
Locality,	Communication,	and	Contention

1



Warm	up:		
communication	using	message	passing		
(since	it	makes	communication	explicit)

2



Recall	the	grid-based	solver	example

N

N

In	previous	lectures	we	expressed	this	parallel	program	using	
data		parallel	and	SPMD	programming	abstractions

int	N;	
float*	A	=	allocate(n+2,	n+2);

void	solve(float*	A)	{		
bool	done	=	false;		
float	diff	=	0.f;		
while	(!done)	{	
for_all	(red	cells	(i,j))	{		

float	prev	=	A[i,j];	
A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	

A[i+1,j]	+	A[i,j+1]);	
reduceAdd(diff,	abs(A[i,j]	-	prev));	

}	
if	(diff/(N*N)	<	TOLERANCE)		

done	=	true;	
}	

}

3



Let’s	think	about	expressing	a	parallel	grid		
solver	with	communication	via	messages

One	possible	message	passing	machine	configuration:		
a	cluster	of	two	workstations

Processor

Local	Cache

Memory

Processor

Local	Cache

Memory

Network

Computer	1 Computer	2

4



Review:	message	passing	model

Thread	1	address	space

Variable	X

▪ Threads	operate	within	their	own	private	address	spaces	
▪ Threads	communicate	by	sending/receiving	messages	

- send:	specifies	recipient,	buffer	to	be	transmitted,	and	optional	message	identifier	(“tag”)	
- receive:	sender,	specifies	buffer	to	store	data,	and	optional	message	identifier	

- Sending	messages	is	the	only	way	to	exchange	data	between	threads	1	and	2	

-	 Why?

x

Thread	2	address	space

Variable	Y

Y

(Communication	operations	shown	in	red)

Illustration	adopted	from	Culler,	Singh,	Gupta

send(X,	2,	

semantics:	send
variable	X	as	me

my_msg_id)	

contexts	of	local		
ssage	to	thread	2		
e	with	the	idand	tag	messag		

“my_msg_id”

recv(Y,	1,	my_msg_id)	

semantics:	receive	message	with	id		
“my_msg_id”	from	thread	1	and		
store	contents	in	local	variable	Y

5



Message	passing	model:	each	thread	operates	in		
its	own	address	space

In	this	figure:	four	threads

The	grid	data	is	partitioned	into		
four	allocations,	each	residing	in		
one	of	the	four	unique	thread		
address	spaces	
(four	per-thread	private	arrays)

Thread	1		
Address		
Space

Thread	2		
Address		
Space

Thread	3		
Address		
Space

Thread	4		
Address		
Space

6



Data	replication	is	now	required	to	correctly	execute
the	program

Thread	1		
Address		
Space

Thread	3		
Address		
Space

Thread	4		
Address		
Space

“Ghost	cells”	are	grid	cells	replicated	from	a	remote		
address	space.	It’s	common	to	say	that	information		
in	ghost	cells	is	“owned”	by	other	threads.

Send	row

Send	row

Example:	
After	processing	of	red	cells	is	complete,	thread	1		
and	thread	3	send	one	row	of	data	to	thread	2		
(thread	2	requires	up-to-date	red	cell	information	to		
update	black	cells	in	the	next	phase)

int	tid	=	get_thread_id();	
int	bytes	=	sizeof(float)	*	(N+2);

//	receive	ghost	row	cells	(white	dots)		
recv(&local_data[0,0],	bytes,	tid-1);		
recv(&local_data[rows_per_thread+1,0],	bytes,	tid+1);

//	Thread	2	now	has	data	necessary	to	perform	
//	future	computation

Thread	2		
Address		
Space

Thread	2	logic:	
float*	local_data	=	allocate(N+2,rows_per_thread+2);

7



int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();

float*	localA	=	allocate(rows_per_thread+2,	N+2);	

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids	

//////////////////////////////////////

void	solve()	{	
bool	done	=	false;		
while	(!done)	{

float	my_diff	=	0.0f;

if	(tid	!=	0)
send(&localA[1,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);

if	(tid	!=	get_num_threads()-1)
send(&localA[rows_per_thread,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);

if	(tid	!=	0)
recv(&localA[0,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);

if	(tid	!=	get_num_threads()-1)
recv(&localA[rows_per_thread+1,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);

for	(int	i=1;	i<rows_per_thread+1;	i++)	{		
for	(int	j=1;	j<n+1;	j++)	{	

float	prev	=	localA[i,j];	
localA[i,j]	=	0.2	*	(localA[i-1,j]	+	localA[i,j]	+	localA[i+1,j]	+	

localA[i,j-1]	+	localA[i,j+1]);		
my_diff	+=	fabs(localA[i,j]	-	prev);	

}	
}	

if	(tid	!=	0)	{	
send(&mydiff,	sizeof(float),	0,	MSG_ID_DIFF);		
recv(&done,	sizeof(bool),	0,	MSG_ID_DONE);	

}	else	{	
float	remote_diff;	
for	(int	i=1;	i<get_num_threads()-1;	i++)	

{		recv(&remote_diff,	sizeof(float),	i,	
MSG_ID_DIFF);		my_diff	+=	remote_diff;	

}	
if	(my_diff/(N*N)	<	TOLERANCE)		
done	=	true;	

for	(int	i=1;	i<get_num_threads()-1;	i++)		
send(&done,	sizeof(bool),	i,	MSD_ID_DONE);	

}	
}

}

Message	passing	solver

Send	and	receive	ghost	rows	to	“neighbor	threads”

Perform	computation		
(just	like	in	shared	address	space	version	of	solver)	

All	threads	send	local	my_diff	to	thread	0

Similar	structure	to	shared	address	space		
solver,	but	now	communication	is	explicit	in		
message	sends	and	receives

Thread	0	computes	global	diff,	evaluates		
termination	predicate	and	sends	result	back	to	all	

other	threads	

Example	pseudocode	from:	Culler,	Singh,	and	Gupta

8



Notes	on	message	passing	example
▪ Computation	

- Array	indexing	is	relative	to	local	address	space	

▪ Communication:	
- Performed	by	sending	and	receiving	messages	
- Bulk	transfer:	communicate	entire	rows	at	a	time	

▪ Synchronization:	
- Performed	by	sending	and	receiving	messages	
- Consider	how	to	implement	mutual	exclusion,	barriers,	flags	using	messages

9



Synchronous	(blocking)	send	and	receive
▪ send():	call	returns	when	sender	receives	acknowledgement	that	message		

data	resides	in	address	space	of	receiver	

▪ recv():	call	returns	when	data	from	received	message	is	copied	into	address		
space	of	receiver	and	acknowledgement	sent	back	to	sender

Call	SEND(foo)	
Copy	data	from	buffer	‘foo’	in	sender’s	address	space	into	network	buffer

Call	RECV(bar)

Send	message Receive	message	
Copy	data	into	buffer	‘bar’	in	receiver’s	address	space		
Send	ack	
RECV()	returns

Receive	ack		
SEND()	returns

Sender: Receiver:

10



As	implemented	on	the	prior	slide,	there	is	
a	big		problem	with	our	message	passing	
solver	if	it	uses		synchronous	send/recv!

Why?	

How	can	we	fix	it?	
(while	still	using	synchronous	

send/recv)

11



int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();

float*	localA	=	allocate(rows_per_thread+2,	N+2);

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids

//////////////////////////////////////	

void	solve()	{	
bool	done	=	false;		
while	(!done)	{	

float	my_diff	=	0.0f;

if (tid	%	2	==	
sendDown()
;

0)	{	
recvDown()
;

sendUp(); recvUp();}	else	{	
recvUp();	 sendUp();
recvDown();	sendDown();

}

for	(int	i=1;	i<rows_per_thread-1;	i++)	{		
for	(int	j=1;	j<n+1;	j++)	{	

float	prev	=	localA[i,j];	
localA[i,j]	=	0.2	*	(localA[i-1,j]	+	localA[i,j]	+	localA[i+1,j]	+	

localA[i,j-1]	+	localA[i,j+1]);		
my_diff	+=	fabs(localA[i,j]	-	prev);	

}	
}

if	(tid	!=	0)	{	
send(&mydiff,	sizeof(float),	0,	MSG_ID_DIFF);		
recv(&done,	sizeof(bool),	0,	MSG_ID_DONE);	

}	else	{	
float	remote_diff;	
for	(int	i=1;	i<get_num_threads()-1;	i++)	

{		recv(&remote_diff,	sizeof(float),	i,	
MSG_ID_DIFF);		my_diff	+=	remote_diff;	

}	
if	(my_diff/(N*N)	<	TOLERANCE)		
done	=	true;	

if	(int	i=1;	i<gen_num_threads()-1;	i++)		
send(&done,	sizeof(bool),	i,	MSD_ID_DONE);	

}
}

}

Send	and	receive	ghost	rows	to	“neighbor	threads”		
Even-numbered	threads	send,	then	receive		

Odd-numbered	thread	recv,	then	send

Example	pseudocode	from:	Culler,	Singh,	and	Gupta

Message	passing	solver		
(fixed	to	avoid	deadlock)

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

		 send	

send

send

send

send

12



Non-blocking	asynchronous	send/recv
▪ send():	call	returns	immediately	

- Buffer	provided	to	send()	cannot	be	modified	by	calling	thread	since	message	processing		
occurs	concurrently	with	thread	execution	

- Calling	thread	can	perform	other	work	while	waiting	for	message	to	be	sent

▪ recv():	posts	intent	to	receive	in	the	future,	returns	immediately
- Use	checksend(),	checkrecv()	to	determine	actual	status	of	send/receipt	
- Calling	thread	can	perform	other	work	while	waiting	for	message	to	be	received

Send	message

Call	RECV(bar)	
RECV(bar)	returns	handle	h2

Call	SEND(foo)	
SEND	returns	handle	h1	

Copy	data	from	‘foo’	into	network	buffer

Sender: Receiver:

Call	CHECKSEND(h1)	 //	if	message	sent,	now	safe	for	thread	to	modify	‘foo’

Receive	message	
Messaging	library	copies	data	into	‘bar’		
Call	CHECKRECV(h2)	
//	if	received,	now	safe	for	thread	
//	to	access	‘bar’

RED	TEXT	=	executes	concurrently	with	application	thread
13



When	I	talk	about	communication,	I’m	not	just	referring	to		
messages	between	machines.	(e.g.,	in	a	datacenter)	

More	examples:			
Communication	between	cores	on	a	chip	

Communication	between	a	core	and	its	cache		
Communication	between	a	core	and	memory

14



Think	of	a	parallel	system	as	an	extended	memory	hierarchy

Proc

Reg

Local	L1

Local	L2

L3	cache

Remote	memory	(1	network	hop)

Remote	memory	(N	network	hops)

L2	from	another	core

Lower	latency,	higher	bandwidth,		
smaller	capacity

Local	memory	 Higher	latency,	lower	bandwidth,

larger	capacity

I	want	you	to	think	of	“communication”	very	generally:	
- Communication	between	a	processor	and	its	cache	
- Communication	between	processor	and	memory	(e.g.,	memory	on	same	machine)	
- Communication	between	processor	and	a	remote	memory	

(e.g.,	memory	on	another	node	in	the	cluster,	accessed	by	sending	a	network	message)	
View	from	one	processor

Accesses	not	satisfied	in	local	memory		
cause	communication	with	next	level

So	managing	locality	to	reduce	the		
amount	of	communication	performed		
is	important	at	all	levels.

15



Review:	latency	vs	throughput

Latency	
The	amount	of	time	needed	for	an	operation	to	complete.	

A	memory	load	that	misses	the	cache	has	a	latency	of	200	cycles		
A	packet	takes	20	ms	to	be	sent	from	my	computer	to	Google		
Asking	a	question	on	Groups	gets	a	response	in	10	minutes	

Throughput	
The	rate	at	which	operations	are	performed.	

Memory	can	provide	data	to	the	processor	at	25	GB/sec	(memory	
bandwidth)		A	communication	link	can	send	10	million	messages	per	second	

The	TAs	answer	50	questions	per	day	on	Piazza

16



A	simple	model	of	communication

Processor	1 Processor	2

Example:	sending	a	N-bit	message

Link	can	communicate	B	(bits/1	cycle)	
Latency	of	first	bit	to	travel	to	destination	= 	T	cycles	

How	long	does	it	take	for	an	entire	message	to	be	sent	from	processor	1	to		processor	2?	

One	thought:	T0	x	(N	/	B)		
Another	thought:	T0	+	N/B	
??

17



Let’s	talk	about		traffic…

18



Car’s	velocity:	100	km/hr

Distance:	~ 	50	km	

Latency	of	driving	:	0.5	hours	

Throughput:	2	cars	per	hour

Latency	vs	Throughput

Assume	only	one	car	in	a	lane	of	the	highway	at	once.

19



Improving	throughput
Car’s	velocity:	200	km/hr

Approach	1:	drive	faster!	
Throughput	= 	4	cars	per	hour

Car’s	velocity:	100	km/hr

Approach	2:	build	more	lanes!	
Throughput	= 	8	cars	per	hour	(2	cars	per	hour	per	lane)

20



Now	caravan	of	12	cars	allowed	on	highway	at	once!
Car’s	velocity:	100	km/hr

Latency	of	first	car	to	arrive	=	0.5	hrs	
Four	cars	from	caravan	arrive	every	1/100th	of	an	hour		Total	
time	for	12-car	caravan:	0.5	hrs	+	3/100th	of	an	hour	
“Effective	car	throughput”	=	12	cars	/	0.53	hours	=	~	23	cars	/	hour

Cars	spaced	out	by	1	km

Processor	1 Processor	2

Message	size	=	N	bits	
Link	can	communicate	B	(bits/clk)	
Latency	of	first	bit	to	travel	to	destination	=	T	clks		Time	to	send	
message	=	T	+	N/B	clocks	
If	message	must	arrive	before	the	link	can	send	the	next	message,	then		“Effective	
bandwidth”	=	N	bits	/	(T+	N/B)	clocks

21



Using	the	highway	more	efficiently

Cars	spaced	out	by	1	km	

Throughput:	100	cars/hr	(1	car	every	1/100th	of	hour)

Throughput:	400	cars/hr	(4	cars	every	1/100th	of	hour)

Car’s	velocity:	100	km/hr

Car’s	velocity:	100	km/hr

22



Pipelining

23



A	general	model	of	msg	communication

Processor	1 Processor	2
Link	1		

bandwidth	=	Bsmall
Link	2		

bandwidth	=	Blarge

Steps	in	sending	a	N-bit	message

Processor	copies	data		
from	memory	to		
network	card

Send	data	over	link	1	(slow	link)	
Send	data	over	link	2	(fast	link)		
Copy	data	from	network	to	memory

time	

total	latency	of	message	send

=	Occupancy	(time	for	data	to	pass	through	slowest	component	of	system) 24



Pipelined	communication	of	messages

Occupancy	determines	communication	rate!	
In	steady	state	throughput	is	∝ (1/occupancy)	msg/sec

time

Assume	processor	copies	messages	into	buffer	for	network	to	transmit	from		
Buffer	is	fixed	size	and	can	hold	at	most	two	messages	
(numbers	indicate	number	of	msgs	in	buffer	after	insert)

Sender	generates	msgs	at	full		
rate	until	output	buffer	fills		
(faster	than	1/occupancy)

Sender	stalls	because		
output	buffer	is	full

= 	Sender	transfers	message	to	network	buffer	

= 	Occupancy	(time	for	data	to	pass	through	slowest	component	of	system)

1

2

2

2

2

Msg	0

Msg	1

Msg	2

Msg	3

0

25



Another	example:	CPU	to	memory	communication

Processor Memory

Processor	issues	load		
instruction

Cache	lookup

time	
total	latency	of	memory	access

Transfer	cache	line		
from	memory	over		

memory	bus
Transfer	value	to		
processor	register

Cache

=	Time	to	send	cache	line	over	memory	bus

Send	request	to	memory

26



Example:	memory	bound	instruction	stream!

time

Cache	misses	result	in	request	added	to	size=1	memory	request	buffer	
Notice:	memory	fully	utilized,	but	processor’s	utilization	drop	to	rate	determined	by	BW

=	Instruction	

=	Occupancy	of	memory	bus	= 	size	of	cache	line	/	memory	bus	bandwidth

0

Stall!

1

1

Stall! 1

Load	miss	0	
Add		

Add	

Load	miss	1	
Add		

Add	

Load	miss	2	
Add		

Add	

Load	miss	3

Question:	what	happens	to		
processor	utilization	if	the	ratio		
of	math	instructions	to	load		
instructions	is	increased?

27



Good	questions	about	the	previous	slide

▪ How	do	I	see	from	the	figure	that	the	memory	bus	is	fully		
utilized?	

▪ How	would	 I	 illustrate	 higher	 memory	 latency	 (keep	 in	 mind		
memory	requests	are	pipelined	and	memory	bus	bandwidth		is	not	
changed)?	

▪ How	would	 the	 figure	 change	 if	 memory	 bus	 bandwidth	 was		
increased?	

▪ Would	there	be	processor	stalls	if	the	ratio	of	math		instructions	to	
load	instructions	was	significantly	increased?		Why?

28



Communication-to-computation	ratio

amount	of	communication	(e.g.,	bytes)	

amount	of	computation	(e.g.,	instructions)	

▪ If	denominator	is	the	execution	time	of	computation,	ratio	gives	average		
bandwidth	requirement	of	code	

▪ “Arithmetic	intensity”	= 	1	/	communication-to-computation	ratio	
- I	find	arithmetic	intensity	a	more	intuitive	quantity,	since	higher	is	better.	
- It	also	sounds	cooler	

▪ High	arithmetic	intensity	(low	communication-to-computation	ratio)	is	required	to		
efficiently	utilize	modern	parallel	processors	since	the	ratio	of	compute	capability		
to	available	bandwidth	is	high	(recall	element-wise	vector	multiply	example	from		
the	end	of	lecture	2)

29



Two	reasons	for	communication:		
inherent	vs.	artifactual	communication

30



Inherent	communication
Communication	that	must	occur	in	a		
parallel	algorithm.	The	communication		
is	fundamental	to	the	algorithm.

In	our	messaging	passing	example	at		
the	start	of	class,	sending	ghost	rows		
was	inherent	communication

P3

P4

Send	row

Send	row

P1

P2

31



Reducing	inherent	communication
Good	assignment	decisions	can	reduce	inherent	communication		
(increase	arithmetic	intensity)	

1D		blocked	assignment:	N		x	N	grid	 1D	interleaved	assignment:	N	x	N	grid

elements	computed	(per	processor)	≈	N2/P

elements	communicated	(per	processor)	≈	2N
∝ N	/	P elements	computed

elements	communicated
=	1/2

32



Reducing	inherent	communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

elements	computed:		
(per	processor)

(per	processor)

arithmetic	intensity:

2D	blocked	assignment:	N	x	N	grid	

N2 elements 

P processors

Asymptotically	better	communication	scaling	than	1D	blocked	assignment			
Communication	costs	increase	sub-linearly	with	P 

Assignment	captures	2D	locality	of	algorithm

  N  
P

N 2
P

elements	communicated:	 ∝ N
P

33



Artifactual	communication
▪ Inherent	communication:	information	that	fundamentally	must		

be	moved	between	processors	to	carry	out	the	algorithm	given	the		
specified	assignment	(assumes	unlimited	capacity	caches,		
minimum	granularity	transfers,	etc.)	

▪ Artifactual	communication:	all	other	communication	(artifactual		
communication	results	from	practical	details	of	system		
implementation)

34



Data	access	in	grid	solver:	row-major	traversal

N Assume	row-major	grid	layout.		
Assume	cache	line	is	4	grid	elements.	

Cache	capacity	is	24	grid	elements	(6	lines)

Recall	grid	solver	application.	
Blue	elements	show	data	that	is	in	cache		
after	update	to	red	element.

35



N Assume	row-major	grid	layout.		
Assume	cache	line	is	4	grid	elements.	

Cache	capacity	is	24	grid	elements	(6	lines)

Blue	elements	show	data	in	cache	at	end		
of	processing	first	row.

Data	access	in	grid	solver:	row-major	traversal

36



Problem	with	row-major	traversal:	long		
time	between	accesses	to	same	data

N Assume	row-major	grid	layout.		
Assume	cache	line	is	4	grid	elements.	

Cache	capacity	is	24	grid	elements	(6	lines)

Although	elements	(0,2)	and	(0,1)	had	been		
accessed	previously,	they	are	no	longer		
present	in	cache	at	start	of	processing	row	2.

This	program	loads	three	lines	for	every		
four	elements	of	output.

37



Artifactual	communication	examples
▪ System	might	have	a	minimum	granularity	of	data	transfer	(result:	system	must		

communicate	more	data	than	what	is	needed)	
- Program	loads	one	4-byte	float	value	but	entire	64-byte	cache	line	must	be	
transferred	from	memory	(16x	more	communication	than	necessary)	

▪ System	operation	might	result	in	unnecessary	communication:	
- Program	stores	16	consecutive	4-byte	float	values,	and	as	a	result	the	entire	64-	
byte	cache	line	is	loaded	from	memory,	entirely	overwritten,	then	subsequently		
stored	to	memory	(2x	overhead…	load	was	unnecessary)	

▪ Finite	replication	capacity	(the	same	data	communicated	to	processor	multiple		
times	because	cache	is	too	small	to	retain	it	between	accesses)

38



Techniques	for	reducing	communication

39



Improving	temporal	locality	by	changing		
grid	traversal	order

N Assume	row-major	grid	layout.		
Assume	cache	line	is	4	grid	elements.	

Cache	capacity	is	24	grid	elements	(6	lines)

“Blocked”	iteration	order	

(diagram	shows	state	of	cache	after	
finishing	work	from	first	row	of	first	block)

Now	load	two	cache	lines	for	every	six		
elements	of	output

40



Improving	temporal	locality	by	fusing	loops
void	add(int	n,	float*	A,	float*	B,	float*	C)	{		

for	(int	i=0;	i<n;	i++)
C[i]	=	A[i]	+	B[i];

}

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{		
for	(int	i=0;	i<n;	i++)

C[i]	=	A[i]	*	B[i];
}

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here

//	compute	E	=	D	+	((A	+	B)	*	C)		
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{		
for	(int	i=0;	i<n;	i++)	

E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];
}

//	compute	E	=	D	+	(A	+	B)	*	C		
fused(n,	A,	B,	C,	D,	E);

Two	loads,	one	store	per	math	op		
(arithmetic	intensity	= 	1/3)	

Two	loads,	one	store	per	math	op		
(arithmetic	intensity	= 	1/3)

Four	loads,	one	store	per	3	math	ops		
(arithmetic	intensity	= 	3/5)

Overall	arithmetic	intensity	= 	1/3

Code	on	top	is	more	modular	(e.g,	array-based	math	library	like	numPy	in	Python)		
Code	on	bottom	performs	much	better.	Why? 41



Improve	arithmetic	intensity	by	sharing	data

▪ Exploit	sharing:	co-locate	tasks	that	operate	on	the	same	data	
- Schedule	threads	working	on	the	same	data	structure	at	the	same	time		
on	the	same	processor	

- Reduces	inherent	communication

42



Exploiting	spatial	locality
▪ High	granularity	communication	(e.g.,	a	cache	line)	may		

introduce	artifactual	communication	
-	 If	application	has	low	spatial	locality,	system	may	transfer	
data	that	program	did	not	need

43



Artifactual	communication	due	to	comm.	granularity
Consider	2D	blocked	assignment	of	data	to	processors	described	previously.		
Assume:	communication	granularity	is	a	cache	line,	and	a	cache	line		
contains	four	elements	

Good	spatial	locality	for	non-local		
accesses	to	top-bottom	rows	

Poor	spatial	locality	for	non-local		
accesses	to	left-right	columns

Inherently	need	one	element	from	left		
and	right	neighbor,	but	system	must		
communicate	four.

Implication:	artifactual	communication		
increases	with	cache	line	size!

=	required	elements	assigned	to	other	processors

Data	owned	by	one	thread

44



P1 P2

Data	partitioned	in	half	by	column.	Partitions		
assigned	to	threads	running	on	P1	and	P2	

Threads	access	their	assigned	elements		
(no	inherent	communication	exists)

But	data	access	on	real	machine	triggers		
(artifactual)	communication	due	to	the	cache		
line	being	written	to	by	both	processors	*

*	further	detail	in	the	upcoming	cache	coherence	lectures

Artifactual	communication	due	to	cache	line		
communication	granularity	

Cache	line

45



Reducing	artifactual	comm:	blocked	data	layout

P1	 P2	 P3	 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

P1	 P2	 P3	 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

Consecutive	addresses		
straddle	partition	boundary

Consecutive	addresses	remain		
within	single	partition

Note:	don’t	confuse	blocked	assignment	of	work	to	threads	(true	in	both	cases	above)		
with	blocked	data	layout	of	data	elements	in	the	address	space	(only	at	right)

(Blue	lines	indicate	consecutive	memory	addresses)	

2D,	row-major	array	layout	 4D	array	layout	(block-major)

46



Thread	 Thread
0 31 0 31

▪ Observations:	
- Static	assignment	is	sufficient	(approximately	equal	busy	time	per	thread)	

- 4D	blocking	of	grid	reduces	time	spent	on	communication		
(reflected	on	graph	as	data	wait	time)	

- Synchronization	cost	is	largely	due	to	waiting	at	barriers

4D	Blocked	layout2D	Blocked	layout

Grid	solver:	execution	time	breakdown	
Execution	on	32-processor	SGI	Origin	2000	(1026	x	1026	grids)

Figure	credit:	Culler,	Singh,	and	Gupta
47



Contention

48



Contention

Tree	structured	communication:		
reduces	contention	

(but	higher	latency	under	no	contention)

Flat	communication:		
potential	for	high	contention	

(but	low	latency	if	no	contention)

▪ A	resource	can	perform	operations	at	a	given	throughput	
(number	of		transactions	per	unit	time)	
-	Memory,	communication	links,	servers,	TA’s	at	office	hours,	
etc.	

▪ Contention	occurs	when	many	requests	to	a	resource	are	made	
within		a	small	window	of	time	(the	resource	is	a	“hot	spot”)	

Example:	updating	a	shared	variable

49



Example:	distributed	work	queues	reduce		
contention	 (contention	in	access	to	single	shared	work	queue)

Worker	threads:	
Pull	data	from	own		work	queue		
Push	new	work	to	own		work	queue	
(no	contention	when	all	processors	have			
work	to	do)

When	local	work	queue	is	empty...		STEAL	work	from	random	work	queue		
(synchronization	okay	since	processor		would	have	sat	idle	anyway)

T1 T2 T3 T4

Set	of	work	queues	
(In	general,	one	per	worker	thread)

Steal!

Subproblems	
(a.k.a.	“tasks”,	“work	to	do”)

50



Summary:	reducing	communication	costs

▪ Reduce	overhead	of	communication	to	sender/receiver	
- Send	fewer	messages,	make	messages	larger	(amortize	overhead)	
- Coalesce	many	small	messages	into	large	ones	

▪ Reduce	latency	of	communication	
- Application	writer:	restructure	code	to	exploit	locality	
- Hardware	implementor:	improve	communication	architecture	

▪ Reduce	contention	
- Replicate	contended	resources	(e.g.,	local	copies,	fine-grained	locks)	
- Stagger	access	to	contended	resources	

▪ Increase	communication/computation	overlap	
- Application	writer:	use	asynchronous	messages	
- HW	implementor:	pipelining,	multi-threading,	pre-fetching,		
- Requires	additional	concurrency	in	application	

51



Roofline	Deck

52



Roofline	model

horizontal	region:	compute	limited

▪ Use	microbenchmarks	to	compute	peak	performance	of	a	machine	as	a	function	of		
arithmetic	intensity	of	application	

▪ Then	compare	application’s	performance	to	known	peak	values	
diagonal	region:	memory
bandwidth	limited

Figure	credit:	Williams	et	al.	2009
53



Roofline	model:	optimization	regions
▪ Use	various	levels	of	optimization	in	benchmarks	

(e.g.,	best	performance	with	and	without	using	SIMD	instructions)

Figure	credit:	Williams	et	al.	2009
54



Establishing	high	watermarks	*
Add	“math”	(non-memory	instructions)	
Does	execution	time	increase	linearly	with	operation	count	as	math	is	added?		
(If	so,	this	is	evidence	that	code	is	instruction-rate	limited)	

Remove	almost	all	math,	but	load	same	data	
How	much	does	execution-time	decrease?	If	not	much,	suspect	memory	bottleneck	

Change	all	array	accesses	to	A[0]	
How	much	faster	does	your	code	get?	
(This	establishes	an	upper	bound	on	benefit	of	improving	locality	of	data	access)	

Remove	all	atomic	operations	or	locks	
How	much	faster	does	your	code	get?	(provided	it	still	does	approximately	the	same	amount	of	work)		
(This	establishes	an	upper	bound	on	benefit	of	reducing	sync	overhead.)

*	Computation,	memory	access,	and	synchronization	are	almost	never	perfectly	overlapped.	As	a	result,	overall	performance	will		
rarely	be	dictated	entirely	by	compute	or	by	bandwidth	or	by	sync.	Even	so,	the	sensitivity	of	performance	change	to	the	above		
program	modifications	can	be	a	good	indication	of	dominant	costs 55



Use	profilers/performance	monitoring	tools
▪ Image	at	left	is	“CPU	usage”	from	activity	monitor	in	OS	X	while	browsing	the	web		

in	Chrome	(my	laptop	has	a	quad-core	Core	i7	CPU)	
- Graph	plots	percentage	of	time	OS	has	scheduled	a	process	thread	onto	a	

processor	execution	context	
- Not	very	helpful	for	optimizing	performance	

▪ All	modern	processors	have	low-level	event	“performance	counters”	
- Registers	that	count	important	details	such	as:	instructions	completed,	clock	

ticks,	L2/L3	cache	hits/misses,	bytes	read	from	memory	controller,	etc.	

▪ Example:	Intel’s	Performance	Counter	Monitor	Tool	provides	a	C++	API	for		
accessing	these	registers.

▪ Also	see	Intel	VTune,	PAPI,	oprofile,	etc.

PCM	*m	=	PCM::getInstance();	
SystemCounterState	begin	=	getSystemCounterState();	

//	code	to	analyze	goes	here	

SystemCounterState	end	=	getSystemCounterState();	

printf(“Instructions	per	clock:	%f\n”,	getIPC(begin,	end));		
printf(“L3	cache	hit	ratio:	%f\n”,	getL3CacheHitRatio(begin,	end));		
printf(“Bytes	read:	%d\n”,	getBytesReadFromMC(begin,	end));

56



Bonus	slides:	
Understanding	problem	size	issues	can		
very	helpful	when	assessing	program		

performance

57



Your	boss	selects	the	application	that	matters	most	to	the	company		“I	
want	you	to	demonstrate	good	performance	on	this	application.”

How	do	you	know	if	you	have	a	good	design?	

▪ Absolute	performance?	
- Often	measured	as	wall	clock	time	
- Another	example:	operations	per	second	

▪ Speedup:	performance	improvement	due	to	parallelism?	
- Execution	time	of	sequential	program	/	execution	time	on	P	processors	
- Operations	per	second	on	P	processors	/	operations	per	second	of	sequential	program	

▪ Efficiency?	
- Performance	per	unit	resource	
- e.g.,	operations	per	second	per	chip	area,	per	dollar,	per	watt

58



Measuring	scaling
▪ Consider	the	grid	solver	example	from	last	week’s	class	
- We	changed	the	algorithm	to	allow	for	parallelism	
- The	new	algorithm	might	converge	more	slowly,	requiring	more		
iterations	of	the	solver	

▪ Should	speedup	be	measured	against	the	performance	of	a		
parallel	version	of	a	program	running	on	one	processor,	or	the	best		
sequential	program?	

Common	pitfall:	compare	parallel	program	speedup	to	
parallel		algorithm	running	on	one	core	(easier	to	make	
yourself	look	good)

59



Sp
ee
d

up

16	

Processors

81		2	 4 32

Speedup	of	solver	application:	258	x	258	grid	
Execution	on	32	processor	SGI	Origin	2000

Figure	credit:	Culler,	Singh,	and	Gupta
60



Remember:	work	assignment	in	solver

P1 P2 P3

P4 P5 P6

P7 P8 P9 arithmetic	intensity:

2D	blocked	assignment:	N	x	N	grid	

N2 elements 
P processors 

elements	computed:		
(per	processor)	

elements	communicated:		
(per	processor)

Small	N	(or	large	P)	yields	low	arithmetic	intensity!
61



Sp
ee
d

up

Pitfalls	of	fixed	problem	size	speedup	analysis	
Solver	execution	on	32	processor	SGI	Origin	2000

Ideal

258	x	258	grid	on	32	processors:		

1K	x	1K	grid	on	32	processors:
~ 	310	grid	cells	per	processor	

~ 	32K	grid	cells	per	processor

No	benefit!	(slight	slowdown)	

Problem	size	is	just	too	small	for	the	machine		
(large	communication-to-computation	ratio)	

Scaling	the	performance	of	small	problem	may		
not	be	all	that	important	anyway	(it	might		
already	execute	fast	enough	on	a	single	core)

3216	

Processors
81	2	 4

Figure	credit:	Culler,	Singh,	and	Gupta
62



Sp
ee
d

up

Figure	credit:	Culler,	Singh,	and	Gupta

3216	
Processors

8

Pitfalls	of	fixed	problem	size	speedup	analysis	
Execution	on	32	processor	SGI	Origin	2000

Here:	super-linear	speedup!	with	enough		
processors,	chunk	of	grid	assigned	to	each		
processor	begins	to	fit	in	cache	(key	working		
set	fits	in	per-processor	cache)

Another	example:	if	problem	size	is	too	large		
for	a	single	machine,	working	set	may	not	fit	in		
memory:	causing	thrashing	to	disk	

(this	would	make	speedup	on	a	bigger	parallel		
machine	with	more	memory	look	amazing!)

1	2	 4

63



Understanding	scaling
▪ There	can	be	complex	interactions	between	the	size	of	the	problem	to	solve		

and	the	size	of	the	parallel	computer	
- Can	impact	load	balance,	overhead,	arithmetic	intensity,	locality	of	data	access	
- Effects	can	be	dramatic	and	application	dependent

▪ Evaluating	a	machine	with	a	fixed	problem	size	can	be	problematic
- Too	small	a	problem:	

- Parallelism	overheads	dominate	parallelism	benefits	(may	even	result	in	slow	downs)	
- Problem	size	may	be	appropriate	for	small	machines,	but	inappropriate	for	large	ones	

(does	not	reflect	realistic	usage	of	large	machine!)	

- Too	large	a	problem:	(problem	size	chosen	to	be	appropriate	for	large	machine)	
- Key	working	set	may	not	“fit”	in	small	machine	

(causing	thrashing	to	disk,	or	key	working	set	exceeds	cache	capacity,	or	can’t	run	at	all)	
- When	problem	working	set	“fits”	in	a	large	machine	but	not	small	one,	super-linear	

speedups	can	occur

▪ Can	be	desirable	to	scale	problem	size	as	machine	sizes	grow	
(buy	a	bigger	machine	to	compute	more,	rather	than	just	compute	the	same	problem	faster)

64



Architects	also	think	about	scaling
A	common	question:	“Does	an	architecture	scale?”	

▪ Scaling	up:	how	does	architecture’s	performance	scale	with	increasing	core	count?	
- Will	design	scale	to	the	high	end?	

▪ Scaling	down:	how	does	architecture’s	performance	scale	with	decreasing	core	count?	
- Will	design	scale	to	the	low	end?	

▪ Parallel	architectures	are	designed	to	work	in	a	range	of	contexts	
- Same	architecture	used	for	low-end,	medium-scale,	and	high-end	systems	
- GPUs	are	a	great	example	

-	 Same	SMM	core	architecture,	different	numbers	of	SMM	cores	per	chip

Titan	X:	24	SMM	cores		
(250	watts)

GTX	980:	16	SMM	cores	
(165	watts)

GTX	950:	6	SMM	cores	
(90	watts)

Tegra	X1:	2	SMM	cores		
(mobile	SoC) 65



Questions	to	ask	when	scaling	a	problem

▪ Under	what	constraints	should	the	problem	be	scaled?	
- “Work	done	by	program”	may	no	longer	be	the	quantity	that	is	fixed	

- Fixed	data	set	size,	fixed	memory	usage	per	processor,	fixed	execution	time,	etc.?	

▪ How	should	be	the	problem	be	scaled?
-	
-

Problem	size	is	often	determined	by	more	than	one	parameter		

Solver	example:	problem	defined	by	(N,	ε,	Δt,	T)

grid	size:	(N	x	N)

convergence	threshold	of	solver

total	time	simulated	by	program		
(one	hour	of	fluid	flow)	

time	step	size	(of	overall	fluid	simulation	that	uses	solver)

66



Problem-constrained	scaling	*
▪ Focus:	use	a	parallel	computer	to	solve	the	same	problem	faster	

	

Speedup	=	
time	1	processor	

time	P	processors	

▪ Recall	pitfalls	from	earlier	in	lecture	(small	problems	may	not	be		
realistic	workloads	for	large	machines,	big	problems	may	not	fit	on		
small	machines)	

▪ Examples	of	problem-constrained	scaling:	
-	 Almost	everything	we’ve	considered	parallelizing	in	class	so	far

*	Problem-constrained	scaling	is	often	called	“hard	scaling”. 67



Time-constrained	scaling
▪ Focus:	completing	more	work	in	a	fixed	amount	of	time	

-	 Execution	time	kept	fixed	as	the	machine	(and	problem)	scales

▪ How	to	measure	“work”?	
- Challenge:	“work	done”	may	not	be	linear	function	of	problem	inputs		

(e.g.	matrix	multiplication	is	O(N3)	work	for	O(N2)	sized	inputs)	
- One	approach:	“work	done”	is	defined	by	execution	time	of	same	computation	on	a	

single	processor	(but	consider	effects	of	thrashing	if	problem	too	big)	
- Ideally,	a	measure	of	work	is:	
- Simple	to	understand	

- Scales	linearly	with	sequential	run	time	(so	ideal	speedup	remains	linear	in	P)

Speedup	=
work	done	by	P	processors
work	done	by	1	processor

68



Time-constrained	scaling	example	
Real-time	3D	graphics:	more	compute	power	allows	for	rendering	of	much	more	complex	scene		
Problem	size	metrics:	number	of	polygons,	texels	sampled,	shader	length,	etc.

Assassin's	Creed	Unity	(2014)

Half	Life	1	(1998)

Image	credits:	
http://www.gamespot.com/forums/system-wars-314159282/assassin-s-creed-unity-best-graphics-of-2014-31696528/		
http://www.game-weavers.com/?page_id=490

Half-Life	(1998)

69

http://www.gamespot.com/forums/system-wars-314159282/assassin-s-creed-unity-best-graphics-of-2014-31696528/
http://www.game-weavers.com/?page_id=490


Time-constrained	scaling	example
Large	Synoptic	Survey	Telescope	(LSST)	
- Acquire	high-resolution	survey	of	sky	(3-gigapixel		
image	every	15	seconds,	every	night	for	many	years)

Image	credits:		http://
www.lsst.org		http://
mcdonaldobservatory.org

LSST	will	be	located	on	top	of	Cerro	Pachón	Mountain,	Chile

Rapid	Image	analysis	compute	platform		
(detect	“potentially”		
interesting	events)

Notify	other	observatories	if		
potential	event	detected. Increasing	compute	capability	allows		

for	more	sophisticated	detection		
algorithms	(fewer	false	positives,		
detect	broader	class	of	events)

70

http://www.lsst.org/
http://www.lsst.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/
http://mcdonaldobservatory.org/


More	time-constrained	scaling	examples
▪ Computational	finance	

- Run	most	sophisticated	model	possible	in:	1	ms,	1	minute,	overnight,	etc.	

▪ Modern	web	sites	
- Want	to	generate	complex	page,	respond	to	user	in	X	milliseconds	

(studies	show	site	usage	directly	corresponds	to	page	load	latency)	

▪ Real-time	computer	vision	for	robotics	
- Consider	self-driving	car:	want	best-quality	obstacle	detection	in	5	ms

71



Memory-constrained	scaling	*
▪ Focus:	run	the	largest	problem	possible	without	overflowing	main		

memory	**	

▪ Memory	per	processor	is	held	fixed	(e.g.,	add	more	machines	to	cluster)	
▪ Neither	work	or	execution	time	are	held	constant	

Speedup	=	 	 	work	(P	processors)		x time	(1	processor)	
	

time	(P	processors)	 x work	(1	processor)	

= 	 	 	 work	per	unit	time	on	P	processors		 	

work	per	unit	time	on	1	processor
	

▪ Note:	scaling	problem	size	can	make	runtimes	very	large	
-	 Consider	O(N3)	matrix	multiplication	on	O(N2)	matrices	

*	 Memory-constrained	scaling	is	often	called	“weak	scaling”	
**	Assumptions:	(1)	memory	resources	scale	with	processor	count	(2)	spilling	to	disk	is	infeasible	behavior	(too	slow)

72



Memory-constrained	scaling	examples
▪ One	motivation	to	use	supercomputers	and		

large	clusters	is	simply	to	be	able	to	fit	large		
problems	in	memory	

▪ Large	N-body	problems	
-	 2012	Supercomputing	Gordon	Bell	 Prize	Winner:		

1,073,741,824,000	particle	N-body	simulation	on		
Japan’s	K-Computer

▪ Large-scale	machine	learning	
-	 Billions	of	clicks,	documents,	etc.

Image	credit:	Ishiyama	et	al.	2012

2D	domain	decomposition	of	N-body	simulation

▪ Memcached	(in	memory	caching	system	for	web	apps)	
-	 More	servers	= 	more	available	cache

73



Scaling	examples	at	PIXAR
▪ Rendering	a	“shot”	(a	sequence	of	frames)	in	a	movie	

- Goal:	minimize	time	to	completion	(problem	constrained)	
- Assign	each	frame	to	a	different	machine	in	the	cluster	

▪ Artists	working	to	design	lighting	for	a	scene	
- Provide	interactive	frame	rate	to	artist	(time	constrained)	
- More	performance	=	higher	fidelity	representation	shown	to	artist	in	allotted	
time	

▪ Physical	simulation:	e.g.,	fluid	simulation	
- Parallelize	simulation	across	multiple	machines	to	fit	simulation	grid	in	
aggregate	memory	of	processors	(memory	constrained)	

▪ Final	render	of	images	for	movie	
- Scene	complexity	is	typically	bounded	by	memory	available	on	farm	machines	
- One	barrier	to	exploiting	additional	parallelism	within	a	machine	is	that	
required	footprint	often	increases	with	number	of	processors 74



Summary	of	tips

▪ Measure,	measure,	measure…	

▪ Establish	high	watermarks	for	your	program	
-	 Are	you	compute,	synchronization,	or	bandwidth	bound?	

▪ Be	aware	of	scaling	issues.	Is	the	problem	well	matched	for		
the	machine?

75


