference, reduce
overhead, etc.

▪ Machine details impact many of these decisions

- If synchronization is expensive, programmer might use it

more sparsely

Dynamic assignment using ISPC tasks

void foo(uniform float*
input, uniform
float* output,
uniform int N)

{
// create a bunch of tasks
launch[100] my_ispc_task(input, output,
N);

}

Worker
thread 0

Worker
thread 1

Worker
thread 2

Worker
thread 3

List of tasks:

Implementation of task assignment to threads: after completing current task,
worker thread inspects list and assigns itself the next uncompleted task.

task 0 task 1 task 2 task 3 task 4 . . . task 99

Next task
ptr

ISPC runtime assigns
tasks to worker threads

Mapping
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads
(“workers”)

Parallel program
(communicating

threads)

Execution on parallel machine

Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware units

▪ Example 1: mapping by the operating system

- e.g., map pthread to HW execution context on a CPU core

▪ Example 2: mapping by the compiler

- Map ISPC program instances to vector instruction lanes

▪ Example 3: mapping by the hardware

- Map CUDA thread blocks to GPU cores (future lecture)

▪ Some interesting mapping decisions:

- Place related threads (cooperating threads) on the same

processor (maximize locality, data sharing, minimize costs of
comm/sync)

- Place unrelated threads on the same processor (one might be bandwidth
limited and another might be compute limited) to use machine more efficiently

A parallel programming example

A 2D-grid based solver
▪ Problem: solve partial differential equation (PDE) on (N+2) x (N+2) grid

▪ Solution uses iterative algorithm:

-	Perform Gauss-Seidel sweeps over grid until convergence

N

Grid solver example from: Culler, Singh,
and Gupta

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j]

+ A[i,j+1] + A[i+1,j]);

Grid solver algorithm
C-like pseudocode for sequential algorithm is provided below

const int
n; float*
A;

// assume allocated for grid of N+2 x N+2
elements

void solve(float* A) {

float diff, prev; bool
done = false;

while (!done) { // outermost loop: iterations
diff = 0.f;
for (int i=1; i<n i++) { // iterate over non-border points of grid
for (int j=1; j<n; j++) {
prev = A[i,j];
A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] +

A[i,j+1] + A[i+1,j]);
diff += fabs(A[i,j] - prev); // compute amount of change

}
}

// quit if
converged

if (diff/(n*n) <
TOLERANCE) done =
true;}

}

Step 1: identify dependencies
(problem decomposition phase)

N

N
..
.

.. .
Each row element depends on
element to left.

Each row depends on previous
row.

Note: the dependencies illustrated
on this slide are grid element data
dependencies in one iteration of
the solver (in one iteration of the
“while not done” loop)

Step 1: identify dependencies
(problem decomposition phase)

N

N
..... .

There is independent work along the
diagonals!

Good: parallelism exists!
Possible implementation strategy:

1.Partition grid cells on a diagonal
into tasks

2.Update values in parallel

3.When complete, move to next

diagonal

Bad: independent work is hard to
exploit

Not much parallelism at beginning and
end of computation.

Frequent synchronization (after
completing each diagonal)

Let’s make life easier on ourselves

▪ Idea: improve performance by changing the algorithm
to one that is more amenable to parallelism

- Change the order that grid cell cells are updated

- New algorithm iterates to same solution

(approximately), but converges to solution
differently

-	Note: floating-point values computed are different, but solution still
connverges to within threshold

- Yes, we needed domain knowledge of Gauss-Seidel
method for solving a linear system to realize this
change is permissible for the application

New approach: reorder grid cell
update via red-black coloring

N

N

Update all red cells in
parallel

When done updating red
cells , update all black
cells in parallel (respect
dependency on red cells)

Repeat until
convergence

Possible assignments of work to processors

Question: Which is better? Does it matter?
Answer: it depends on the system this program is running on

Consider dependencies (data flow)
1. Perform red cell update in parallel
2. Wait until all processors done with update
3. Communicate updated red cells to other

processors
4. Perform black cell update in parallel
5. Wait until all processors done with update
6. Communicate updated black cells to other

processors
7. Repeat

Compute red cells

Compute black cells

P1 P2 P3 P4

Communication resulting from assignment

= data that must be sent to P2 each iteration

Blocked assignment requires less data to be communicated
between processors

Three ways to think about
writing this program

▪ Data parallel

▪ SPMD / shared address space

▪ Message passing (will wait until a
future class)

Data-parallel expression of solver

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

Decomposition:
updating individual
grid elements
constitute

Assignment: ???

Orchestration: handled by system
(builtin communication primitive: reduceAdd)

Orchestration:
handled by system
(End of for_all block is implicit wait for
all workers before returning to
sequential control)

const int n;

float* A = allocate(n+2, n+2)); // allocate grid

void solve(float* A) {

bool done = false;
float diff = 0.f;
while (!done) {
for_all (red cells (i,j)) {

float prev = A[i,j];

reduceAdd(diff, abs(A[i,j] - prev));
}

if (diff/(n*n) < TOLERANCE)
done = true;

}
}

Shared address space (with SPMD
threads) expression of solver

Shared address space expression of solver
SPMD execution model

▪
▪

Programmer is responsible for
synchronization Common
synchronization primitives:

- Locks (provide mutual
exclusion): only one thread in
the critical region at a time

- Barriers: wait for threads to reach
this point

Compute red cells

Compute black cells

P1 P2 P3 P4

Shared address space solver (pseudocode in SPMD execution model)

Value of threadId is different
for each SPMD instance: use
value to compute region of
grid to work on

Each thread computes the
rows it is responsible for
updating

Assume these are global
variables (accessible to all
threads)

Assume solve function is
executed by all threads.
(SPMD-style)

int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}

Shared address space solver (SPMD execution
model)

Compute partial sum per
worker

Now only only lock once per thread,
not once per (i,j) loop iteration!

Improve performance by
accumulating into partial sum
locally, then complete global
reduction at the end of the
iteration.

int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}

Barrier synchronization primitive
▪ barrier(num_threads)

▪ Barriers are a conservative way to
express dependencies

▪ Barriers divide computation into phases

▪ All computations by all threads before the

barrier complete before any computation in
any thread after the barrier begins

-	In other words, all computations after

the barrier are assumed to depend on
all computations before the barrier

Compute red cells

Compute black cells

P1 P2 P3
P4

Shared address space solver (SPMD execution
model)

Why are there three
barriers?

int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
diff = 0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {

for (i = red cells in this row) {
float prev = A[i,j];
A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +

// check convergence, all threads get same answer

Int n; // grid size
Bool done =false;
Float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {

int threadId = getThreadId();

A[i+1,j], A[i,j+1]);
lock(myLock)
diff += abs(A[i,j] - prev));
unlock(myLock);

}
}
barrier(myBarrier, NUM_PROCESSORS);
if (diff/(n*n) < TOLERANCE)

done = true;
barrier(myBarrier, NUM_PROCESSORS);

}

}

 int
 bool

 n;
 done = false;

 // grid size

 LOCK myLock;
 BARRIER myBarrier;
 float diff[3]; // global diff, but now 3 copies variables in successive loop iterations
 float *A = allocate(n+2, n+2);

 void solve(float* A) {
float myDiff; // thread local variable
int index = 0; // thread local variable

diff[0] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS); // one-time only: just for init

 while (!done) {
myDiff = 0.0f;
//
// perform computation (accumulate locally into myDiff)
//
lock(myLock);
 diff[index] += myDiff; // atomically update global diff

 unlock(myLock);
 diff[(index+1) % 3] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff[index]/(n*n) < TOLERANCE)

break;
 index = (index + 1) % 3;

 }

Remove barriers and tradeoff space

▪ Data-parallel programming model

- Synchronization:

- Single logical thread of control, but iterations of forall loop may be

parallelized by the system (implicit barrier at end of forall loop
body)

- Communication

- Implicit in loads and stores (like shared address space)

- Special built-in primitives for more complex communication patterns:

e.g., reduce

▪ Shared address space

- Synchronization:

- Mutual exclusion required for shared variables (e.g., via locks)

- Barriers used to express dependencies

- Communication

- Implicit in loads/stores to shared variables

Solver implementation in two programming models

Summary

▪ Aspects of creating a parallel program

- Decomposition to create independent work, assignment

of work to

workers, orchestration (to coordinate processing of work
by workers), mapping to hardware

- We’ll talk a lot about making good decisions in each of
these phases in the coming lectures (in practice, they are
very inter-related)

