Hash Tables

Sequential Closed Hash Map

- y 16
buckets
o o O

‘2 Items‘

0
1
2
3

Ih(k) = k mod 4|

?

Add an ltem

» 16

®

W IN |~ |O

‘3 Items‘

Ih(k) = k mod 4|

Add Another: Collision

?

» 16

®

W IN |~ |O

‘4 Items‘

Ih(k) = k mod 4|

?

More Collisions

» 16

®

W IN |~ |O

" 15

‘5 Items‘

Ih(k) = k mod 4|

More Collisions

0 ——l 16 ! 4
1 o o 9
2
3 17 | +—]15
‘5 Items‘
Problem:
buckets getting too long ‘h(k) = k mod 4‘

,

Resizing

?

NjJ]joOojJOo]lbh W IN]I—~]|O

16 " 4
o 9
17 +—1]15
‘5 Items‘
Ih(k) = k mod 8|

Grow the array

Resizing

Adjust hash function

NjJjojo]lbh]J]WOWIN]I—~]|O

Resizing

NjJjojo]lbh]J]WOWIN]I—~]|O

J 16 | 4 h(4) = 0 mod 8
o 9
<A o » 15
<
lh(k) = k mod 8

Resizing

» 16

h(4) =4 mod 8

NjJjojo]lbh]J]WOWIN]I—~]|O

lh(k) = k mod 8

Resizing

» 16

h(15) =7 mod 8

NjJjojo]lbh]J]WOWIN]I—~]|O

» 16

NjJjojo]lbh]J]WOWIN]I—~]|O

Resizing

h(15) =7 mod 8

» 15

Fields

[protected LockFreeList] | table;]

Array of lock-free lists

Constructor

-

|

Initial size

Constructor

[tab1e = new LockFreeList[capacity];]

\ oo

Allocate memory

Constructor

for (int 1 0; 1 < capacity; 1++)
table[1] new LockFreeList();

TN

Initialization

Add Method

public boolean add(Object key) {
int hash =
key.hashCode() % table.length;
return table[hash].add(key);

¥

Add Method

1nt hash =
key.hashCode() % table.length;

Use object hash code to
pick a bucket

Add Method

[return table[hash].add(key) ;]

N

Call bucket’s add() method

No Brainer?

 We just saw a
— Simple
— Lock-free
— Concurrent hash-based set implementation

 \What’s not to like?

No Brainer?

* We just saw a
— Simple
— Lock-free
— Concurrent hash-based set implementation

 \What’s not to like?
« \We don’t know how to resize ...

Is Resizing Necessary?

» Constant-time method calls require
— Constant-length buckets
— Table size proportional to set size
— As set grows, must be able to resize

Set Method Mix

* Typical load
—90% contains()
- 9% add ()
— 1% remove()

* Growing is important
* Shrinking not so much

When to Resize?

Many reasonable policies. Here's one.

Pick a threshold on num of items in a
bucket

Global threshold
— When = V4 buckets exceed this value

Bucket threshold
— When any bucket exceeds this value

24

Coarse-Grained Locking

* Good parts
— Simple
— Hard to mess up
» Bad parts
— Sequential bottleneck

25

Fine-grained Locking

F____o —— 4 3
/_\) 1 o » 9 o 17
&---12

F 3 ——17 = 11

Each lock associated with one bucket

26

Resize This

Make sure table reference didn’t change
between resize decision and lock acquisition

L—_A___O._ » 4 » 8
%.-__.-1 9 o 17
AlH4--12

f _ 13 17 » 11

27

Resize This

» 17

NY

[

» 11

N |O|O]BRTWIDN

28

Resize This

s YT
12
s L 111
4 7
5
6
7 7

29

Resize This

» 17

30

Observations

» We grow the table, but not locks
— Resizing lock array is tricky ...

* We use sequential lists
— Not LockFreeList lists
— If we're locking anyway, why pay?

31

Read/Write Locks

public interface ReadwriteLock {
Lock readLock();
Lock writeLock();

}

32

Read/Write Locks

Returns associated

[Lock readLﬁ read lock

33

Read/Write Locks

Returns associated
read lock

Lock readLock();

Returns associated
write lock

34

Lock Safety Properties

 Read lock:
— Locks out writers

— Allows concurrent readers

 \Write lock

— Locks out writers
— Locks out readers

35

Read/Write Lock

« Safety
— If readers > 0 then writer == false
— If writer == true then readers ==

e Liveness?

— Will a continual stream of readers ...
— Lock out writers?

36

FIFO R/W Lock

As soon as a writer requests a lock
No more readers accepted

Current readers “drain” from lock
Writer gets in

37

The Story So Far

* Resizing is the hard part

* Fine-grained locks
— Striped locks cover a range (not resized)

« Read/Write locks
— FIFO property tricky

38

Optimistic Synchronization

 Let the contains() method
— Scan without locking

o Ifit finds the key

— OK to return true
— Actually requires a proof

* What if it doesn’t find the key?

39

Optimistic Synchronization

* |f it doesn’t find the key

— May be victim of resizing
* Must try again

— Getting a read lock this time
 Makes sense if

— Keys are present
— Resizes are rare

40

Stop The World Resizing

Resizing stops all concurrent operations
What about an incremental resize?
Must avoid locking the table

A lock-free table + incremental resizing?

41

Lock-Free Resizing Problem

o-

" 8

®

0
1
2
3

o—

" 15

42

Lock-Free Resizing Problem

,

" 8

——1 12

,

Need to extend table

" 15

Nj|]joj]o]lbh W IN]I—~]|O

43

Lock-Free Resizing Problem

8

®

?

?

" 15

" 12

NjJjojo]lbh]J]WOWIN]I—~]|O

12

44

Lock-Free Resizing Problem

8 | o 12

o
—— 9
1 \ to remove and

2 then add even a

3 17 [=115 single item single
=) location CAS

4 —— 4 | ——f 12

3

6

/

not enough

We need a new Iidea...

45

Don’'t move the items

= Move the buckets instead
= Keep all items in a single lock-free list

= Buckets become “shortcut pointers” into
the list

16| o4 | =119 | =1 7 1 15

ﬂ“\éiLL

Recursive Split Ordering

-

47

Recursive Split Ordering

1/2

0 [4 [F2 6 IENETE 3

48

Recursive Split Ordering

49

Recursive Split Ordering

List entries sorted in order that allows
recursive splitting. How?

50

Recursive Split Ordering

Recursive Split Ordering

LSB 0 LSB 1
A A
(N
0 [H{4 [F{2 6 [1-[1 [H{5 3

LSB = Least significant Bit

Recursive Split Ordering

LSB 00 LSB 10 LSB 01 LSB 11

0 [H{4 [JH2 6 | -[1 [H5 3 [H[7

K

Split-Order

 |f the table size is 2i,
— Bucket b contains keys k
 k=Db (mod 2i)
— bucket index consists of key's i LSBs

When Table Splits

Some keys stay

— b = k mod(2i+1)

Some move

— b+2i = k mod(2i+1)
Determined by (i+1)st bit
— Counting backwards

Key must be accessible from both
— Keys that will move must come later

95

Real keys:

A Bit of Magic

0

56

Real keys:

A Bit of Magic

0

4

Real key 1 is In

the 4th Jocation

Split-order:

0

o7

A Bit of Magic

Real keys:
0 4 2 6 [1]][5 3 7
000 100 010 11 001 | 101 o011 111
T R
Real key 1 is in 4th Jocation
Split-oraer:
0 1 2 5 6 7
000 001 010 011 101 110 111

58

Real keys:

000

Split-order:

000

A Bit of Magic

100 010 110

001

010 011

001

100

101

101

011

110

111

111

59

Real keys:

000

Split-order:

000

A Bit of Magic

100 010 110 001 101 011

vy
o001 010 011 100 101 110

Just reverse the order of the
key bits

111

111

60

Split Ordered Hashing

Order according to reversed bits

N\

w‘

\ 4
000 001 010 011 100 101 110 111
J0 -7 32 6 [1-{1 [-H5 3 17
—xt
04 //
1
e

61

Parent Always Provides a Short Cut

62

Sentinel Nodes

Problem: how to remove a node pointed
by 2 sources using CAS

63

Sentinel Nodes

I

> 15

Solution: use a Sentinel node for each bucket

64

Sentinel vs Regular Keys

* \Want sentinel key for i ordered
— before all keys that hash to bucket i

— after all keys that hash to bucket (i-1)

65

Splitting a Bucket

* \We can now split a bucket
 |n a lock-free manner

» Using two CAS() calls ...

— One to add the sentinel to the list

— The other to point from the bucket to the
sentinel

66

Initialization of Buckets

15

—

67

Initialization of Buckets

Need to initialize bucket 3 to split bucket 1

68

W IN |-

Adding 10

»10

»16

9

@

= 2mod 4
» —

Must initialize bucket 2
Before adding 10

69

Recursive Initialization

To add 7 to the list / = 3mod4

8

N
T 12I’_’-'- = 1 mod 2

e ol
I

3

H_J

Could be loa n denth

But expected depth is constant

IVIUSL IT1IAIIZE DUCKEL |

Must initialize bucket 3

70

Resize

* Divide set size by total number of
buckets

* If quotient exceeds threshold

— Double tableSize field
— Up to fixed limit

71

Initialize Buckets

Buckets originally null
If you find one, initialize it
Go to bucket’'s parent

— Earlier nearby bucket
— Recursively initialize if necessary

Constant expected work

72

Recall: Recursive Initialization

To add 7 to the list /

8

o-

—D

12

e ol
I

3

=3 mod 4

3
IR -1 mod2
\ J
A4

expected depth is constant

Must initialize bucket 1

Must initialize bucket 3

73

Correctness

Linearizable concurrent set

Theorem: O(1) expected time

— No more than O(1) items expected
between two dummy nodes on average

— Lazy initialization causes at most O(1)
expected recursion depth in
initializeBucket()

74

Closed (Chained) Hashing

* Advantages:
— with N buckets, M items, Uniform h

— retains good performance as table density
(M/N) increases = less resizing

» Disadvantages:
— dynamic memory allocation
— bad cache behavior (no locality)

[Oh, did we mention that cache }

behavior matters on a multicore?

Linear Probing®

w

Z

X

1 2 3 4 5 6 7;’8“\910 11 12 13 14 15 16 17 18 19 20

Z

H

7

contains(x) — search linearly from h(x)
to h(x) + H recorded in bucket.

*Attributed to Amdanhl...

Linear Probing

2 zzlz ! \ ZzIXl z2z ZZ

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

Z
H| =6

add(x) — put in first empty bucket, and
update H.

Linear Probing

* Open address means M - N
« Expected items in bucket same as Chaining
* Expected distance till open slot:
Yo(1+(1/(1-M/N)) 2
M/N = 0.5 = search 2.5 buckets
M/N = 0.9 = search 50 buckets

Linear Probing

* Advantages:
— Good locality = fewer cache misses

» Disadvantages:

— As M/N increases more cache misses
« searching 10s of unrelated buckets
 “Clustering” of keys into neighboring buckets

— As computation proceeds “Contamination” by
deleted items = more cache misses

But cycles Cuckoo Hashing

can form .
,/’ \h (X)

11Z[ZZ @z Z[1ZzZ[[z Z
1

I
1 3 4 5 6 7 8 0O 11 12 13 14 15 16 17 18 19 20

sz.'.zL_zzz {v‘\bz Zz Z|Z

1.2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

ha(y) h,(X)

Add(x) — if h,(x) and h,(x) full evict y and move it to
h,(y) = h,(x). Then place x in its place.

Cuckoo Hashing

* Advantages:
— contains() : deterministic 2 buckets
— No clustering or contamination

» Disadvantages:

— 2 tables
— h,(x) are complex

— As M/N increases = relocation cycles
— Above M/N = 0.5 Add() does not work!

Hopscotch Hashing

Single Array, Simple hash function

|dea: define neighborhood of original
bucket

In neighborhood items found quickly

Use sequences of displacements to
move items into their neighborhood

Hopscotch Hashing
h(x)
r |

Z X

1 2 3 4 567 8 910 11 12 13 14 15 16 17 18 19 20

'*l 10710 H=4

contains(x) — search in at most H buckets
(the hop-range) based on hop-info bitmap.
In practice pick H to be 32.

Hopscotch Hashing

h(x)
o

uwvzr | s

1 2 3 4 567 8 9 10 11121314151617181920

'1101\ olol 1

add(x) — probe linearly to find open slot.
Move the empty slot via sequence of
displacements into the hop-range of h(x).

Hopscotch Hashing

e contains

— wait-free, just look in neighborhood

Hopscotch Hashing

* contains
— wait-free, just look in neighborhood

e add

— expected distance same as in linear probing

Hopscotch Hashing

e contains

— wait-free, just look in neighborhood
* add

— Expected distance same as in linear probing
* resize

— neighborhood full less likely as H 2> log n

— one word hop-info bitmap, or use smaller H and
default to linear probing

Advantages

* Good locality and cache behavior

* As table density (M/N) increases
- less resizing

* Move cost to add() from contains()
» Easy to parallelize

Recall: Concurrent Chained Hashing

-

~
~ -
VN -
-
S -
~ -
S -
S -
-
~ -
~ -
~ -
-
~ -
~ -
~ -
~ -
~ -
~ -
~ -”
N\~

Lock for add()
and unsuccessful
contains()

Striped Locks

Concurrent Simple Hopscotch
h(x)
. |

~ -
~ -
~
~ -
o -
~ -
~ -
~ -
~ -
-
~ -
-
~ -
~ -
-
~ -
~ -
~ -
~ -
~ -
~ -
~ -
s -
e

contains() is walt-free

Concurrent Simple Hopscotch

4"6
ujZVX|r

1 2 3 4 ,5" 6 \7\\8 910 11 12 13 14 15 16 17 18 19 20

1T0lo][ts |

Add(x) — lock bucket, mark empty
slot using CAS, add x erasing mark

Concurrent Simple Hopscotch

i

6

6
uzvr (15 B

1 2 3 4 5 6 7.8 910 1 1213 14.15 16 17 18 19 20

1[olo[1][ts |[0]0]1 [1]ts+1]

add(x) — lock bucket, mark empty slot
using CAS, lock bucket and update
timestamp of bucket being displaced
before erasing old value

Concurrent Simple Hopscotch

6 /[X not found]

ujzZvs[r

1 2 3 4 56 78 910 1M1 12 13 14 15 16 17 18 19 20

110(0 (1] ts 'II

|s performance dominated by cache
behavior?

* Run algs on state of the art multicores
and uniprocessors:
— Sun 64 way Niagara Il, and
— Intel 3GHz Xeon

 Benchmarks pre-allocated memory to
eliminate effects of memory
management

ops /ms

5000
4500 &
4000

3500

Sequential SPARC Throughput

90% contain,

—_—
V

\Y%

\%

’\N’\’ W,
3000

2500
2000
1500
1000

500

- Hopscotch_D
- Hopscotch_ND

Vv LinearProbing
-A- Chained
- Cuckoo

.1 0.2 0.3

0.4 0.5
table density

0.

6

5% insert, 5% remove

with memory
pre-allocated

ops /ms

Sequential SPARC High-Density;Throuthput

1000 90% contain, 5% insert,5% remove

3500

3000

A
2500

2000

1500

- Hopscotch_D
-9~ Hopscotch_ND
¥V LinearProbing

-A- Chained
500

1000

oY % v v v v v v \V
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

table density

Sequential CoreDuo; Throughput

14000 90% contain, 5% insert, 5% remove

12000 Cuckoo stops here

10000 Y —~—

Hopscotch D
< Hopscotch_ND
V LinearProbing v
4 Chained

»- Cuckoo

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
table density

ops /ms

Concurrent SPARC Throughput
90% density; 70% contain, 15% insert, 15% remove

160000
- Hopscotch D
140000 ¥ Chained_PRE
V- Chained_MTM
120000

100000

with memory
pre-allocated

60000 with
s0000 | allocation

20000 v
v

0

80000

N

CPUs

Concurrent SPARC Throughput
90% density; Cache-Miss per UnSuccessful-Lookup

3
v v V—¥ v v \; v v
\ \% % \ \% \% \% Vv \Y4
2.5
o,
o 2
~
. 1.5
E
[i i i | i i i |
1
0.5 @ Hopscotch_D
V- Chained_PRE
0 V Chained MTM
1 8 16 24 32 40 48 56 64

CPUs

Summary

» Chained hash with striped locking is
simple and effective in many cases

» Hopscotch with striped locking great
cache behavior

* |f iIncremental resizing needed go for
split-ordered

