Linked Lists and
Synchronization Patterns



Today: Concurrent Objects

- Adding threads should not lower
throughput
— Contention effects
— Mostly fixed by Queue locks

+ Should increase throughput
— Not possible if inherently sequential
— Surprising things are parallelizable
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Coarse-Grained Synchronization

- Each method locks the object
— Avoid contention using queue locks

— Easy to reason about
* In simple cases

« S0, are we done?
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Coarse-Grained Synchronization

« Sequential bottleneck
— Threads “stand in line”

- Adding more threads
— Does not improve throughput
— Struggle to keep it from getting worse

» SO0 why even use a multiprocessor?
— Well, some apps inherently parallel ...
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This Lecture

* Introduce four “patterns”
— Bag of tricks ...

— Methods that work more than once ...

* For highly-concurrent objects
— Concurrent access
— More threads, more throughput
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First:
Fine-Grained Synchronization

» |Instead of using a single lock ...

+ Split object into
— Independently-synchronized components
« Methods conflict when they access

— The same component ...
— At the same time
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Second:
Optimistic Synchronization

« Search without locking ...

» |f you find it, lock and check ...
— OK: we are done
— Oops: start over

- Evaluation
— Usually cheaper than locking, but
— Mistakes are expensive
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Third:
Lazy Synchronization

* Postpone hard work

* Removing components is tricky

— Logical removal
- Mark component to be deleted

— Physical removal
- Do what needs to be done
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Fourth:
Lock-Free Synchronization

* Don’t use locks at all
— Use compareAndSet() & relatives ...

- Advantages
— No Scheduler Assumptions/Support

- Disadvantages
— Complex
— Sometimes high overhead
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Linked List

* lllustrate these patterns ...

« Using a list-based Set
— Common application
— Building block for other apps
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Set Interface

 Unordered collection of items

* No duplicates

 Methods

—add(x) put X in set
- remove (x) take x out of set
—contains(x) tests if x in set
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List-Based Sets

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}
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List-Based Sets

Eublic boolean add(T x);

Add item to set
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List-Based Sets

E)ublic boolean remove(T x);

Remove item from set
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List-Based Sets

Eublic boolean contains(T x); j

Is item in set?
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public class Node {
public T item;
public int key;
public Node next;

}

List Node
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List Node

Eublic T item;

item of interest
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List Node

Eublic int key;

Usually hash code
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List Node

public Node next; j

Reference to next node
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The List-Based Set

w‘{@:-]— @3—?

Sorted with Sentinel nodes
(Mmin & max possible keys)
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Invariants

« Sentinel nodes
— tail reachable from head

« Sorted

* No duplicates
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Sequential List Based Set
Add()
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Remove()

([3—al3+—kI3—{c)



Sequential List Based Set
Add()
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Coarse Grained Locking
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Coarse Grained Locking
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Coarse Grained Locking

2
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Simple but hotspot + bottleneck
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Coarse-Grained Locking

Easy, same as synchronized methods
— “One lock to rule them all ...”
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Coarse-Grained Locking

- Easy, same as synchronized methods
— “One lock to rule them all ...”

» Simple, clearly correct
— Deserves respect!

* Works poorly with contention
— Queue locks help
— But bottleneck still an issue
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Fine-grained Locking

* Requires careful thought

- Split object into pieces
— Each piece has own lock
— Methods that work on disjoint pieces need
not exclude each other
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Hand-over-Hand locking

([F—l3—b[F—(]]
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Hand-over-Hand locking
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Hand-over-Hand locking
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Why hold 2 locks?

g
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Uh, Oh
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Uh, Oh

Bad news, ¢ not removed
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Problem

* To delete node c
— Swing node b’s next field to d
a

e
* Problem is,

— Someone deleting b concurrently could
direct a pointer

to C a b 83_’
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Insight

* If a node is locked
— No one can delete node’s successor

- |If a thread locks
— Node to be deleted
— And its predecessor
— Then it works
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Hand-Over-Hand Again
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Remove method

public boolean remove(ltem item) {
int key = item.hashCode();
Node pred, curr;

try {

} finally {
curr.unlock();
pred.unlock();

B
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Remove method

I: int key = item.hashCode(); j

Key used to order node
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Remove method

Elode pred, curr;

Predecessor and current nodes
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Remove method

Make sure

(e L
) finally

curr.unlock();
pred.unlock();

N—

locks released
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Remove method

e \

Everything else
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Remove method

try {
pred = this.head,;

pred.lock();
curr = pred.next;
curr.lock();

}finally { ... }
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Remove method

lock pred == head
pred = this.head,;
red.lock();
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Remove method

Lock current

curr = pred.next;
curr.lock();

u:l\% (I3»
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Remove method

Traversing list

@\% M3»(D
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Remove:

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}

return false;

searching

(L

0L, 4

iC, 4
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Remove: searching

@lile (curr.key <= key) {

Search key range

B

Vs

0L, 4
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Remove: searching

Elile (curr.key <= key)

At start of each loop:
curr and pred locked

L

s
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Remove: searching

q(item == curr.item) { I

pred.next = curr.next;
return true;

If item found, remove node
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Remove: searching

/if (item =

pred.next = curr.next;
return true;

If node found, remove it

= curr.item) {
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Remove: searching

Unlock predecessor

E)red.unlocko;

iC Q (I3»

96



Remove: searching

Only one node locked!

Eared.unlock();
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Remove: searching

demote current

/l

Eored = curr; j
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Remove: searching

Find and lock new current

(oo S
s




Remove: searching

Lock invariant restored

= .next; | . -
currlockl; ] (3 @'@ D
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Remove: searching

/wise, not present

return false;

101



Why remove() is linearizable

ljf (item == curr.item) {

‘pred reachable from head
‘curr is pred.next
*So curr.item is in the set
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Why remove() is linearizable

Epred.next = curr.next; I

\

Linearization point if
item Is present
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Why remove() is linearizable

if (item == curr.item) {
pred.next = curr.next;
return true;

Node locked, so no other thread
can removei it ....
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Why remove() is linearizable

ltem not present

Eeturn false; %
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Why remove() is linearizable

Eeturn false;

5

‘pred reachable from head
‘curr is pred.next
‘pred.key < key

‘key < curr.key
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Why remove() is linearizable

Inearization point
E curr = curr.next;
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Adding Nodes

 To add node e
— Must lock predecessor
— Must lock successor

* Neither can be deleted
— (Is successor lock actually required?)

108



Drawbacks

- Better than coarse-grained lock
— Threads can traverse in parallel

 Still not ideal

— Long chain of acquire/release
— Inefficient
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Optimistic Synchronization

* Find nodes without locking
» Lock nodes
« Check that everything is OK
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Optimistic: Traverse without Locking
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Optimistic: Lock and Load
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Optimistic: Lock and Load

113



What could go wrong?
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What could go wrong?
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What could go wrong?

~—~
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What could go wrong?
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What could go wrong?
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What could go wrong?
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What could go wrong?

(T3— G0 @F—ED

Uh-oh
OOQ
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Validate — Part 1

Yes, b still
reachable
from head
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What Else Could Go Wrong?
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What Else Coould Go Wrong?
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What Else Coould Go Wrong?
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What Else Could Go Wrong?
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What Else Could Go Wrong?
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Validate Part 2
(while holding locks)

Yes, b still
points to d
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Optimistic: Linearization Point
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Correctness

o |f
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successorto b

 Then
— Neither will be deleted
— OK to delete and return true
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Unsuccessful Remove

6 6
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130



Validate (1)

6

A

oy

Oo
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Yes, b still
reachable from
SO

H 2P head
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Validate (2)




OK Computer




Correctness

o |f
— Nodes b and d both locked
— Node b still accessible
— Node d still successorto b

* Then
— Neither will be deleted
— No thread can add c after b
— OK to return false
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On Exit from Loop

* |f item is present
— curr holds item
— pred just before curr

- |f item is absent
— curr has first higher key
— pred just before curr

« Assuming no synchronization problems
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Optimistic List

* Limited hot-spots
— Targets of add(), remove(), contains)
— No contention on traversals

 Moreover

— Traversals are wait-free
— Food for thought ...
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So Far, So Good

- Much less lock acquisition/release
— Performance
— Concurrency

* Problems
— Need to traverse list twice
— contains() method acquires locks
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Evaluation

« Optimistic is effective if
— cost of scanning twice without locks
IS less than
— cost of scanning once with locks

+ Drawback
— contains() acquires locks
— 90% of calls in many apps
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Lazy List

 Like optimistic, except
— Scan once
—contains(x) never locks ...

» Key insight
— Removing nodes causes trouble
— Do it “lazily”
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Lazy List

e remove()
— Scans list (as before)
— Locks predecessor & current (as before)

* Logical delete
— Marks current node as removed (new!)

* Physical delete
— Redirects predecessor’s next (as before)
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Lazy Removal

(I T3~ 3—>eE 3> 3+d1 3>

141



Lazy Removal

Present In list
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Lazy Removal

Logically deleted

143



Lazy Removal

Physically deleted
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Lazy Removal

Physically deleted
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Lazy List

* All Methods

— Scan through locked and marked nodes
— Removing a node doesn’t slow down other
method calls ...

« Must still lock pred and curr nodes.

146



Validation

No need to rescan list!

Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

147



Business as Usual
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Business as Usual
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Business as Usual
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Business as Usual
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Business as Usual
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Business as Usual

L
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Business as Usual
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Business as Usual
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Business as Usual




Summary: Wait-free Contains

T N~ T ——— —n*

(I [ 3>l [>T 3~>di 3-{e[T1 )

Use Mark bit + list ordering
1. Not marked - in the set
2. Marked or missing = not in the set
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Lazy List
T N~ T ——— —> *

i o 6 6
EEE L ANE ONECIE NN

Lazy add() and remove() + Wait-free contains|()
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Evaluation

« Good:
— contains() doesn’t lock
— |In fact, its wait-free!
— Good because typically high % contains()
— Uncontended calls don’t re-traverse

- Bad

— Contended add() and remove() calls do re-
traverse
— Traffic jam if one thread delays
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Traffic Jam

« Any concurrent data structure based on
mutual exclusion has a weakness

 |f one thread
— Enters critical section

— And “eats the big muffin”
- Cache miss, page fault, descheduled ...

— Everyone else using that lock is stuck!
— Need to trust the scheduler....
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Reminder: Lock-Free Data Structures

®

* No matter what ...
— Guarantees minimal progress in any
execution
— i.e. Some thread will always complete a
method call
— Even if others halt at malicious times
— Implies that implementation can’t use locks
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Lock-free Lists

* Next logical step
— Wait-free contains()
— lock-free add() and remove|)

- Use only compareAndSet()
— What could go wrong?
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Remove Using CAS

Logical Removal =
Set Mark Bit

Use CAS to verify pointer Physical
. Removal
IS correct CAS pointer

Not enough!
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Problem...

Logical Removal =
Set Mark Bit

Problem: Physical

d not added to list... Removal Node added
CAS Before

Must Prevent Physical

manipulation of Removal CAS

removed node’s pointer
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The Solution: Combine Bit and Pointer

Logical Removal =
Set Mark Bit

Physical
. . Removal  Fajl CAS: Node not
Mark-Bit and Pointer  cas added after logical
are CASed together Removal

(AtomicMarkableReference)
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Solution

« Use AtomicMarkableReference

» Atomically
— Swing reference and
— Update flag

- Remove in two steps
— Set mark bit in next field
— Redirect predecessor’s pointer
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Marking a Node

« AtomicMarkableReference class
— Java.util.concurrent.atomic package

f

Reference ——

{address ] F

.

mark bit
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Extracting Reference & Mark

Public Object get(boolean[] marked);
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Extracting Reference & Mark

bject ool%n[l

Returns mark at

Returns .
array index 0!

reference
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Extracting Mark Only

boolean ]

Value of
mark
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Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);
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Changing State

If this is the current
reference ...

Object expected{’ﬁ

onIean expectedMark,

And this is the
current mark ...
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Changing State

...then change to this

/ new reference ...
1

abject updateRef, ]

Hoolean update“%l
... and this new

mark
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Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);
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Changing State

bject expectedRef, ]

If this iIs the current
reference ...
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Changing State

bloolean updateMark);

.. then change to
this new mark.
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node

([5—

remove
b Oooe
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Traversing the List

- Q: what do you do when you find a
“logically” deleted node in your path?
* A: finish the job.

— CAS the predecessor’s next field

— Proceed (repeat as needed)
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Lock-Free Traversal
(only Add and Remove)
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The Window Class

class Window {

public Node pred;

public Node curr;

Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}

}
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The Window Class

ublic Node pred;
ublic Node curr;

A container for pred
and current values

184



Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;
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Using the Find Method

V\@dow window = find(head, key); j

==

Find returns window
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Using the Find Method

N red = window.pred;
curr = window.curr;

Extract pred and curr
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The Find Method

Eindow window

At some instant, .
(13— [I-]—

pred curr succ

© Herlihy-Shavit 2007
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The Find Method

EVindow window

. { item } notin list
At some instant,

(F——U3

curr= null
pred succ

© Herlihy-Shavit 2007
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Wait-free Contains

Only diff is that we
get and check
marked

Node succ = curr.next.get(marked);
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Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.
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Low Contains Ratio

Ops/sec (50% reads/0 load)

3.5e+06 | | | | . .
3e+06 *. % %%%% Hock-free
2.5e+06 kX .%...l.l.g Lazy list
2e+06 - K ',/' u g i
9
1.5e406 —.I/,,,,i ]
1e+606 - 1
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O m‘7‘7(3717Q,~—~O_~—~@~_~a———D——|~—@—\7Q7‘7‘m7‘7‘@‘7‘[,}‘1‘@;7;@;7‘7(1\7‘7\D Fine Lock_coupling

5 10 15 20 25 30
threads
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As Contains Ratio Increases
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e
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% Contains()

Lock-free
Lazy list

Course Grained
Fine Lock-coupling
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Summary

» Coarse-grained locking
 Fine-grained locking

« Optimistic synchronization
+ Lock-free synchronization
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