Hash Tables



Sequential Closed Hash Map
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Add Another: Collision
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More Collisions
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Resizing
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Resizing

Adjust hash function
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Resizing
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Resizing
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Resizing
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Resizing
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Fields

[protected LockFreeList] | table;]

Array of lock-free lists



Constructor
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Initial size



Constructor

[tab1e = new LockFreeList[capacity]; ]

\ oo

Allocate memory




Constructor

for (int 1 0; 1 < capacity; 1++)
table[1] new LockFreeList();

TN

Initialization




Add Method

public boolean add(Object key) {
int hash =
key.hashCode() % table.length;
return table[hash].add(key);

¥



Add Method

1nt hash =
key.hashCode() % table.length;

Use object hash code to
pick a bucket



Add Method

[return table[hash].add(key) ; ]

N

Call bucket’s add() method




No Brainer?

 We just saw a
— Simple
— Lock-free
— Concurrent hash-based set implementation

 \What’s not to like?



No Brainer?

* We just saw a
— Simple
— Lock-free
— Concurrent hash-based set implementation

 \What’s not to like?
« \We don’t know how to resize ...



Is Resizing Necessary?

» Constant-time method calls require
— Constant-length buckets
— Table size proportional to set size
— As set grows, must be able to resize



Set Method Mix

* Typical load
—90% contains()
- 9% add ()
— 1% remove()

* Growing is important
* Shrinking not so much



When to Resize?

Many reasonable policies. Here's one.

Pick a threshold on num of items in a
bucket

Global threshold
— When = V4 buckets exceed this value

Bucket threshold
— When any bucket exceeds this value
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Coarse-Grained Locking

* Good parts
— Simple
— Hard to mess up
» Bad parts
— Sequential bottleneck
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Fine-grained Locking
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Each lock associated with one bucket
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Resize This

Make sure table reference didn’t change
between resize decision and lock acquisition
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Resize This
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Resize This
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Resize This

» 17
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Observations

» We grow the table, but not locks
— Resizing lock array is tricky ...

* We use sequential lists
— Not LockFreeList lists
— If we're locking anyway, why pay?
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Read/Write Locks

public interface ReadwriteLock {
Lock readLock();
Lock writeLock();

}
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Read/Write Locks

Returns associated

[Lock readLﬁ read lock
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Read/Write Locks

Returns associated
read lock

Lock readLock();

Returns associated
write lock
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Lock Safety Properties

 Read lock:
— Locks out writers

— Allows concurrent readers

 \Write lock

— Locks out writers
— Locks out readers
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Read/Write Lock

« Safety
— If readers > 0 then writer == false
— If writer == true then readers ==

e Liveness?

— Will a continual stream of readers ...
— Lock out writers?
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FIFO R/W Lock

As soon as a writer requests a lock
No more readers accepted

Current readers “drain” from lock
Writer gets in
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The Story So Far

* Resizing is the hard part

* Fine-grained locks
— Striped locks cover a range (not resized)

« Read/Write locks
— FIFO property tricky
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Optimistic Synchronization

 Let the contains() method
— Scan without locking

o Ifit finds the key

— OK to return true
— Actually requires a proof ....

* What if it doesn’t find the key?
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Optimistic Synchronization

* |f it doesn’t find the key

— May be victim of resizing
* Must try again

— Getting a read lock this time
 Makes sense if

— Keys are present
— Resizes are rare
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Stop The World Resizing

Resizing stops all concurrent operations
What about an incremental resize?
Must avoid locking the table

A lock-free table + incremental resizing?
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Lock-Free Resizing Problem
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Lock-Free Resizing Problem
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Need to extend table
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Lock-Free Resizing Problem
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Lock-Free Resizing Problem
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not enough

We need a new Iidea...
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Don’'t move the items

= Move the buckets instead
= Keep all items in a single lock-free list

= Buckets become “shortcut pointers” into
the list

16| o4 | =119 | =1 7 1 15
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Recursive Split Ordering

-
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Recursive Split Ordering

1/2

0 [ 4 [F2 6 IENETE 3
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Recursive Split Ordering
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Recursive Split Ordering

List entries sorted in order that allows
recursive splitting. How?
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Recursive Split Ordering




Recursive Split Ordering

LSB 0 LSB 1
A A
( N
0 [H{4 [F{2 6 [1-[1 [H{5 3

LSB = Least significant Bit



Recursive Split Ordering

LSB 00 LSB 10 LSB 01 LSB 11
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Split-Order

 |f the table size is 2i,
— Bucket b contains keys k
 k=Db (mod 2i)
— bucket index consists of key's i LSBs



When Table Splits

Some keys stay

— b = k mod(2i+1)

Some move

— b+2i = k mod(2i+1)
Determined by (i+1)st bit
— Counting backwards

Key must be accessible from both
— Keys that will move must come later
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Real keys:

A Bit of Magic

0
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Real keys:

A Bit of Magic

0

4

Real key 1 is In

the 4th Jocation

Split-order:

0
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A Bit of Magic

Real keys:
0 4 2 6 [1 ]][5 3 7
000 100 010 11 001 | 101 o011 111
T R
Real key 1 is in 4th Jocation
Split-oraer:
0 1 2 5 6 7
000 001 010 011 101 110 111
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Real keys:

000

Split-order:

000

A Bit of Magic

100 010 110

001

010 011

001

100

101

101

011
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111

111
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Real keys:

000

Split-order:

000

A Bit of Magic

100 010 110 001 101 011

vy
o001 010 011 100 101 110

Just reverse the order of the
key bits

111

111
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Split Ordered Hashing

Order according to reversed bits
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Parent Always Provides a Short Cut
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Sentinel Nodes

Problem: how to remove a node pointed
by 2 sources using CAS
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Sentinel Nodes

I

> 15

Solution: use a Sentinel node for each bucket
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Sentinel vs Regular Keys

* \Want sentinel key for i ordered
— before all keys that hash to bucket i

— after all keys that hash to bucket (i-1)
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Splitting a Bucket

* \We can now split a bucket
 |n a lock-free manner

» Using two CAS() calls ...

— One to add the sentinel to the list

— The other to point from the bucket to the
sentinel
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Initialization of Buckets

15

—
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Initialization of Buckets

Need to initialize bucket 3 to split bucket 1
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Adding 10
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Must initialize bucket 2
Before adding 10
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Recursive Initialization

To add 7 to the list / = 3mod4
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Could be loa n denth

But expected depth is constant

IVIUSL IT1IAIIZE DUCKEL |

Must initialize bucket 3
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Resize

* Divide set size by total number of
buckets

* If quotient exceeds threshold

— Double tableSize field
— Up to fixed limit
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Initialize Buckets

Buckets originally null
If you find one, initialize it
Go to bucket’'s parent

— Earlier nearby bucket
— Recursively initialize if necessary

Constant expected work
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Recall: Recursive Initialization

To add 7 to the list /

8
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=3 mod 4

3
IR -1 mod2
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expected depth is constant

Must initialize bucket 1

Must initialize bucket 3
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Correctness

Linearizable concurrent set

Theorem: O(1) expected time

— No more than O(1) items expected
between two dummy nodes on average

— Lazy initialization causes at most O(1)
expected recursion depth in
initializeBucket()
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Closed (Chained) Hashing

* Advantages:
— with N buckets, M items, Uniform h

— retains good performance as table density
(M/N) increases = less resizing

» Disadvantages:
— dynamic memory allocation
— bad cache behavior (no locality)

[ Oh, did we mention that cache }

behavior matters on a multicore?




Linear Probing®
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Z
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contains(x) — search linearly from h(x)
to h(x) + H recorded in bucket.

*Attributed to Amdanhl...



Linear Probing

2 zzlz ! \ ZzIXl z2z ZZ

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

Z
H| =6

add(x) — put in first empty bucket, and
update H.



Linear Probing

* Open address means M - N
« Expected items in bucket same as Chaining
* Expected distance till open slot:
Yo(1+(1/(1-M/N)) 2
M/N = 0.5 = search 2.5 buckets
M/N = 0.9 = search 50 buckets



Linear Probing

* Advantages:
— Good locality = fewer cache misses

» Disadvantages:

— As M/N increases more cache misses
« searching 10s of unrelated buckets
 “Clustering” of keys into neighboring buckets

— As computation proceeds “Contamination” by
deleted items = more cache misses



But cycles Cuckoo Hashing

can form .
,/’ \h (X)
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ha(y) h,(X)

Add(x) — if h,(x) and h,(x) full evict y and move it to
h,(y) = h,(x). Then place x in its place.




Cuckoo Hashing

* Advantages:
— contains() : deterministic 2 buckets
— No clustering or contamination

» Disadvantages:

— 2 tables
— h,(x) are complex

— As M/N increases = relocation cycles
— Above M/N = 0.5 Add() does not work!



Hopscotch Hashing

Single Array, Simple hash function

|dea: define neighborhood of original
bucket

In neighborhood items found quickly

Use sequences of displacements to
move items into their neighborhood



Hopscotch Hashing
h(x)
r |

Z X

1 2 3 4 567 8 910 11 12 13 14 15 16 17 18 19 20

'*l 10710 H=4

contains(x) — search in at most H buckets
(the hop-range) based on hop-info bitmap.
In practice pick H to be 32.




Hopscotch Hashing

h(x)
o
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1 2 3 4 567 8 9 10 11121314151617181920
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add(x) — probe linearly to find open slot.
Move the empty slot via sequence of
displacements into the hop-range of h(x).




Hopscotch Hashing

e contains

— wait-free, just look in neighborhood



Hopscotch Hashing

* contains
— wait-free, just look in neighborhood

e add

— expected distance same as in linear probing



Hopscotch Hashing

e contains

— wait-free, just look in neighborhood
* add

— Expected distance same as in linear probing
* resize

— neighborhood full less likely as H 2> log n

— one word hop-info bitmap, or use smaller H and
default to linear probing



Advantages

* Good locality and cache behavior

* As table density (M/N) increases
- less resizing

* Move cost to add() from contains()
» Easy to parallelize



Recall: Concurrent Chained Hashing
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Lock for add()
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contains()

Striped Locks



Concurrent Simple Hopscotch
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Concurrent Simple Hopscotch
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Add(x) — lock bucket, mark empty
slot using CAS, add x erasing mark



Concurrent Simple Hopscotch
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add(x) — lock bucket, mark empty slot
using CAS, lock bucket and update
timestamp of bucket being displaced
before erasing old value



Concurrent Simple Hopscotch

6 /[ X not found]
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|s performance dominated by cache
behavior?

* Run algs on state of the art multicores
and uniprocessors:
— Sun 64 way Niagara Il, and
— Intel 3GHz Xeon

 Benchmarks pre-allocated memory to
eliminate effects of memory
management



ops /ms
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ops /ms

Sequential SPARC High-Density;Throuthput
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Sequential CoreDuo; Throughput

14000 90% contain, 5% insert, 5% remove

12000 Cuckoo stops here
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ops /ms

Concurrent SPARC Throughput
90% density; 70% contain, 15% insert, 15% remove
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Concurrent SPARC Throughput
90% density; Cache-Miss per UnSuccessful-Lookup
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Summary

» Chained hash with striped locking is
simple and effective in many cases

» Hopscotch with striped locking great
cache behavior

* |f iIncremental resizing needed go for
split-ordered



