
Linked Lists and
Synchronization Patterns

2

Today: Concurrent Objects
• Adding threads should not lower

throughput

– Contention effects

– Mostly fixed by Queue locks

• Should increase throughput

– Not possible if inherently sequential

– Surprising things are parallelizable

3

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

4

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Easy to reason about

• In simple cases

5

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Easy to reason about

• In simple cases

• So, are we done?	

6

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

7

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

• Adding more threads

– Does not improve throughput

– Struggle to keep it from getting worse

8

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

• Adding more threads

– Does not improve throughput

– Struggle to keep it from getting worse

• So why even use a multiprocessor?

– Well, some apps inherently parallel …

9

This Lecture

• Introduce four “patterns”

– Bag of tricks …

– Methods that work more than once …

10

This Lecture

• Introduce four “patterns”

– Bag of tricks …

– Methods that work more than once …

• For highly-concurrent objects

– Concurrent access

– More threads, more throughput

11

First: 
Fine-Grained Synchronization

• Instead of using a single lock …

• Split object into

– Independently-synchronized components

• Methods conflict when they access

– The same component …

– At the same time

12

Second: 
Optimistic Synchronization

• Search without locking …

• If you find it, lock and check …

– OK: we are done

– Oops: start over

• Evaluation

– Usually cheaper than locking, but

– Mistakes are expensive

13

Third: 
Lazy Synchronization

• Postpone hard work

• Removing components is tricky

– Logical removal

• Mark component to be deleted

– Physical removal

• Do what needs to be done

14

Fourth: 
Lock-Free Synchronization

• Don’t use locks at all

– Use compareAndSet() & relatives …

• Advantages

– No Scheduler Assumptions/Support

• Disadvantages

– Complex

– Sometimes high overhead

15

Linked List

• Illustrate these patterns …

• Using a list-based Set

– Common application

– Building block for other apps

16

Set Interface

• Unordered collection of items

• No duplicates

• Methods

– add(x) put x in set
– remove(x) take x out of set
– contains(x) tests if x in set

17

List-Based Sets
public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(T x);
}

18

List-Based Sets

public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(T x);
}

Add item to set

19

List-Based Sets
public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(Tt x);
}

Remove item from set

20

List-Based Sets
public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(T x);
}

Is item in set?

21

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

22

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

item of interest

23

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

Usually hash code

24

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

Reference to next node

25

The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

26

Invariants

• Sentinel nodes

– tail reachable from head

• Sorted

• No duplicates

27

Sequential List Based Set

a c d

a b c

Add()

Remove()

28

Sequential List Based Set

a c d

b

a b c

Add()

Remove()

29

Coarse Grained Locking

a b d

30

Coarse Grained Locking

a b d

c

31

honk!

Coarse Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

32

Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

33

Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

• Simple, clearly correct

– Deserves respect!

• Works poorly with contention

– Queue locks help

– But bottleneck still an issue

34

Fine-grained Locking

• Requires careful thought

• Split object into pieces

– Each piece has own lock

– Methods that work on disjoint pieces need

not exclude each other

35

Hand-over-Hand locking

a b c

36

Hand-over-Hand locking

a b c

37

Hand-over-Hand locking

a b c

38

Hand-over-Hand locking

a b c

39

Hand-over-Hand locking

a b c

40

Removing a Node

a b c d

remove(b)

41

Removing a Node

a b c d

remove(b)

42

Removing a Node

a b c d

remove(b)

43

Removing a Node

a b c d

remove(b)

44

Removing a Node

a b c d

remove(b)

45

Removing a Node

a c d

remove(b)
Why hold 2 locks?

46

Concurrent Removes

a b c d

remove(c)
remove(b)

47

Concurrent Removes

a b c d

remove(b)
remove(c)

48

Concurrent Removes

a b c d

remove(b)
remove(c)

49

Concurrent Removes

a b c d

remove(b)
remove(c)

50

Concurrent Removes

a b c d

remove(b)
remove(c)

51

Concurrent Removes

a b c d

remove(b)
remove(c)

52

Concurrent Removes

a b c d

remove(b)
remove(c)

53

Concurrent Removes

a b c d

remove(b)
remove(c)

54

Concurrent Removes

a b c d

remove(b)
remove(c)

55

Concurrent Removes

a b c d

remove(b)
remove(c)

56

Uh, Oh

a c d

remove(b)
remove(c)

57

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

58

Problem
• To delete node c

– Swing node b’s next field to d

• Problem is,

– Someone deleting b concurrently could

 direct a pointer

 to c

b

a

c

ba c

59

Insight
• If a node is locked

– No one can delete node’s successor

• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works

60

Hand-Over-Hand Again

a b c d

remove(b)

61

Hand-Over-Hand Again

a b c d

remove(b)

62

Hand-Over-Hand Again

a b c d

remove(b)

63

Hand-Over-Hand Again

a b c d

remove(b) Found it!

64

Hand-Over-Hand Again

a b c d

remove(b) Found it!

65

Hand-Over-Hand Again

a c d

remove(b)

66

Removing a Node

a b c d

remove(b)
remove(c)

67

Removing a Node

a b c d

remove(b)
remove(c)

68

Removing a Node

a b c d

remove(b)
remove(c)

69

Removing a Node

a b c d

remove(b)
remove(c)

70

Removing a Node

a b c d

remove(b)
remove(c)

71

Removing a Node

a b c d

remove(b)
remove(c)

72

Removing a Node

a b c d

remove(b)
remove(c)

73

Removing a Node

a b c d

remove(b)
remove(c)

74

Removing a Node

a b c d

Must acquire
Lock of b

remove(c)

75

Removing a Node

a b c d

Cannot
acquire lock

of b

remove(c)

76

Removing a Node

a b c d

Wait!
remove(c)

77

Removing a Node

a b d

Proceed to
remove(b)

78

Removing a Node

a b d

remove(b)

79

Removing a Node

a b d

remove(b)

80

Removing a Node

a d

remove(b)

81

Removing a Node

a d

82

Remove method
public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

83

Remove method
public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Key used to order node

84

Remove method
public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 currNode.unlock();
 predNode.unlock();
 }}

Predecessor and current nodes

85

Remove method
public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Make sure
locks released

86

Remove method
public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }} Everything else

87

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

88

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

lock pred == head

89

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Lock current

90

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Traversing list

91

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

92

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Search key range

93

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

At start of each loop:
curr and pred locked

94

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

If item found, remove node

95

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

If node found, remove it

96

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Unlock predecessor

97

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Only one node locked!

98

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

demote current

99

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Find and lock new current

100

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Lock invariant restored

101

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Otherwise, not present

102

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•So curr.item is in the set

103

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

Linearization point if
item is present

104

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

Node locked, so no other thread
can remove it ….

105

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

Item not present

106

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•pred.key < key
•key < curr.key

107

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Why remove() is linearizable

Linearization point

108

Adding Nodes

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– (Is successor lock actually required?)

109

Drawbacks

• Better than coarse-grained lock

– Threads can traverse in parallel

• Still not ideal

– Long chain of acquire/release

– Inefficient

110

Optimistic Synchronization

• Find nodes without locking

• Lock nodes

• Check that everything is OK

111

Optimistic: Traverse without Locking

b d ea

add(c) Aha!

112

Optimistic: Lock and Load

b d ea

add(c)

113

Optimistic: Lock and Load

b d ea

add(c)

c

114

What could go wrong?

b d ea

add(c) Aha!

115

What could go wrong?

b d ea

add(c)

116

What could go wrong?

b d ea

remove(b)

117

What could go wrong?

b d ea

remove(b)

118

What could go wrong?

b d ea

add(c)

119

What could go wrong?

b d ea

add(c)

c

120

What could go wrong?

d ea

add(c) Uh-oh

121

Validate – Part 1

b d ea

add(c) Yes, b still
reachable
from head

122

What Else Could Go Wrong?

b d ea

add(c) Aha!

123

What Else Coould Go Wrong?

b d ea

add(c)

add(b’)

124

What Else Coould Go Wrong?

b d ea

add(c)

add(b’)b’

125

What Else Could Go Wrong?

b d ea

add(c)
b’

126

What Else Could Go Wrong?

b d ea

add(c)

c

127

Validate Part 2 
(while holding locks)

b d ea

add(c)
Yes, b still
points to d

128

Optimistic: Linearization Point

b d ea

add(c)

c

129

Correctness

• If

– Nodes b and c both locked

– Node b still accessible

– Node c still successor to b

• Then

– Neither will be deleted

– OK to delete and return true

130

Unsuccessful Remove

a b d e

remove(c)
Aha!

131

Validate (1)

a b d e

Yes, b still
reachable from

head
remove(c)

132

Validate (2)

a b d e

remove(c) Yes, b still
points to d

133

OK Computer

a b d e

remove(c) return false

134

Correctness

• If

– Nodes b and d both locked

– Node b still accessible

– Node d still successor to b

• Then

– Neither will be deleted

– No thread can add c after b

– OK to return false

135

On Exit from Loop

• If item is present

– curr holds item

– pred just before curr

• If item is absent

– curr has first higher key

– pred just before curr

• Assuming no synchronization problems

136

Optimistic List

• Limited hot-spots

– Targets of add(), remove(), contains()

– No contention on traversals

• Moreover

– Traversals are wait-free

– Food for thought …

137

So Far, So Good

• Much less lock acquisition/release

– Performance

– Concurrency

• Problems

– Need to traverse list twice

– contains() method acquires locks

138

Evaluation

• Optimistic is effective if

– cost of scanning twice without locks

is less than

– cost of scanning once with locks

• Drawback

– contains() acquires locks

– 90% of calls in many apps

139

Lazy List

• Like optimistic, except

– Scan once

– contains(x) never locks …

• Key insight

– Removing nodes causes trouble

– Do it “lazily”

140

Lazy List
• remove()

– Scans list (as before)

– Locks predecessor & current (as before)

• Logical delete

– Marks current node as removed (new!)

• Physical delete

– Redirects predecessor’s next (as before)

141

Lazy Removal

aa b c d

c

142

Lazy Removal

aa b d

Present in list

c

143

Lazy Removal

aa b d

Logically deleted

144

Lazy Removal

aa b c d

Physically deleted

145

Lazy Removal

aa b d

Physically deleted

146

Lazy List

• All Methods

– Scan through locked and marked nodes

– Removing a node doesn’t slow down other

method calls …

• Must still lock pred and curr nodes.

147

Validation

• No need to rescan list!

• Check that pred is not marked

• Check that curr is not marked

• Check that pred points to curr

148

Business as Usual

a b c

149

Business as Usual

a b c

150

Business as Usual

a b c

151

Business as Usual

a b c

remove(b)

152

Business as Usual

a b c

a not marked

153

Business as Usual

a b c

a still
points to b

154

Business as Usual

a b c

Logical
delete

155

Business as Usual

a b c

physical
delete

156

Business as Usual

a b c

157

Summary: Wait-free Contains

a 0 0 0a b c 0e1d

Use Mark bit + list ordering

1. Not marked ! in the set

2. Marked or missing ! not in the set

158

Lazy List

a 0 0 0a b c 0e1d

Lazy add() and remove() + Wait-free contains()

159

Evaluation

• Good:

– contains() doesn’t lock

– In fact, its wait-free!

– Good because typically high % contains()

– Uncontended calls don’t re-traverse

• Bad

– Contended add() and remove() calls do re-

traverse

– Traffic jam if one thread delays

160

Traffic Jam

• Any concurrent data structure based on
mutual exclusion has a weakness

• If one thread

– Enters critical section

– And “eats the big muffin”

• Cache miss, page fault, descheduled …

– Everyone else using that lock is stuck!

– Need to trust the scheduler….

161

Reminder: Lock-Free Data Structures

• No matter what …

– Guarantees minimal progress in any

execution

– i.e. Some thread will always complete a

method call

– Even if others halt at malicious times

– Implies that implementation can’t use locks

162

Lock-free Lists

• Next logical step

– Wait-free contains()

– lock-free add() and remove()

• Use only compareAndSet()

– What could go wrong?

163

Remove Using CAS

a 0 0 0a b c 0e1c

Logical Removal =

Set Mark Bit

Physical

Removal

CAS pointer

Use CAS to verify pointer

is correct

Not enough!

164

Problem…

a 0 0 0a b c 0e1c

Logical Removal =

Set Mark Bit

Physical

Removal

CAS

0dProblem:

d not added to list…

Must Prevent

manipulation of

removed node’s pointer

Node added

Before

Physical

Removal CAS

165

The Solution: Combine Bit and Pointer

a 0 0 0a b c 0e1c

Logical Removal =

Set Mark Bit

Physical

Removal

CAS

0d

Mark-Bit and Pointer

are CASed together

(AtomicMarkableReference)

Fail CAS: Node not

added after logical

Removal

166

Solution

• Use AtomicMarkableReference

• Atomically

– Swing reference and

– Update flag

• Remove in two steps

– Set mark bit in next field

– Redirect predecessor’s pointer

167

Marking a Node

• AtomicMarkableReference class

– Java.util.concurrent.atomic package

address F

mark bit

Reference

168

Extracting Reference & Mark

Public Object get(boolean[] marked);

169

Extracting Reference & Mark

Public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

170

Extracting Mark Only

public boolean isMarked();

Value of
mark

171

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

172

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

If this is the current
reference …

And this is the
current mark …

173

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

…then change to this
new reference …

… and this new
mark

174

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

175

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

If this is the current
reference …

176

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

.. then change to
this new mark.

177

Removing a Node

a b c d

remove
c

CAS

178

Removing a Node

a b d

remove
b

remove
c

cCASCAS

failed

179

Removing a Node

a b d

remove
b

remove
c

c

180

Removing a Node

a d

remove
b

remove
c

181

Traversing the List

• Q: what do you do when you find a
“logically” deleted node in your path?

• A: finish the job.

– CAS the predecessor’s next field

– Proceed (repeat as needed)

182

Lock-Free Traversal 
(only Add and Remove)

a b c d
CAS

Uh-oh

pred currpred curr

183

The Window Class

class Window {
 public Node pred;
 public Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred; this.curr = curr;
 }
}

184

The Window Class

class Window {
 public Node pred;
 public Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred; this.curr = curr;
 }
}

A container for pred
and current values

185

Using the Find Method
 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

186

Using the Find Method
 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

Find returns window

187

Using the Find Method
 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

Extract pred and curr

© Herlihy-Shavit 2007
188

The Find Method
 Window window = find(item);

At some instant,

pred curr succ

item or …

© Herlihy-Shavit 2007
189

The Find Method
 Window window = find(item);

At some instant,

pred
curr= null

succ

item not in list

190

Wait-free Contains

public boolean contains(T item) {
 boolean marked;
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key)
 curr = curr.next;
 Node succ = curr.next.get(marked);
 return (curr.key == key && !marked[0])
 }

Only diff is that we
get and check

marked

191

Performance

On 16 node shared memory machine

Benchmark throughput of Java List-based Set

algs. Vary % of Contains() method Calls.

192

High Contains Ratio

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

193

Low Contains Ratio

Lock-free

Lazy list

Course Grained
Fine Lock-coupling

194

As Contains Ratio Increases

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

% Contains()

195

Summary

• Coarse-grained locking

• Fine-grained locking

• Optimistic synchronization

• Lock-free synchronization

