
Hash Tables

22

Sequential Closed Hash Map

0

1

2

3

16

9

h(k) = k mod 4

2 Items

buckets

3

Add an Item

0

1

2

3

16

9

7

h(k) = k mod 4

3 Items

44

Add Another: Collision

0

1

2

3

16 4

9

7

h(k) = k mod 4

4 Items

55

More Collisions

0

1

2

3

16 4

9

7 15

h(k) = k mod 4

5 Items

66

More Collisions

0

1

2

3

16 4

9

7 15

h(k) = k mod 4

5 Items
Problem:

buckets getting too long

77

Resizing

0

1

2

3

16 4

9

7 15

4

5

6

7 Grow the array

5 Items

h(k) = k mod 8

88

5 Items

Resizing

0

1

2

3

16 4

9

7 15

4

5

6

7

h(k) = k mod 8

Adjust hash function

99

Resizing

0

1

2

3

16

9

7 15

h(4) = 0 mod 8

4

5

6

7

4

h(k) = k mod 8

1010

Resizing

0

1

2

3

16

4

9

7 15

4

5

6

7

h(k) = k mod 8

h(4) = 4 mod 8

1111

Resizing

0

1

2

3

16

4

9

7 15

4

5

6

7

h(k) = k mod 8

h(15) = 7 mod 8

1212

Resizing

0

1

2

3

16

4

9

4

5

6

7

h(k) = k mod 8

h(15) = 7 mod 8

157

1313

Fields

public class SimpleHashSet {
 protected LockFreeList[] table;

 public SimpleHashSet(int capacity) {
 table = new LockFreeList[capacity];
 for (int i = 0; i < capacity; i++)
 table[i] = new LockFreeList();
 }
…

Array of lock-free lists

1414

Constructor

public class SimpleHashSet {
 protected LockFreeList[] table;

 public SimpleHashSet(int capacity) {
 table = new LockFreeList[capacity];
 for (int i = 0; i < capacity; i++)
 table[i] = new LockFreeList();
 }
…

Initial size

1515

Constructor

public class SimpleHashSet {
 protected LockFreeList[] table;

 public SimpleHashSet(int capacity) {
 table = new LockFreeList[capacity];
 for (int i = 0; i < capacity; i++)
 table[i] = new LockFreeList();
 }
…

Allocate memory

1616

Constructor

public class SimpleHashSet {
 protected LockFreeList[] table;

 public SimpleHashSet(int capacity) {
 table = new LockFreeList[capacity];
 for (int i = 0; i < capacity; i++)
 table[i] = new LockFreeList();
 }
…

Initialization

1717

Add Method

public boolean add(Object key) {
 int hash =
 key.hashCode() % table.length;
 return table[hash].add(key);
}

1818

Add Method

public boolean add(Object key) {
 int hash =
 key.hashCode() % table.length;
 return table[hash].add(key);
}

Use object hash code to
pick a bucket

1919

Add Method

public boolean add(Object key) {
 int hash =
 key.hashCode() % table.length;
 return table[hash].add(key);
}

Call bucket’s add() method

2020

No Brainer?

• We just saw a
– Simple
– Lock-free
– Concurrent hash-based set implementation

• What’s not to like?

2121

No Brainer?

• We just saw a
– Simple
– Lock-free
– Concurrent hash-based set implementation

• What’s not to like?
• We don’t know how to resize …

2222

Is Resizing Necessary?

• Constant-time method calls require
– Constant-length buckets
– Table size proportional to set size
– As set grows, must be able to resize

2323

Set Method Mix

• Typical load
– 90% contains()
– 9% add ()
– 1% remove()

• Growing is important
• Shrinking not so much

24

When to Resize?

• Many reasonable policies. Here’s one.
• Pick a threshold on num of items in a

bucket
• Global threshold

– When ≥ ¼ buckets exceed this value
• Bucket threshold

– When any bucket exceeds this value

25

Coarse-Grained Locking

• Good parts
– Simple
– Hard to mess up

• Bad parts
– Sequential bottleneck

26

Fine-grained Locking

0

1

2

3

4 8

9

7 11

17

Each lock associated with one bucket

27

Resize This
Make sure table reference didn’t change

between resize decision and lock acquisition

0

1

2

3

4 8

9

7 11

17

Acquire locks in
ascending order

28

Resize This

0

1

2

3

4 8

9

7 11

17
0

1

2

3

4

5

6

7

Allocate new
super-sized table

29

Resize This

0

1

2

3

9

7

4 8

17
0

1

2

3

4

5

6

7

8

4

9 17

7

1111

30

Resize This

0

1

2

3

0

1

2

3

4

5

6

7

8

4

9 17

7

11

Striped Locks: each lock now associated with two buckets

31

Observations

• We grow the table, but not locks
– Resizing lock array is tricky …

• We use sequential lists
– Not LockFreeList lists
– If we’re locking anyway, why pay?

32

Read/Write Locks

public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

33

Read/Write Locks

public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

Returns associated
read lock

34

Read/Write Locks

public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

Returns associated
read lock

Returns associated
write lock

35

Lock Safety Properties

• Read lock:
– Locks out writers
– Allows concurrent readers

• Write lock
– Locks out writers
– Locks out readers

36

Read/Write Lock

• Safety
– If readers > 0 then writer == false
– If writer == true then readers == 0

• Liveness?
– Will a continual stream of readers …
– Lock out writers?

37

FIFO R/W Lock

• As soon as a writer requests a lock
• No more readers accepted
• Current readers “drain” from lock
• Writer gets in

38

The Story So Far

• Resizing is the hard part
• Fine-grained locks

– Striped locks cover a range (not resized)
• Read/Write locks

– FIFO property tricky

39

Optimistic Synchronization

• Let the contains() method
– Scan without locking

• If it finds the key
– OK to return true
– Actually requires a proof ….

• What if it doesn’t find the key?

40

Optimistic Synchronization

• If it doesn’t find the key
– May be victim of resizing

• Must try again
– Getting a read lock this time

• Makes sense if
– Keys are present
– Resizes are rare

41

Stop The World Resizing

• Resizing stops all concurrent operations
• What about an incremental resize?
• Must avoid locking the table
• A lock-free table + incremental resizing?

42

Lock-Free Resizing Problem

0

1

2

3

4 8

9

7 15

43

4 12

Lock-Free Resizing Problem

0

1

2

3

8

9

7 15

4

5

6

7

4 12

Need to extend table

44

Lock-Free Resizing Problem

0

1

2

3

84

9

7 15

4

5

6

7

12

4 12

45

Lock-Free Resizing Problem

0

1

2

3

9

7 15

4

5

6

7

12

to remove and
then add even a
single item single
location CAS
not enough

4

84 12

We need a new idea…

46

Don’t move the items
■ Move the buckets instead
■ Keep all items in a single lock-free list
■ Buckets become “shortcut pointers” into

the list

16 4 9 7 15
0
1
2
3

47

Recursive Split Ordering

0

0 4 2 6 1 5 3 7

48

Recursive Split Ordering

0

1/2

1

0 4 2 6 1 5 3 7

49

Recursive Split Ordering

0

1/2

1

1/4 3/4

2
3

0 4 2 6 1 5 3 7

50

Recursive Split Ordering

0

1/2

1

1/4 3/4

2
3

0 4 2 6 1 5 3 7

List entries sorted in order that allows
recursive splitting. How?

5167

Recursive Split Ordering

0

0 4 2 6 1 5 3 7

5268

Recursive Split Ordering

0
1

0 4 2 6 1 5 3 7

LSB = Least significant Bit

LSB 0 LSB 1

5369

Recursive Split Ordering

0
1
2
3

0 4 2 6 1 5 3 7

LSB 00 LSB 10 LSB 01 LSB 11

5470

Split-Order

• If the table size is 2i,
– Bucket b contains keys k

• k = b (mod 2i)
– bucket index consists of key's i LSBs

55

When Table Splits

• Some keys stay
– b = k mod(2i+1)

• Some move
– b+2i = k mod(2i+1)

• Determined by (i+1)st bit
– Counting backwards

• Key must be accessible from both
– Keys that will move must come later

56

A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:

57

A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:

0 1 2 3 4 5 6 7

Split-order:

Real key 1 is in
the 4th location

58

A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:

0 1 2 3 4 5 6 7

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is in 4th location

59

A Bit of Magic

Real keys:

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

60

A Bit of Magic

Real keys:

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111
Just reverse the order of the

key bits

61

Split Ordered Hashing

0
1
2
3

0 4 2 6 1 5 3 7

000 001 010 011 100 101 110 111

Order according to reversed bits

62

Parent Always Provides a Short Cut

0
1
2
3

0 4 2 6 1 5 3 7

search

63

Sentinel Nodes

0

1

2

3

16 4 9 7 15

Problem: how to remove a node pointed
by 2 sources using CAS

64

Sentinel Nodes

0

1

2

3

16 4 9 7 153

Solution: use a Sentinel node for each bucket

0 1

65

Sentinel vs Regular Keys

• Want sentinel key for i ordered
– before all keys that hash to bucket i
– after all keys that hash to bucket (i-1)

66

Splitting a Bucket

• We can now split a bucket
• In a lock-free manner
• Using two CAS() calls ...

– One to add the sentinel to the list
– The other to point from the bucket to the

sentinel

67

Initialization of Buckets

0

1

16 4 9 7 150 1

68

Initialization of Buckets

0

1

2

3

16 4 9 7 150 1

3

Need to initialize bucket 3 to split bucket 1

69

Adding 10

0

1

2

3

16 4 9 3 70 1

2

10 = 2 mod 4

2

Must initialize bucket 2
Before adding 10

70

Recursive Initialization

0

1

2

3

8 120

7 = 3 mod 4To add 7 to the list

3

Must initialize bucket 3

Must initialize bucket 1

= 1 mod 2 1

Could be log n depth
But expected depth is constant

71

Resize

• Divide set size by total number of
buckets

• If quotient exceeds threshold
– Double tableSize field
– Up to fixed limit

72

Initialize Buckets

• Buckets originally null
• If you find one, initialize it
• Go to bucket’s parent

– Earlier nearby bucket
– Recursively initialize if necessary

• Constant expected work

73

Recall: Recursive Initialization

0

1

2

3

8 120

7 = 3 mod 4To add 7 to the list

3

Must initialize bucket 3

Must initialize bucket 1

= 1 mod 2 1

Could be log n depthexpected depth is constant

74

Correctness
• Linearizable concurrent set
• Theorem: O(1) expected time

– No more than O(1) items expected
between two dummy nodes on average

– Lazy initialization causes at most O(1)
expected recursion depth in
initializeBucket()

Closed (Chained) Hashing
• Advantages:

– with N buckets, M items, Uniform h
– retains good performance as table density

(M/N) increases ! less resizing
• Disadvantages:

– dynamic memory allocation
– bad cache behavior (no locality)

Oh, did we mention that cache
behavior matters on a multicore?

Linear Probing*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

contains(x) – search linearly from h(x)
to h(x) + H recorded in bucket.

H
z

x
h(x)

=7

z

*Attributed to Amdahl…

Linear Probing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – put in first empty bucket, and
update H.

H
z

z
h(x)

=3

z z z z z z z zzz z z x

=6

Linear Probing

• Open address means M · N
• Expected items in bucket same as Chaining
• Expected distance till open slot:
 ½(1+(1/(1-M/N)) 2
 M/N = 0.5 ➔ search 2.5 buckets
 M/N = 0.9 ➔ search 50 buckets

Linear Probing

• Advantages:
– Good locality ➔ fewer cache misses

• Disadvantages:
– As M/N increases more cache misses

• searching 10s of unrelated buckets
• “Clustering” of keys into neighboring buckets

– As computation proceeds “Contamination” by
deleted items ➔ more cache misses

Cuckoo Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Add(x) – if h1(x) and h2(x) full evict y and move it to
h2(y) ≠ h2(x). Then place x in its place.

z
h1(x)

z z z z z zzzz z z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z

h2(x)

zz zw z z z zzz z z

h2(y)

yx

But cycles
can form

Cuckoo Hashing

• Advantages:
– contains() : deterministic 2 buckets
– No clustering or contamination

• Disadvantages:
– 2 tables
– hi(x) are complex
– As M/N increases ➔ relocation cycles
– Above M/N = 0.5 Add() does not work!

Hopscotch Hashing

• Single Array, Simple hash function
• Idea: define neighborhood of original

bucket
• In neighborhood items found quickly
• Use sequences of displacements to

move items into their neighborhood

Hopscotch Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

contains(x) – search in at most H buckets
(the hop-range) based on hop-info bitmap.
In practice pick H to be 32.

z

h(x)

H=4

x

1 0 1 0

Hopscotch Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – probe linearly to find open slot.
Move the empty slot via sequence of
displacements into the hop-range of h(x).

z

h(x)

1 0 0 1
x r svuw

1 0 1 00 0 1 11 1 0 1

Hopscotch Hashing
• contains

– wait-free, just look in neighborhood

Hopscotch Hashing
• contains

– wait-free, just look in neighborhood
• add

– expected distance same as in linear probing

Hopscotch Hashing
• contains

– wait-free, just look in neighborhood
• add

– Expected distance same as in linear probing
• resize

– neighborhood full less likely as H ! log n
– one word hop-info bitmap, or use smaller H and

default to linear probing

Advantages

• Good locality and cache behavior
• As table density (M/N) increases
! less resizing

• Move cost to add() from contains()
• Easy to parallelize

Recall: Concurrent Chained Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lock for add()
and unsuccessful
contains()

Striped Locks

Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 contains() is wait-free

h(x)

Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Add(x) – lock bucket, mark empty
slot using CAS, add x erasing mark

z

1 0 0 1

rvu

ts

x

Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – lock bucket, mark empty slot
using CAS, lock bucket and update
timestamp of bucket being displaced
before erasing old value

z

1 0 0 1

vu

ts

r s

1 0 1 01 0 1 0 ts

s

0 0 1 1 ts0 0 1 1 ts+1

Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

z

1 0 0 1

rvu

ts

s
x not found

Is performance dominated by cache
behavior?

• Run algs on state of the art multicores
and uniprocessors:
– Sun 64 way Niagara II, and
– Intel 3GHz Xeon

• Benchmarks pre-allocated memory to
eliminate effects of memory
management

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Sequential SPARC Throughput
90% contain, 5% insert, 5% remove

Hopscotch_D
Hopscotch_ND
LinearProbing
Chained
Cuckoo

table density

o
p
s

/
m
s

with memory
pre-allocated

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

500

1000

1500

2000

2500

3000

3500

4000

Sequential SPARC High-Density;Throuthput
90% contain, 5% insert,5% remove

Hopscotch_D
Hopscotch_ND
LinearProbing
Chained

table density

o
p
s

/
m
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000

14000

Sequential CoreDuo; Throughput
90% contain, 5% insert, 5% remove

Hopscotch_D
Hopscotch_ND
LinearProbing
Chained
Cuckoo

table density

o
p
s

/
m
s

Cuckoo stops here

1 8 16 24 32 40 48 56 64
0

20000

40000

60000

80000

100000

120000

140000

160000

Concurrent SPARC Throughput
90% density; 70% contain, 15% insert, 15% remove

Hopscotch_D
Chained_PRE
Chained_MTM

CPUs

o
p
s

/
m
s

with memory
pre-allocated

with
allocation

1 8 16 24 32 40 48 56 64
0

0.5

1

1.5

2

2.5

3

Concurrent SPARC Throughput
90% density; Cache-Miss per UnSuccessful-Lookup

Hopscotch_D
Chained_PRE
Chained_MTM

CPUs

m
i
s
s

/

o
p
s

Summary
• Chained hash with striped locking is

simple and effective in many cases
• Hopscotch with striped locking great

cache behavior
• If incremental resizing needed go for

split-ordered

