
System	and	Architectural	Models



Architectural	Models

▪ Three	parallel	programming	models	
- That	differ	in	what	communication	abstractions	they	present	to	the	programmer	
- Programming	models	are	important	because	they	(1)	influence	how	programmers		
think	when	writing	programs	and	(2)	influence	the	design	of	parallel	hardware		
platforms	designed	to	execute	them	

▪ Corresponding	machine	architectures	
- Abstraction	presented	by	the	hardware	to	low-level	software	

▪ We’ll	focus	on	differences	in	communication/synchronization



System	layers:	interface,	implementation,	interface,	...

Compiler	and/or	parallel	runtime

Operating	system

Micro-architecture	(hardware	implementation)

Parallel	Applications

Language	or	
library		primitives/
mechanisms

Abstractions	for	describing		
concurrent,	parallel,	or		

independent	computation

Abstractions	for	describing		
communication

Hardware	
Architecture		
(HW/SW	
boundary)

OS	system	call	
API

“Programming	
model”		(provides	way	of	
thinking	about		the	structure	of	
programs)

Blue	italic	text:	abstraction/concept		
Red	italic	text:	system	interface	
Black	text:	system	implementation



Example:	expressing	parallelism	with	pthreads
Parallel	Application

Abstraction	for	concurrent	computation:	a	thread Thread		
Programming		

model

pthread_create()	

pthread	library	implementation	

System	call	API	
OS	support:	kernel	thread	management	

x86-64	
modern	multi-core	CPU

Blue	italic	text:	abstraction/concept		
Red	italic	text:	system	interface	
Black	text:	system	implementation



Example:	expressing	parallelism	with	ISPC	
Parallel	Applications

Abstractions	for	describing	parallel	computation:	
1.For	specifying	simultaneous	execution	(true	parallelism)	
2.For	specifying	independent	work	(potentially	parallel)

ISPC	
Programming		

model

ISPC	language	(call	ISPC	function,	foreach	construct)	

ISPC	compiler	

System	call	API	
OS	support	

x86-64	(including	AVX	vector	instructions)	
single-core	of	CPU

Note:	This	diagram	is	specific	to	the	ISPC	gang	abstraction.	ISPC	also	has	the	“task”	language	primitive	for	multi-core	execution.		
I	don’t	describe	it	here	but	it	would	be	interesting	to	think	about	how	that	diagram	would	look



6

Parallel Programming Models

• Programming model is made up of the languages and 
libraries that create an abstract view of the machine 

• Control 
• How is parallelism created? 
• What orderings exist between operations? 

• Data 
• What data is private vs. shared? 
• How is logically shared data accessed or communicated? 

• Synchronization 
• What operations can be used to coordinate parallelism? 
• What are the atomic (indivisible) operations? 

• Cost 
• How do we account for the cost of each of the above?



Three	programming	models	(abstractions)

1.Shared	address	space	

2.Message	passing	

3.Data	parallel



Shared	address	space	model



What	is	memory?

▪ On	the	first	day	of	class,	we	described	a	
program	as	a		sequence	of	instructions.	

▪ Some	of	those	instructions	read	and	write	from	
memory.	

▪ But	what	is	memory?	
-	 To	be	precise,	what	I’m	really	asking	is:	what	is	
the	logical	
abstraction	of	memory	presented	to	a	program



Value
0x0 16
0x1 255
0x2 14
0x3 0
0x4 0
0x5 0
0x6 6
0x7 0
0x8 32
0x9 48
0xA 255
0xB 255
0xC 255
0xD 0
0xE 0
0xF 0
0x10 128

.	.	. .	.	.
0x1F 0

A	program’s	memory	address	space	

▪ A	computer’s	memory	is	organized	as	a		
array	of	bytes	

▪ Each	byte	is	identified	by	its	“address”		
in	memory	(its	position	in	this	array)	

“The	byte	stored	at	address	0x8	has	the	value	32.”	

“The	byte	stored	at	address	0x10	(16)	has	the	value	128.”	

In	the	illustration	on	the	right,	the	program’s		
memory	address	space	is	32	bytes	in	size	
(so	valid	addresses	range	from	0x0	to	0x1F)

Address



Shared	address	space	model	(abstraction)

//	write	to	address	holding	
//	contents	of	variable	x	
x	=	1;

Thread	1:	
int	x	=	0;		
spawn_thread(foo,	&x);

Thread	2:	
void	foo(int*	x)	{	
//	read	from	addr	storing	
//	contents	of	variable	x	
while	(x	==	0)	{}		
print	x;	

}

▪ Threads	communicate	by	reading/writing	to	shared	variables

(Pseudocode	provided	in	a	fake	C-like	language	for	brevity.)

Thread	2
Shared	address	space

Store	to	x	
Thread	1	

x

Load	from	x

(Communication	operations	shown	in	red)



Shared	address	space	model

int	x	=	0;		
Lock	my_lock;	

spawn_thread(foo,	&x,	&my_lock);

mylock.lock();		
x++;	
mylock.unlock();

void	foo(int*	x,	lock*	my_lock)	
{	
my_lock->lock();		
x++;	
my_lock->unlock();

print	x;	
}

Thread	1: Thread	2:

(Pseudocode	provided	in	a	fake	C-like	language	for	brevity.)

Synchronization	primitives	are	also	shared	variables:	e.g.,	locks



13

Simple Example
• Consider applying a function f to the elements 

of an array A and then computing its sum:  

• Questions: 
• Where does A live?  All in single memory? 

Partitioned? 
• What work will be done by each processors? 
• They need to coordinate to get a single result, how?

∑
−

=

1

0

])[(
n

i
iAf

A:

fA:
f

sum
A = array of all data 
fA = f(A) 
s = sum(fA) s:



14

Programming Model 1:  Shared Memory
• Program is a collection of threads of control. 

• Can be created dynamically, mid-execution, in some languages 
• Each thread has a set of private variables, e.g., local stack variables  
• Also a set of shared variables, e.g., static variables, shared common 

blocks, or global heap. 
• Threads communicate implicitly by writing and reading shared 

variables. 
• Threads coordinate by synchronizing on shared variables

PnP1P0

s      s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private 
memory

i: 8



15

Simple Example

• Shared memory strategy: 
• small number p << n=size(A) processors  
• attached to single memory 

• Parallel Decomposition:  
• Each evaluation and each partial sum is a task. 

• Assign n/p numbers to each of p procs 
• Each computes independent “private” results and partial sum. 
• Collect the p partial sums and compute a global sum. 

Two Classes of Data:  
• Logically Shared 

• The original n numbers, the global sum. 
• Logically Private 

• The individual function evaluations. 
• What about the individual partial sums?

∑
−

=

1

0

])[(
n

i
iAf



16

Shared Memory “Code” for Computing a Sum

Thread 1 

   for i = 0, n/2-1 
        s = s + f(A[i])

Thread 2 

  for i = n/2, n-1 
        s = s + f(A[i])

static int s = 0;

• What is the problem with this program?  

• A race condition or data race occurs when: 
-Two processors (or two threads) access the same 

variable, and at least one does a write. 
-The accesses are concurrent (not synchronized) so 

they could happen simultaneously

fork(sum,a[0:n/2-1]); 
sum(a[n/2,n-1]);



17

Shared Memory “Code” for Computing a Sum

Thread 1 
  …. 
   compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  …

Thread 2 
 … 
  compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  …

static int s = 0;

• Assume A = [3,5], f(x) = x2, and s=0 initially 
• For this program to work, s should be 32 + 52 = 34 at the end 

• but it may be 34,9, or 25 
• The atomic operations are reads and writes 

• Never see ½ of one number, but += operation is not atomic 
• All computations happen in (private) registers

9 25
0 0
9 25

259

3 5A= f (x)  = x2



18

Improved Code for Computing a Sum

Thread 1 

    local_s1= 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + f(A[i]) 
     
    s = s + local_s1 
    

Thread 2 

    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + f(A[i]) 
     
    s = s +local_s2 
    

static int s = 0; 

• Since addition is associative, it’s OK to rearrange order 
• Most computation is on private variables 

- Sharing frequency is also reduced, which might improve speed  
- But there is still a race condition on the update of shared s 
- The race condition can be fixed by adding locks (only one thread 

can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Why not do lock 
Inside loop?



Mechanisms	for	preserving	atomicity
▪ Lock/unlock	mutex	around	a	critical	section	

LOCK(mylock);	
//	critical	section	
UNLOCK(mylock);	

▪ Some	languages	have	first-class	support	for	atomicity	of	code	blocks	
atomic	{	
//	critical	section	

}	

▪ Intrinsics	for	hardware-supported	atomic	read-modify-write	operations	
atomicAdd(x,	10);



Review:	shared	address	space	model
▪ Threads	communicate	by:	

- Reading/writing	to	shared	variables	in	a	shared	address	space	
- Inter-thread	communication	is	implicit	in	memory	loads/stores	
- Thread	1	stores	to	X	
- Later,	thread	2	reads	X	(and	observes	update	of	value	by	thread	1)	

- Manipulating	synchronization	primitives	
- e.g.,	ensuring	mutual	exclusion	via	use	of	locks	

▪ This	is	a	natural	extension	of	sequential	programming	
- In	fact,	all	our	discussions	in	class	have	assumed	a	shared	address	space	so	far!



HW	implementation	of	a	shared	address	space	
Key	idea:	any	processor	can	directly	reference	contents	of	any	memory	location

Processor

Local	Cache

Processor

Local	Cache

Processor

Local	Cache

Processor

Local	Cache

Interconnect

Memory I/O

“Dance-hall”	organization
Processor Processor Processor Processor

Memory Memory

Processor

Processor

Processor

Processor

Memory

Processor Processor Processor Processor

Memory MemoryMemory Memory

Interconnect	examples

Memory

Shared	Bus

Multi-stage	network

Crossbar

*	Caches	(not	shown)	are	another	implementation	of	a	shared	address	space	(more	on	this	in	a	later	lecture)



Non-uniform	memory	access	(NUMA)

On	chip		
networkCore	1 Core	2

Core	3 Core	4

Memory	Controller

Memory

Core	5 Core	6

Core	7 Core	8

Memory	Controller

Memory

AMD	Hyper-transport	/		
Intel	QuickPath	(QPI)

X

The	latency	*	of	accessing	a	memory	location	may	be	different	from	different		
processing	cores	in	the	system	

Example:	latency	to	access	address	x	is	higher	from	cores	5-8	than	cores	1-4	

Example:	modern	dual-socket	configuration

*	Bandwidth	from	any	one	location	may	also	be	different	to	different	CPU	cores



Summary:	shared	address	space	model

▪ Communication	abstraction	
- Threads	read/write	variables	in	shared	address	space	

- Threads	manipulate	synchronization	primitives:	locks,	atomic	ops,	
etc.	

- Logical	extension	of	uniprocessor	programming	*	

▪ Requires	hardware	support	to	implement	efficiently	
- Any	processor	can	load	and	store	from	any	address	(its	shared	
address	space!)	

- Can	be	costly	to	scale	to	large	numbers	of	processors	
(one	of	the	reasons	why	high-core	count	processors	are	expensive)

*	But	NUMA	implementation	requires	reasoning	about	locality	for	performance



Message	passing	model	of		
communication



Message	passing	model	(abstraction)

Thread	1	address	space

Variable	X

▪ Threads	operate	within	their	own	private	address	spaces	

▪ Threads	communicate	by	sending/receiving	messages	
- send:	specifies	recipient,	buffer	to	be	transmitted,	and	optional	message	identifier	(“tag”)	
- receive:	sender,	specifies	buffer	to	store	data,	and	optional	message	identifier	

- Sending	messages	is	the	only	way	to	exchange	data	between	threads	1	and	2	

-	 Why?

x

Thread	2	address	space

Variable	Y

Y

(Communication	operations	shown	in	red)

send(X,	2,	

semantics:	send
variable	X	as	me

my_msg_id)	

contexts	of	local		
ssage	to	thread	2		
e	with	the	idand	tag	messag		

“my_msg_id”

recv(Y,	1,	my_msg_id)	

semantics:	receive	message	with	id		
“my_msg_id”	from	thread	1	and		
store	contents	in	local	variable	Y



26

 Message Passing
• Program consists of a collection of named processes. 

• Usually fixed at program startup time 
• Thread of control plus local address space -- NO shared data. 
• Logically shared data is partitioned over local processes. 

• Processes communicate by explicit send/receive pairs 
• Coordination is implicit in every communication event. 
• MPI (Message Passing Interface) is the most commonly used SW

PnP1P0

y = ..s ...

s: 12 

i: 2

Private 
memory

s: 14 

i: 3

s: 11 

i: 1

send P1,s

Network

receive Pn,s



Message	passing	(implementation)
▪ Hardware	need	not	implement	system-wide	loads	and	stores	to	execute		

message	passing	programs	(to	need	only	communicate	messages	between		
nodes)	
-	 Can	connect	commodity	systems	together	to	form	large	parallel	machine	

(message	passing	is	a	programming	model	for	clusters	and	supercomputers)

IBM	Blue	Gene/P	Supercomputer

Cluster	of	workstations		
(Infiniband	network)

Image	credit:	IBM



Programming	model	vs.	implementation	
of		communication
▪ Common	to	implement	message	passing	abstractions	on	

machines		that	implement	a	shared	address	space	in	hardware	
- “Sending	message”	=	copying	memory	from	message	library	buffers	
- “Receiving	message”	=	copy	data	from	message	library	buffers	

▪ Can	implement	shared	address	space	abstraction	on	machines	
that		do	not	support	it	in	HW	(via	less	efficient	SW	
implementations)	
- OS	marks	all	pages	with	shared	variables	as	invalid	
- OS	page-fault	handler	issues	appropriate	network	requests	

▪ Keep	clear	in	your	mind:	what	is	the	programming	model		
(abstractions	used	to	specify	program)?	And	what	is	the	
HW		implementation?



29

Programming Model 2a: Global Address Space

• Program consists of a collection of named threads. 
• Usually fixed at program startup time 
• Local and shared data, as in shared memory model 
• But, shared data is partitioned over local processes 
• Cost models says remote data is expensive 

• Examples: UPC, Titanium, Co-Array Fortran 
• Global Address Space programming is an intermediate 

point between message passing and shared memory

PnP1P0 s[myThread] = ...

y = ..s[i] ...
i: 1 i: 5 Private 

memory

Shared memory

i: 8

s[0]: 26 s[1]: 32 s[n]: 27



The	data-parallel	model



Programming	models	provide	a	way	to	think	
about		the	organization	of	parallel	programs	

▪ Shared	address	space:	very	little	structure	to	communication	
- All	threads	can	read	and	write	to	all	shared	variables	
- Challenge:	due	to	implementation	details:	not	all	reads	and	writes		

are	same	cost	(cost	is	often	not	apparent	when	reading	source	code!)	

▪ Message	passing:	structured	communication	in	the	form	of	
messages	
- All	communication	occurs	in	the	form	of	messages	(communication	is	

explicit	in	source	code—the	sends	and	receives)	

▪ Data	parallel:	rigid	structure	to	computation	
- Perform	same	function	on	elements	of	large	collections



Data-parallel	model
▪ Organize	computation	as	operations	on	sequences	of	

elements	
-	 e.g.,	perform	same	function	on	all	elements	of	a	sequence	

▪ Historically:	same	operation	on	each	element	of	vector
- Matched	capabilities	SIMD	supercomputers	of	80’s	
- Connection	Machine	(CM-1,	CM-2):	thousands	of	processors,	one	

instruction	decode	unit	
- Early	Cray	supercomputers	were	vector	processors	
- add(A,	B,	n)	← this	was	one	instruction	on	vectors	A,	B	of	length	n	



Key	data	type:	sequences

▪ Ordered	collection	of	elements	

▪ For	example,	in	a	C++	like	language:	Sequence<T>	

▪ e.g.,	Scala	lists:	List[T]	

▪ In	a	functional	language	(like	Haskell):	seq	T

▪ Can	only	access	elements	of	sequence	through	specific	operations



Map
▪  
▪  

▪  

▪

Higher	order	function	(function	that	takes	a	function	as	an	argument)		
Applies	side-effect	free	unary	function	f	::	a	->	b	to	all	elements	of		
input	sequence,	to	produce	output	sequence	of	the	same	length	
In	a	functional	language	(e.g.,	Haskell)	
-	map	::	(a	->	b)	->	seq	a	->	seq	b	
In	C++:	transform	
template<class	InputIt,	class	OutputIt,	class	UnaryOperation>		
OutputIt	transform(InputIt	first1,	InputIt	last1,	

OutputIt	d_first,		
UnaryOperation	unary_op);

f f f f f f



Parallelizing	map
▪ Since	f	::	a	->	b	is	a	function	(side-effect	free),	then		

applying	f	to	all	elements	of	the	sequence	can	be	done	in		
any	order	without	changing	the	output	of	the	program	

▪ The	implementation	of	map	has	flexibility	to	reorder/		
parallelize	processing	of	elements	of	sequence	however	it		
sees	fit



Optimizing	data	movement	in	map
const	int	N	=	1024;	
Sequence<float>	input(N);		
Sequence<float>	tmp(N);		
Sequence<float>	output(N);	

map(foo,	input,	tmp);		
map(bar,	tmp,	output);

parallel_for(int	i=0;	i<N;	i++)
{

output[i]	=	bar(foo(input[i]));
}

foo bar
input outputtmp

▪ Consider	code	that	performs	two	back-		
to-back	maps	(like	that	to	left)	

▪ Optimizing	compiler	or	runtime	can		
reorganize	code	(bottom-left)	to		
eliminate	memory	loads	and	stores		
(“map	fusion”)	

▪ Additional	optimizations:	highly		
optimized	implementations	of	map		
can	also	perform	optimizations	like		
prefetching	next	element	of	input		
sequence	(to	hide	memory	latency)	

▪ Why	are	these	complex	optimizations		
possible?



Data	parallelism	in	ISPC

//	ISPC	code:	
export	void	absolute_value(		

uniform	int	N,	
uniform	float*	x,		
uniform	float*	y)	

{	
foreach	(i	=	0	...	N)	
{	

if	(x[i]	<	0)		
y[i]	=	-x[i];	

else	
y[i]	=	x[i];	

}	
}

foreach	construct	

Think	of	loop	body	as	a	function	

Given	this	program,	it	is	reasonable	to	think	of	the		
program	as	using	foreach	to	“map	the	loop	body		
onto	each	element”	of	the	arrays	X	and	Y.

But	if	we	want	to	be	more	precise:	a	sequence	is	not	a		
first-class	ISPC	concept.	It	is	implicitly	defined	by	how		
the	program	has	implemented	array	indexing	logic	in		
the	foreach	loop.

(There	is	no	operation	in	ISPC	with	the	semantic:	“map		
this	code	over	all	elements	of	this	sequence”)

//	main	C++	code:		
const	int	N	=	1024;	
float*	x	=	new	float[N];		
float*	y	=	new	float[N];

//	initialize	N	elements	of	x	here

absolute_value(N,	x,	y);



Data	parallelism	in	ISPC

//	ISPC	code:	
export	void	absolute_repeat(		

uniform	int	N,	
uniform	float*	x,		
uniform	float*	y)	

{	
foreach	(i	=	0	...	N)	
{	

if	(x[i]	<	0)		
y[2*i]	=	-x[i];	

else	
y[2*i]	=	x[i];	

y[2*i+1]	=	y[2*i];	
}	

}

Think	of	loop	body	as	a	function	

The	input/output	sequences	being	mapped	over	are		
implicitly	defined	by	array	indexing	logic

//	main	C++	code:	
const	int	N	=	1024;	
float*	x	=	new	float[N/2];		
float*	y	=	new	float[N];	
//	initialize	N/2	elements	of	x	here		

absolute_repeat(N/2,	x,	y);

This	is	also	a	valid	ISPC	program!	

It	takes	the	absolute	value	of	elements	of	x,	then		
repeats	it	twice	in	the	output	array	y	

(Less	obvious	how	to	think	of	this	code	as	mapping		
the	loop	body	onto	existing	sequences.)



Data	parallelism	in	ISPC

//	ISPC	code:	
export	void	shift_negative(		

uniform	int	N,	
uniform	float*	x,		
uniform	float*	y)	

{	
foreach	(i	=	0	...	N)	
{	

if	(i	>=	1	&&	x[i]	<	0)		
y[i-1]	=	x[i];	

else	
y[i]	=	x[i];	

}	
}

//	main	C++	code:	
const	int	N	=	1024;		
float*	x	=	new	float[N];		
float*	y	=	new	float[N];	
//	initialize	N	elements	of	x		

shift_negative(N,	x,	y);

The	output	of	this	program	is	undefined!

Possible	for	multiple	iterations	of	the	loop	body	to		
write	to	same	memory	location

Data-parallel	model	(foreach)	provides	no	specification		
of	order	in	which	iterations	occur

But	model	provides	no	primitives	for	fine-grained		
mutual	exclusion/synchronization).	It	is	not	intended		
to	help	programmers	write	programs	with	that		
structure

Think	of	loop	body	as	a	function	

The	input/output	sequences	being	mapped	over	are		
implicitly	defined	by	array	indexing	logic



Gather/scatter:	two	key	data-parallel		
communication	primitives

const	int	N	=	1024;		
Sequence<float>	input(N);		
Sequence<int>	indices;		
Sequence<float>	tmp_input(N);		
Sequence<float>	output(N);	

stream_gather(input,	indices,	tmp_input);		
absolute_value(tmp_input,	output);

const	int	N	=	1024;		
Sequence<float>	input(N);		
Sequence<int>	indices;		
Sequence<float>	tmp_output(N);		
Sequence<float>	output(N);	

absolute_value(input,	tmp_output);		
stream_scatter(tmp_output,	indices,	output);

ISPC	equivalent:

export	void	absolute_value(		
uniform	float	N,	
uniform	float*	input,		
uniform	float*	output,		
uniform	int*	indices)	

{	
foreach	(i	=	0	...	n)	
{	

float	tmp	=	input[indices[i]];		
if	(tmp	<	0)	

output[i]	=	-tmp;		
else	

output[i]	=	tmp;	
}	

}

ISPC	equivalent:

export	void	absolute_value(		
uniform	float	N,	
uniform	float*	input,		
uniform	float*	output,		
uniform	int*	indices)	

{	
foreach	(i	=	0	...	n)	
{	

if	(input[i]	<	0)		
output[indices[i]]	=	-input[i];	

else	
output[indices[i]]	=	input[i];	

}	
}	

Map		absolute_value	onto	stream	produced	by	gather:	 Map	absolute_value	onto	stream,	scatter	results:



Gather	instruction

3 12 4 9 9 15 13 0

gather(R1,	R0,	mem_base);

Index	vector:	R0	 Result	vector:	R1

“Gather	from	buffer	mem_base	into	R1	according	to	indices	specified	by	R0.”

Array	in	memory	with	(base	address	= 	mem_base)	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

mem_base

Gather	supported	with	AVX2	in	2013	
But	AVX2	does	not	support	SIMD	scatter	(must	implement	as	scalar	loop)			
Scatter	instruction	exists	in	AVX512	

Hardware	supported	gather/scatter	does	exist	on	GPUs.	
(still	an	expensive	operation	compared	to	load/store	of	contiguous	vector)



Summary:	data-parallel	model

▪ Data-parallelism	is	about	imposing	rigid	program	
structure	to		facilitate	simple	programming	and	
advanced	optimizations	

▪ Basic	idea:	map	a	function	onto	a	large	collection	of	data	
- Functional:	side-effect	free	execution	
- No	communication	among	distinct	function	invocations	
(allow	invocations	to	be	scheduled	in	any	order,	including	in	parallel)	

▪ In	practice	that’s	how	many	simple	programs	work	

▪ But...	many	modern	performance-oriented	data-parallel	
languages		do	not	enforce	this	structure	in	the	language	
- ISPC,	OpenCL,	CUDA,	etc.	
- They	choose	flexibility/familiarity	of	imperative	C-style	syntax	over	the	safety	of	
a	more		functional	form



Summary
▪ Programming	models	provide	a	way	to	think	about	the		

organization	of	parallel	programs.	

▪ They	provide	abstractions	that	permit	multiple	valid		
implementations.	

▪ I	want	you	to	always	be	thinking	about	abstraction	vs.		
implementation	for	the	remainder	of	this	course.


