Linked Lists and
Synchronization Patterns

Today: Concurrent Objects

- Adding threads should not lower
throughput
— Contention effects
— Mostly fixed by Queue locks

+ Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable

Coarse-Grained Synchronization

- Each method locks the object
— Avoid contention using queue locks

Coarse-Grained Synchronization

- Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
* In simple cases

Coarse-Grained Synchronization

- Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
* In simple cases

« S0, are we done?

Coarse-Grained Synchronization

- Sequential bottleneck
— Threads “stand in line”

Coarse-Grained Synchronization

- Sequential bottleneck
— Threads “stand in line”

+ Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

Coarse-Grained Synchronization

« Sequential bottleneck
— Threads “stand in line”

- Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

» SO0 why even use a multiprocessor?
— Well, some apps inherently parallel ...

This Lecture

* Introduce four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

This Lecture

* Introduce four “patterns”
— Bag of tricks ...

— Methods that work more than once ...

* For highly-concurrent objects
— Concurrent access
— More threads, more throughput

10

First:
Fine-Grained Synchronization

» |Instead of using a single lock ...

+ Split object into
— Independently-synchronized components
« Methods conflict when they access

— The same component ...
— At the same time

11

Second:
Optimistic Synchronization

« Search without locking ...

» |f you find it, lock and check ...
— OK: we are done
— Oops: start over

- Evaluation
— Usually cheaper than locking, but
— Mistakes are expensive

12

Third:
Lazy Synchronization

* Postpone hard work

* Removing components is tricky

— Logical removal
- Mark component to be deleted

— Physical removal
- Do what needs to be done

13

Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

- Advantages
— No Scheduler Assumptions/Support

- Disadvantages
— Complex
— Sometimes high overhead

14

Linked List

* lllustrate these patterns ...

« Using a list-based Set
— Common application
— Building block for other apps

15

Set Interface

 Unordered collection of items

* No duplicates

 Methods

—add(x) put X in set
- remove (x) take x out of set
—contains(x) tests if x in set

16

List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

17

List-Based Sets

Eublic boolean add(T x);

Add item to set

18

List-Based Sets

E)ublic boolean remove(T x);

Remove item from set

19

List-Based Sets

Eublic boolean contains(T x); j

Is item in set?

20

public class Node {
public T item;
public int key;
public Node next;

}

List Node

21

List Node

Eublic T item;

item of interest

22

List Node

Eublic int key;

Usually hash code

23

List Node

public Node next; j

Reference to next node

24

The List-Based Set

w‘{@:-]— @3—?

Sorted with Sentinel nodes
(Mmin & max possible keys)

25

Invariants

« Sentinel nodes
— tail reachable from head

« Sorted

* No duplicates

26

Sequential List Based Set
Add()

(I3—Gl3F—>{c[3—E

Remove()

([3—al3+—kI3—{c)

Sequential List Based Set
Add()

CI3—>@I3\v (c[3—>[d]]

BERS
Remove()
(B3—E} EE—fl]

Coarse Grained Locking

é6
([3—el3F—b[3—E)

Coarse Grained Locking

([F— ED—>@I3\ dl)
v

LS CE

30

Coarse Grained Locking

2

([3— ED—»EBx I

H /C honk! "U;(!_j A

BER

Simple but hotspot + bottleneck

31

Coarse-Grained Locking

Easy, same as synchronized methods
— “One lock to rule them all ...”

32

Coarse-Grained Locking

- Easy, same as synchronized methods
— “One lock to rule them all ...”

» Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue

33

Fine-grained Locking

* Requires careful thought

- Split object into pieces
— Each piece has own lock
— Methods that work on disjoint pieces need
not exclude each other

34

Hand-over-Hand locking

([F—l3—b[F—(]]

g

Hand-over-Hand locking

6

3=kl

0%

Hand-over-Hand locking

Hand-over-Hand locking

38

Hand-over-Hand locking

39

Removing a Node

Oo°

Removing a Node

Removing a Node

42

Removing a Node

{ - E3—@D

emo (b)

Removing a Node

6 b
(60

Removing a Node

6
(13- €360

O

Why hold 2 locks?

g

45

Concurrent Removes

Oo°

Concurrent Removes
([F=(a] =] F—=(c[F—(e]]

Oo°

Concurrent Removes
(13— F—E[F—(c[F>(e]]

Oo°

Concurrent Removes
(T3~ 63613360

Oo°

Concurrent Removes

Concurrent Removes

Concurrent Removes

o
(3G EFEE3—~G0

Oo°

Concurrent Removes

o
(3G EFEE3—~G0

Oo°

Concurrent Removes

Bl Bl EE—E0
o

Concurrent Removes

0
(13—Ely | Iy ([3—{]

Uh, Oh

([~ (e[3]
~
O

Uh, Oh

Bad news, ¢ not removed

B0 DT

e

Problem

* To delete node c
— Swing node b’s next field to d
a

e
* Problem is,

— Someone deleting b concurrently could
direct a pointer

to C a b 83_’

58

Insight

* If a node is locked
— No one can delete node’s successor

- |If a thread locks
— Node to be deleted
— And its predecessor
— Then it works

59

Hand-Over-Hand Again

HE g CIE g O g O g €10

e

60

Hand-Over-Hand Again

Hand-Over-Hand Again

Hand-Over-Hand Again

6 o
SESIOENOE,HOE R T

OSo_ .0

Hand-Over-Hand Again

6 6
([F—laly | | L= EB—ED

f&

Hand-Over-Hand Again

B -
»

65

Removing a Node

Oo°

66

Removing a Node

Oo°

Removing a Node

(T3 G~ E3—EE—~G0

Lkl

Removing a Node

Oo°

69

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

@u@ |

Removing a Node

7’

Removing a Node

6 &
CB—% an
L%

Removing a Node

Removing a Node

80

Removing a Node

([5—(al ‘3 (o]]

Remove method

public boolean remove(ltem item) {
int key = item.hashCode();
Node pred, curr;

try {

} finally {
curr.unlock();
pred.unlock();

B

82

Remove method

I: int key = item.hashCode(); j

Key used to order node

83

Remove method

Elode pred, curr;

Predecessor and current nodes

84

Remove method

Make sure

(e L
) finally

curr.unlock();
pred.unlock();

N—

locks released

85

Remove method

e \

Everything else

86

Remove method

try {
pred = this.head,;

pred.lock();
curr = pred.next;
curr.lock();

}finally { ... }

87

Remove method

lock pred == head
pred = this.head,;
red.lock();

[@{:]}» |

L

Remove method

Lock current

curr = pred.next;
curr.lock();

u:l\% (I3»

89

Remove method

Traversing list

@\% M3»(D

90

Remove:

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}

return false;

searching

(L

0L, 4

iC, 4

91

Remove: searching

@lile (curr.key <= key) {

Search key range

B

Vs

0L, 4

92

Remove: searching

Elile (curr.key <= key)

At start of each loop:
curr and pred locked

L

s

93

Remove: searching

q(item == curr.item) { I

pred.next = curr.next;
return true;

If item found, remove node

94

Remove: searching

/if (item =

pred.next = curr.next;
return true;

If node found, remove it

= curr.item) {

95

Remove: searching

Unlock predecessor

E)red.unlocko;

iC Q (I3»

96

Remove: searching

Only one node locked!

Eared.unlock();

97

Remove: searching

demote current

/l

Eored = curr; j

98

Remove: searching

Find and lock new current

(oo S
s

Remove: searching

Lock invariant restored

= .next; | . -
currlockl;] (3 @'@ D

100

Remove: searching

/wise, not present

return false;

101

Why remove() is linearizable

ljf (item == curr.item) {

‘pred reachable from head
‘curr is pred.next
*So curr.item is in the set

102

Why remove() is linearizable

Epred.next = curr.next; I

\

Linearization point if
item Is present

103

Why remove() is linearizable

if (item == curr.item) {
pred.next = curr.next;
return true;

Node locked, so no other thread
can removei it

104

Why remove() is linearizable

ltem not present

Eeturn false; %

105

Why remove() is linearizable

Eeturn false;

5

‘pred reachable from head
‘curr is pred.next
‘pred.key < key

‘key < curr.key

106

Why remove() is linearizable

Inearization point
E curr = curr.next;

107

Adding Nodes

 To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)

108

Drawbacks

- Better than coarse-grained lock
— Threads can traverse in parallel

 Still not ideal

— Long chain of acquire/release
— Inefficient

109

Optimistic Synchronization

* Find nodes without locking
» Lock nodes
« Check that everything is OK

110

Optimistic: Traverse without Locking

111

Optimistic: Lock and Load

112

Optimistic: Lock and Load

113

What could go wrong?

114

What could go wrong?

115

What could go wrong?

~—~

116

What could go wrong?

117

What could go wrong?

118

What could go wrong?

119

What could go wrong?

(T3— G0 @F—ED

Uh-oh
OOQ

120

Validate — Part 1

Yes, b still
reachable
from head

121

What Else Could Go Wrong?

122

What Else Coould Go Wrong?

6 &
(B— EE—+ 63— +@3—~E0]

VAR
’

What Else Coould Go Wrong?

& &
(B3—GE—+6)| (@3~ED

s
\ / =

124

What Else Could Go Wrong?

125

What Else Could Go Wrong?

126

Validate Part 2
(while holding locks)

Yes, b still
points to d

127

Optimistic: Linearization Point

128

Correctness

o |f
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successorto b

 Then
— Neither will be deleted
— OK to delete and return true

129

Unsuccessful Remove

6 6

(el - E: d] F>(e]]

130

Validate (1)

6

A

oy

Oo

(4] F—>{e]]

Yes, b still
reachable from
SO

H 2P head

131

Validate (2)

OK Computer

Correctness

o |f
— Nodes b and d both locked
— Node b still accessible
— Node d still successorto b

* Then
— Neither will be deleted
— No thread can add c after b
— OK to return false

134

On Exit from Loop

* |f item is present
— curr holds item
— pred just before curr

- |f item is absent
— curr has first higher key
— pred just before curr

« Assuming no synchronization problems

135

Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains)
— No contention on traversals

 Moreover

— Traversals are wait-free
— Food for thought ...

136

So Far, So Good

- Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks

137

Evaluation

« Optimistic is effective if
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks

+ Drawback
— contains() acquires locks
— 90% of calls in many apps

138

Lazy List

 Like optimistic, except
— Scan once
—contains(x) never locks ...

» Key insight
— Removing nodes causes trouble
— Do it “lazily”

139

Lazy List

e remove()
— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor’s next (as before)

140

Lazy Removal

(I T3~ 3—>eE 3> 3+d1 3>

141

Lazy Removal

Present In list

142

Lazy Removal

Logically deleted

143

Lazy Removal

Physically deleted

144

Lazy Removal

Physically deleted

145

Lazy List

* All Methods

— Scan through locked and marked nodes
— Removing a node doesn’t slow down other
method calls ...

« Must still lock pred and curr nodes.

146

Validation

No need to rescan list!

Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

147

Business as Usual

0%

Business as Usual

149

Business as Usual

G}%E s G~
0%

Business as Usual

SEROIE OOk

L

Business as Usual

L

Business as Usual

L

153

Business as Usual

(3~ GI3~EI3C5—

L

Business as Usual

- By -
L

Business as Usual

Summary: Wait-free Contains

T N~ T ——— —n*

(I [3>l [>T 3~>di 3-{e[T1)

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing = not in the set

157

Lazy List
T N~ T ——— —> *

i o 6 6
EEE L ANE ONECIE NN

Lazy add() and remove() + Wait-free contains|()

158

Evaluation

« Good:
— contains() doesn’t lock
— |In fact, its wait-free!
— Good because typically high % contains()
— Uncontended calls don’t re-traverse

- Bad

— Contended add() and remove() calls do re-
traverse
— Traffic jam if one thread delays

159

Traffic Jam

« Any concurrent data structure based on
mutual exclusion has a weakness

 |f one thread
— Enters critical section

— And “eats the big muffin”
- Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....

160

Reminder: Lock-Free Data Structures

®

* No matter what ...
— Guarantees minimal progress in any
execution
— i.e. Some thread will always complete a
method call
— Even if others halt at malicious times
— Implies that implementation can’t use locks

161

Lock-free Lists

* Next logical step
— Wait-free contains()
— lock-free add() and remove|)

- Use only compareAndSet()
— What could go wrong?

162

Remove Using CAS

Logical Removal =
Set Mark Bit

Use CAS to verify pointer Physical
. Removal
IS correct CAS pointer

Not enough!

163

Problem...

Logical Removal =
Set Mark Bit

Problem: Physical

d not added to list... Removal Node added
CAS Before

Must Prevent Physical

manipulation of Removal CAS

removed node’s pointer

164

The Solution: Combine Bit and Pointer

Logical Removal =
Set Mark Bit

Physical
. . Removal Fajl CAS: Node not
Mark-Bit and Pointer cas added after logical
are CASed together Removal

(AtomicMarkableReference)

165

Solution

« Use AtomicMarkableReference

» Atomically
— Swing reference and
— Update flag

- Remove in two steps
— Set mark bit in next field
— Redirect predecessor’s pointer

166

Marking a Node

« AtomicMarkableReference class
— Java.util.concurrent.atomic package

f

Reference ——

{address] F

.

mark bit

167

Extracting Reference & Mark

Public Object get(boolean[] marked);

168

Extracting Reference & Mark

bject ool%n[l

Returns mark at

Returns .
array index 0!

reference

169

Extracting Mark Only

boolean]

Value of
mark

170

Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

171

Changing State

If this is the current
reference ...

Object expected{’ﬁ

onIean expectedMark,

And this is the
current mark ...

172

Changing State

...then change to this

/ new reference ...
1

abject updateRef,]

Hoolean update“%l
... and this new

mark

173

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

174

Changing State

bject expectedRef,]

If this iIs the current
reference ...

175

Changing State

bloolean updateMark);

.. then change to
this new mark.

176

Removing a Node

SERSOESSICnE S EIN

W ®

Removing a Node

failed

Removing a Node

[]3—*@@—3'[+—(a[)
T A

Removing a Node

([5—

remove
b Oooe

180

Traversing the List

- Q: what do you do when you find a
“logically” deleted node in your path?
* A: finish the job.

— CAS the predecessor’s next field

— Proceed (repeat as needed)

181

Lock-Free Traversal
(only Add and Remove)

182

The Window Class

class Window {

public Node pred;

public Node curr;

Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}

}

183

The Window Class

ublic Node pred;
ublic Node curr;

A container for pred
and current values

184

Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;

185

Using the Find Method

V\@dow window = find(head, key); j

==

Find returns window

186

Using the Find Method

N red = window.pred;
curr = window.curr;

Extract pred and curr

187

The Find Method

Eindow window

At some instant, .
(13— [I-]—

pred curr succ

© Herlihy-Shavit 2007

188

The Find Method

EVindow window

. { item } notin list
At some instant,

(F——U3

curr= null
pred succ

© Herlihy-Shavit 2007
189

Wait-free Contains

Only diff is that we
get and check
marked

Node succ = curr.next.get(marked);

190

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

191

1.2e+07
1e+07
8e+06
6e+06
4e+0
2e+(

High Contains Ratio

Ops/sec (90% reads/0 load)

X Lock-free
Lazy list

Course Grained

< Fine Lock-coupling

192

Low Contains Ratio

Ops/sec (50% reads/0 load)

3.5e+06 | | | | . .
3e+06 *. % %%%% Hock-free
2.5e+06 kX .%...l.l.g Lazy list
2e+06 - K ',/' u g i
9
1.5e406 —.I/,,,,i]
1e+606 - 1
500000 'W Course Grained

O m‘7‘7(3717Q,~—~O_~—~@~_~a———D——|~—@—\7Q7‘7‘m7‘7‘@‘7‘[,}‘1‘@;7;@;7‘7(1\7‘7\D Fine Lock_coupling

5 10 15 20 25 30
threads

193

As Contains Ratio Increases

8e+06

7e+06
6e+06 -
5e+06 r
4e+06 -

3e+06
2e+06
1e+06

0

Ops/sec (32 threads/0 load)

,,:;i;;ii;-iiﬁi:;‘;;i' e :
e
0 10 20 30 40 50 60 70 80 90

% Contains()

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

194

Summary

» Coarse-grained locking
 Fine-grained locking

« Optimistic synchronization
+ Lock-free synchronization

195

