
Hash Tables
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Sequential Closed Hash Map

0

1

2

3

16

9

h(k) = k mod 4

2 Items

buckets
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Add an Item

0

1

2

3

16

9

7

h(k) = k mod 4

3 Items
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Add Another: Collision

0

1

2

3

16 4

9

7

h(k) = k mod 4

4 Items
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More Collisions

0

1

2

3

16 4

9

7 15

h(k) = k mod 4

5 Items
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More Collisions

0

1

2

3

16 4

9

7 15

h(k) = k mod 4

5 Items
Problem: 

buckets getting too long
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Resizing

0

1

2

3

16 4

9

7 15

4

5

6

7 Grow the array

5 Items

h(k) = k mod 8
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5 Items

Resizing

0

1

2

3

16 4

9

7 15

4

5

6

7

h(k) = k mod 8

Adjust hash function
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Resizing

0

1

2

3

16

9

7 15

h(4) = 0 mod 8

4

5

6

7

4

h(k) = k mod 8
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Resizing

0

1

2

3

16

4

9

7 15

4

5

6

7

h(k) = k mod 8

h(4) = 4 mod 8
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Resizing

0

1

2

3

16

4

9

7 15

4

5

6

7

h(k) = k mod 8

h(15) = 7 mod 8
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Resizing

0

1

2

3

16

4

9

4

5

6

7

h(k) = k mod 8

h(15) = 7 mod 8

157
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Fields

public class SimpleHashSet { 
  protected LockFreeList[] table; 

  public SimpleHashSet(int capacity) { 
    table = new LockFreeList[capacity]; 
    for (int i = 0; i < capacity; i++) 
      table[i] = new LockFreeList(); 
  } 
…

Array of lock-free lists
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Constructor

public class SimpleHashSet { 
  protected LockFreeList[] table; 

  public SimpleHashSet(int capacity) { 
    table = new LockFreeList[capacity]; 
    for (int i = 0; i < capacity; i++) 
      table[i] = new LockFreeList(); 
  } 
…

Initial size
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Constructor

public class SimpleHashSet { 
  protected LockFreeList[] table; 

  public SimpleHashSet(int capacity) { 
    table = new LockFreeList[capacity]; 
    for (int i = 0; i < capacity; i++) 
      table[i] = new LockFreeList(); 
  } 
…

Allocate memory
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Constructor

public class SimpleHashSet { 
  protected LockFreeList[] table; 

  public SimpleHashSet(int capacity) { 
    table = new LockFreeList[capacity]; 
    for (int i = 0; i < capacity; i++) 
      table[i] = new LockFreeList(); 
  } 
…

Initialization
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Add Method

public boolean add(Object key) { 
 int hash = 
  key.hashCode() % table.length; 
 return table[hash].add(key); 
}



1818

Add Method

public boolean add(Object key) { 
 int hash = 
  key.hashCode() % table.length; 
 return table[hash].add(key); 
}

Use object hash code to 
pick a bucket
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Add Method

public boolean add(Object key) { 
 int hash = 
  key.hashCode() % table.length; 
 return table[hash].add(key); 
}

Call bucket’s add() method
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No Brainer?

• We just saw a 
– Simple 
– Lock-free 
– Concurrent hash-based set implementation 

• What’s not to like?
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No Brainer?

• We just saw a 
– Simple 
– Lock-free 
– Concurrent hash-based set implementation 

• What’s not to like? 
• We don’t know how to resize …
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Is Resizing Necessary?

• Constant-time method calls require 
– Constant-length buckets 
– Table size proportional to set size 
– As set grows, must be able to resize
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Set Method Mix

• Typical load 
– 90% contains() 
– 9% add () 
– 1% remove() 

• Growing is important 
• Shrinking not so much
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When to Resize?

• Many reasonable policies. Here’s one. 
• Pick a threshold on num of items in a 

bucket 
• Global threshold 

– When ≥ ¼ buckets exceed this value 
• Bucket threshold 

– When any bucket exceeds this value
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Coarse-Grained Locking

• Good parts 
– Simple 
– Hard to mess up 

• Bad parts 
– Sequential bottleneck
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Fine-grained Locking

0

1

2

3

4 8

9

7 11

17

Each lock associated with one bucket
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Resize This
Make sure table reference didn’t change 

between resize decision and lock acquisition

0

1

2

3

4 8

9

7 11

17

Acquire locks in 
ascending order
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Resize This

0

1
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3

4 8
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7 11

17
0

1

2

3

4

5

6

7

Allocate new 
super-sized table
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Resize This

0

1

2

3

9

7

4 8

17
0

1

2

3

4

5

6

7

8

4

9 17

7

1111
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Resize This

0

1
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3

0

1
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3

4
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6

7

8

4

9 17

7

11

Striped Locks: each lock now associated with two buckets
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Observations

• We grow the table, but not locks 
– Resizing lock array is tricky … 

• We use sequential lists 
– Not LockFreeList lists 
– If we’re locking anyway, why pay?
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Read/Write Locks

public interface ReadWriteLock { 
  Lock readLock(); 
  Lock writeLock(); 
}
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Read/Write Locks

public interface ReadWriteLock { 
  Lock readLock(); 
  Lock writeLock(); 
}

Returns associated 
read lock
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Read/Write Locks

public interface ReadWriteLock { 
  Lock readLock(); 
  Lock writeLock(); 
}

Returns associated 
read lock

Returns associated 
write lock
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Lock Safety Properties

• Read lock: 
– Locks out writers 
– Allows concurrent readers 

• Write lock 
– Locks out writers 
– Locks out readers
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Read/Write Lock

• Safety 
– If readers > 0 then writer == false 
– If writer == true then readers == 0 

• Liveness? 
– Will a continual stream of readers … 
– Lock out writers?
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FIFO R/W Lock

• As soon as a writer requests a lock 
• No more readers accepted 
• Current readers “drain” from lock 
• Writer gets in
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The Story So Far

• Resizing is the hard part 
• Fine-grained locks 

– Striped locks cover a range (not resized) 
• Read/Write locks 

– FIFO property tricky
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Optimistic Synchronization

• Let the contains() method 
– Scan without locking 

• If it finds the key 
– OK to return true 
– Actually requires a proof …. 

• What if it doesn’t find the key?
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Optimistic Synchronization

• If it doesn’t find the key 
– May be victim of resizing 

• Must try again 
– Getting a read lock this time 

• Makes sense if 
– Keys are present 
– Resizes are rare
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Stop The World Resizing

• Resizing stops all concurrent operations 
• What about an incremental resize?  
• Must avoid locking the table 
• A lock-free table + incremental resizing?
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Lock-Free Resizing Problem

0

1

2

3

4 8

9

7 15
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4 12

Lock-Free Resizing Problem

0

1

2

3

8

9

7 15

4

5

6

7

4 12

Need to extend table
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Lock-Free Resizing Problem

0

1

2

3

84

9

7 15

4

5

6

7

12

4 12
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Lock-Free Resizing Problem

0

1

2

3

9

7 15

4

5

6

7

12

to remove and  
then add even a  
single item single  
location CAS  
not enough

4

84 12

We need a new idea…
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Don’t move the items
■ Move the buckets instead 
■ Keep all items in a single lock-free list  
■ Buckets become “shortcut pointers” into 

the list

16 4 9 7 15
0
1
2
3



47

Recursive Split Ordering

0

0 4 2 6 1 5 3 7
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Recursive Split Ordering

0

1/2

1

0 4 2 6 1 5 3 7
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Recursive Split Ordering

0

1/2

1

1/4 3/4

2
3

0 4 2 6 1 5 3 7
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Recursive Split Ordering

0

1/2

1

1/4 3/4

2
3

0 4 2 6 1 5 3 7

List entries sorted in order that allows 
recursive splitting. How?
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Recursive Split Ordering

0

0 4 2 6 1 5 3 7
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Recursive Split Ordering

0
1

0 4 2 6 1 5 3 7

LSB = Least significant Bit

LSB 0 LSB 1
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Recursive Split Ordering

0
1
2
3

0 4 2 6 1 5 3 7

LSB 00 LSB 10 LSB 01 LSB 11
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Split-Order

• If the table size is 2i, 
– Bucket b contains keys k 

•  k = b (mod 2i)  
– bucket index consists of key's i LSBs
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When Table Splits

• Some keys stay 
– b = k mod(2i+1) 

• Some move 
– b+2i = k mod(2i+1) 

• Determined by (i+1)st bit 
– Counting backwards 

• Key must be accessible from both 
– Keys that will move must come later
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A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:
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A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:

0 1 2 3 4 5 6 7

Split-order:

Real key 1 is in 
the 4th location 
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A Bit of Magic

0 4 2 6 1 5 3 7

Real keys:

0 1 2 3 4 5 6 7

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is in 4th location 
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A Bit of Magic

Real keys:

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111
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A Bit of Magic

Real keys:

Split-order:

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111
Just reverse the order of the 

key bits 
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Split Ordered Hashing

0
1
2
3

0 4 2 6 1 5 3 7

000 001 010 011 100 101 110 111

Order according to reversed bits 
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Parent Always Provides a Short Cut

0
1
2
3

0 4 2 6 1 5 3 7

search
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Sentinel Nodes

0

1

2

3

16 4 9 7 15

Problem: how to remove a node pointed 
by 2 sources using CAS
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Sentinel Nodes

0

1

2

3

16 4 9 7 153

Solution: use a Sentinel node for each bucket

0 1
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Sentinel vs Regular Keys

• Want sentinel key for i ordered  
– before all keys that hash to bucket i 
– after all keys that hash to bucket (i-1)



66

Splitting a Bucket

• We can now split a bucket  
• In a lock-free manner 
• Using two CAS() calls ... 

– One to add the sentinel to the list 
– The other to point from the bucket to the 

sentinel
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Initialization of Buckets

0

1

16 4 9 7 150 1
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Initialization of Buckets

0

1

2

3

16 4 9 7 150 1

3

Need to initialize bucket 3 to split bucket 1 
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Adding 10

0

1

2

3

16 4 9 3 70 1

2

10 =  2 mod 4

2

Must initialize bucket 2
Before adding 10
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Recursive Initialization

0

1

2

3

8 120

7 =  3 mod 4To add 7 to the list

3

Must initialize bucket 3

Must initialize bucket 1

=  1 mod 2 1

Could be log n depth
But expected depth is constant
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Resize

• Divide set size by total number of 
buckets 

• If quotient exceeds threshold 
– Double tableSize field 
– Up to fixed limit
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Initialize Buckets

• Buckets originally null 
• If you find one, initialize it 
• Go to bucket’s parent 

– Earlier nearby bucket 
– Recursively initialize if necessary 

• Constant expected work
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Recall: Recursive Initialization

0

1

2

3

8 120

7 = 3 mod 4To add 7 to the list

3

Must initialize bucket 3

Must initialize bucket 1

= 1 mod 2 1

Could be log n depthexpected depth is constant
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Correctness
• Linearizable concurrent set  
• Theorem: O(1) expected time 

– No more than O(1) items expected 
between two dummy nodes on average 

– Lazy initialization causes at most O(1) 
expected recursion depth in 
initializeBucket()



Closed (Chained) Hashing
• Advantages:  

– with N buckets, M items, Uniform h 
– retains good performance as table density 

(M/N) increases ! less resizing 
• Disadvantages:  

– dynamic memory allocation 
– bad cache behavior (no locality)

Oh, did we mention that cache 
behavior matters on a multicore?



Linear Probing*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

contains(x) – search linearly from h(x) 
to h(x) + H recorded in bucket. 
   
 

H
z

x
h(x)

=7

z

*Attributed to Amdahl…



Linear Probing 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – put in first empty bucket, and 
update H.  
  

   

H
z

z
h(x)

=3

z z z z z z z zzz z z x

=6



Linear Probing

• Open address means M · N 
• Expected items in bucket same as Chaining 
• Expected distance till open slot: 
                   ½(1+(1/(1-M/N)) 2  
       M/N = 0.5  ➔ search 2.5 buckets 
       M/N = 0.9  ➔ search 50 buckets 

 



Linear Probing

• Advantages:  
– Good locality ➔ fewer cache misses 

• Disadvantages:  
– As M/N increases more cache misses 

•  searching 10s of unrelated buckets 
• “Clustering” of keys into neighboring buckets 

– As computation proceeds “Contamination” by 
deleted items ➔ more cache misses



Cuckoo Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Add(x) – if h1(x) and h2(x) full evict y and move it to 
h2(y) ≠ h2(x). Then place x in its place.  

z
h1(x)

z z z z z zzzz z z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z

h2(x)

zz zw z z z zzz z z

h2(y)

yx

But cycles  
can form



Cuckoo Hashing

• Advantages:  
– contains() : deterministic 2 buckets 
– No clustering or contamination 

• Disadvantages:  
– 2 tables 
– hi(x) are complex  
– As M/N increases ➔ relocation cycles 
– Above M/N = 0.5 Add() does not work!



Hopscotch Hashing 

• Single Array, Simple hash function 
• Idea: define neighborhood of original 

bucket  
• In neighborhood items found quickly 
• Use sequences of displacements to 

move items into their neighborhood



Hopscotch Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

contains(x) – search in at most H buckets  
(the hop-range) based on hop-info bitmap.  
In practice pick H to be 32.  

z

h(x)

H=4

x

1 0 1 0



Hopscotch Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – probe linearly to find open slot. 
Move the empty slot via sequence of  
displacements into the hop-range of h(x).  
   
 

z

h(x)

1 0 0 1
x r svuw

1 0 1 00 0 1 11 1 0 1



Hopscotch Hashing
• contains 

– wait-free, just look in neighborhood



Hopscotch Hashing
• contains 

– wait-free, just look in neighborhood 
• add 

– expected distance same as in linear probing



Hopscotch Hashing
• contains 

– wait-free, just look in neighborhood 
• add 

– Expected distance same as in linear probing 
• resize 

– neighborhood full less likely as H ! log n 
– one word hop-info bitmap, or use smaller H and 

default to linear probing



Advantages

• Good locality and cache behavior  
• As table density (M/N) increases 
! less resizing 

• Move cost to add() from contains() 
• Easy to parallelize



Recall: Concurrent Chained  Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lock for add()  
and unsuccessful  
contains()

Striped Locks



Concurrent Simple Hopscotch 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 contains()  is wait-free

h(x)



Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Add(x) – lock bucket, mark empty 
slot using CAS, add x erasing mark 
 

z

1 0 0 1

rvu

ts

x



Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add(x) – lock bucket, mark empty slot 
using CAS, lock bucket and update 
timestamp of bucket being  displaced 
before erasing old value 

z

1 0 0 1

vu

ts

r s

1 0 1 01 0 1 0 ts

s

0 0 1 1 ts0 0 1 1 ts+1



Concurrent Simple Hopscotch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 

z

1 0 0 1

rvu

ts

s
x not found 



Is performance dominated by cache 
behavior?

• Run algs on state of the art multicores 
and uniprocessors:  
– Sun 64 way Niagara II, and  
– Intel 3GHz Xeon 

• Benchmarks pre-allocated memory to 
eliminate effects of memory 
management
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Cuckoo stops here
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Summary
• Chained hash with striped locking is 

simple and effective in many cases 
• Hopscotch with striped locking great 

cache behavior 
• If incremental resizing needed go for 

split-ordered 


