GPU Architecture & CUDA Programming
Basic GPU architecture

Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently)

~150-300 GB/sec (high end GPUs)

Memory
DDR5 DRAM
(a few GB)
GPU compute mode
Review: how to run code on a CPU

Lets say a user wants to run a program on a multi-core CPU...

- OS loads program text into memory
- OS selects CPU execution context
- OS interrupts processor, prepares execution context (sets contents of registers, program counter, etc. to prepare execution context)
- Go!
- Processor begins executing instructions from within the environment maintained in the execution context.
How to run code on a GPU (prior to 2007)

Let's say a user wants to draw a picture using a GPU...

- Application (via graphics driver) provides GPU vertex and fragment shader program binaries
- Application sets graphics pipeline parameters (e.g., output image size)
- Application provides GPU a buffer of vertices
- Application sends GPU a “draw” command:

 \[
 \text{drawPrimitives}(\text{vertex_buffer})
 \]

This was the only interface to GPU hardware.

GPU hardware could only execute graphics pipeline computations.
Brook stream programming language (2004)

- Stanford graphics lab research project [Buck 2004]
- Abstract GPU hardware as data-parallel processor

```cpp
kernel void scale(float amount, float a<> , out float b<>)
{
    b = amount * a;
}
float scale_amount;
float input_stream<1000>;   // stream declaration
float output_stream<1000>;  // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);
```

- Brook compiler translated generic stream program into graphics commands (such as drawTriangles) and a set of graphics shader programs that could be run on GPUs of the day.
NVIDIA Tesla architecture (2007)
(GeForce 8xxx series GPUs)
First alternative, non-graphics-specific (“compute mode”) interface to GPU Hardware
Let’s say a user wants to run a non-graphics program on the GPU’s cores...

- Application can allocate buffers in GPU memory and copy data to/from buffers
- Application (via graphics driver) provides GPU a single kernel program binary
- Application tells GPU to run the kernel in an SPMD fashion (“run N instances”)
 `launch(myKernel, N)`

Aside: interestingly, this is a far simpler operation than the graphics operation
`drawPrimitives()`
CUDA programming language

- Introduced in 2007 with NVIDIA Tesla architecture
- “C-like” language to express programs that run on GPUs using the compute-mode hardware interface
- Relatively low-level: CUDA’s abstractions closely match the capabilities/performance characteristics of modern GPUs (design goal: maintain low abstraction distance)

Note: OpenCL is an open standards version of CUDA
- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs and GPUs from many vendors
- Almost everything I say about CUDA also holds for OpenCL
- CUDA is better documented, thus I find it preferable to teach with
The plan

1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?
Clarification (here we go again...)

- I am going to describe CUDA abstractions using CUDA terminology

- Specifically, be careful with the use of the term CUDA thread. A CUDA thread presents a similar abstraction as a pthread in that both correspond to logical threads of control, but the implementation of a CUDA thread is very different

- We will discuss these differences at the end of the lecture
CUDA program is a hierarchy of concurrent threads

Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

Regular application thread running on CPU (the “host”)

```cpp
const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```
Basic CUDA syntax

“Host” code: serial execution
Running as part of normal C/C++ application on CPU

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

SPMD execution of device kernel function:

“CUDA device” code: kernel function (denotes a CUDA kernel function) runs on GPU

Each thread computes its overall grid thread id from its position in its block (threadIdx) and its block’s position in the grid (blockIdx)

Regular application thread running on CPU (the “host”)

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

CUDA kernel definition

```
__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    C[j][i] = A[j][i] + B[j][i];
}
```
Clear separation of host and device code

Separation of execution into host and device code is performed statically by the programmer

“Host” code: serial execution on CPU

“Device” code (SPMD execution on GPU)
Number of SPMD threads is explicit in program

Number of kernel invocations is not determined by size of data collection
(a kernel launch is not specified by map(kernel, collection) as was the case with graphics shader programming)

Regular application thread running on CPU (the “host”)

```cpp
const int Nx = 11; // not a multiple of threadsPerBlock.x
const int Ny = 5;  // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
                (Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

CUDA kernel definition

```cpp
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;

    // guard against out of bounds array access
    if (i < Nx && j < Ny)
        C[j][i] = A[j][i] + B[j][i];
}
```
CUDA execution model

Host
(serial execution)
Implementation: CPU

CUDA device
(SPMD execution)
Implementation: GPU
CUDA memory model
Distinct host and device address spaces

Host
(serial execution)

Host
memory
address
space

Implementation: CPU

CUDA device
(SPMD execution)

Device “global”
memory address
space

Implementation: GPU
memcpy primitive
Moved data between address spaces

```c
float* A = new float[N];  // allocate buffer in host mem

// populate host address space pointer A
for (int i=0; i<N; i++)
    A[i] = (float)i;

int bytes = sizeof(float) * N;
float* deviceA;           // allocate buffer in
cudaMalloc(&deviceA, bytes);  // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: directly accessing deviceA[i] is an invalid
// operation here (cannot manipulate contents of deviceA
// directly from host only from device code, since deviceA
// is not a pointer into the host’s address space)
```
CUDA device memory model

Three distinct types of address spaces visible to kernels

Different address spaces reflect different regions of locality in the program

As we will soon see, this has important implications to efficiency of GPU implementations of CUDA:

e.g., how might you schedule threads if you know a priori that certain threads access the same variables?
CUDA example: 1D convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;
1D convolution in CUDA (version 1)

One thread per output element

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
    int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

    float result = 0.0f; // thread-local variable
    for (int i=0; i<3; i++)
        result += input[index + i];

    output[index] = result / 3.f;
}
```

Host code

```c
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate input array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate output array in device memory

// properly initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
1D convolution in CUDA (version 2)

One thread per output element: stage input data in per-block shared memory

CUDA Kernel

```c
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {
    __shared__ float support[THREADS_PER_BLK+2];   // per-block allocation
    int index = blockIdx.x * blockDim.x + threadIdx.x;  // thread local variable

    support[threadIdx.x] = input[index];
    if (threadIdx.x < 2) {
        support[threadIdx.x + THREADS_PER_BLK] = input[index+THREADS_PER_BLK];
    }

    __syncthreads();

    float result = 0.0f;  // thread-local variable
    for (int i=0; i<3; i++)
        result += support[threadIdx.x + i];

    output[index] = result / 3.f;
}
```

All threads cooperatively load block's support region from global memory into shared memory
(totally 130 load instructions instead of 3 * 128 load instructions)

Barrier (all threads in block)

Each thread computes result for one element

Write result to global memory

Host code

```c
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2));  // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N);      // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
CUDA synchronization constructs

- **__syncthreads()**
 - Barrier: wait for all threads in the block to arrive at this point

- **Atomic operations**
 - e.g., `float atomicAdd(float* addr, float amount)`
 - CUDA provides atomic operations on both global memory addresses and per-block shared memory address.

- **Host/device synchronization**
 - Implicit barrier across all threads at return of kernel
Summary: CUDA abstractions

- **Execution: thread hierarchy**
 - Bulk launch of many threads (this is imprecise... I’ll clarify later)
 - Two-level hierarchy: threads are grouped into thread blocks

- **Distributed address space**
 - Built-in memcpy primitives to copy between host and device address spaces
 - Three different types of device address spaces
 - Per thread, per block ("shared"), or per program ("global")

- **Barrier synchronization primitive** for threads in thread block

- **Atomic primitives** for additional synchronization (shared and global variables)
CUDA semantics

#include <cuda_runtime.h>

__global__ void convolve(int N, float* input, float* output) {
 __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];
 output[index] = result / 3.f;
}

// host code ///
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Consider implementation of call to _pthread_create():

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can
 schedule thread

Will running this CUDA program
create 1 million instances of
local variables/per-thread stack?

8K instances of shared variables? (support)

launch over 1 million CUDA
threads (over 8K thread blocks)
Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Desirable for CUDA program to run on all of these GPUs without modification

Note: there is no concept of num_cores in the CUDA programs I have shown you. (CUDA thread launch is similar in spirit to a forall loop in data parallel model examples)
CUDA compilation

```c
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per block allocation
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
    support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
    result += support[threadIdx.x + i];

output[index] = result;
}
```

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- B bytes of local data per thread
- 130 floats (520 bytes) of shared space per thread block

```c
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
```
CUDA thread-block assignment

Grid of 8K `convolve` thread blocks (specified by kernel launch)

Kernel launch command from host
`launch(blockDim, convolve)`

Block resource requirements:
- (contained in compiled kernel binary)
- 128 threads
- 520 bytes of shared mem
- (128 x B) bytes of local mem

Major CUDA assumption: thread block execution can be carried out in any order
(no dependencies between blocks)

GPU implementation maps thread blocks ("work") to cores using a dynamic
scheduling policy that respects resource requirements

Shared mem is fast on-chip memory
Another instance of our common design pattern: a pool of worker “threads”

Sub-problems (aka “tasks”, “work”)

Other examples:
- ISPC’s implementation of launching tasks
 - Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program
- Thread pool in a web server
 - Number of threads is a function of number of cores, not number of outstanding requests
 - Threads spawned at web server launch, wait for work to arrive
This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

SM resource limits:
- Max warp execution contexts: 64 (2,048 total CUDA threads)
- 96 KB of shared memory

Registers for warp execution contexts: max 64 (256 KB)

“Shared” memory storage (96 KB)

L1 cache (48 KB)
Recall, CUDA kernels execute as SPMD programs. On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.

A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block) (Warps are an important GPU implementation detail, but not a CUDA abstraction!)

SM core operation each clock:
- Select up to four runnable warps from 64 resident on SM core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism) *

#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output)
{
 __shared__ float support[THREADS_PER_BLK+2];
 int index = blockIdx.x * blockDim.x + threadIdx.x;

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local
 for (int i=0; i<3; i++)
 {
 result += support[threadIdx.x + i];
 }

 output[index] = result;
}
Review: what is a “warp”?

- A warp is a CUDA implementation detail on NVIDIA GPUs
- On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are executed simultaneously using 32-wide SIMD execution.

In this fictitious NVIDIA GPU example: Core maintains contexts for 12 warps
Selects one warp to run each clock
Review: what is a “warp”?

- A warp is a CUDA implementation detail on NVIDIA GPUs

- On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are executed simultaneously using 32-wide SIMD execution.
 - These 32 logical CUDA threads share an instruction stream and therefore performance can suffer due to divergent execution.
 - This mapping is similar to how ISPC runs program instances in a gang.

- The group of 32 threads sharing an instruction stream is called a warp.
 - In a thread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)
 - Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.
 - Each “SM” core in the GTX 1080 is capable of scheduling and interleaving execution of up to 64 warps.
 - So a “SM” core is capable of concurrently executing multiple CUDA thread blocks.
NVIDIA GTX 1080 (20 SMs)

- L2 Cache (2 MB)
- 320 GB/sec
- (256 bit interface)
- GPU memory
- DDR5 DRAM
Summary: geometry of the GTX 1080

1.6 GHz clock
20 SM cores per chip
20 x 128 = 2,560 SIMD mul-add ALUs = 8.1 TFLOPs
Up to 20 x 64 = 1280 interleaved warps per chip (40,960 CUDA threads/chip)
TDP: 180 watts
Running a **CUDA** program on a **GPU**
Running the convolve kernel

convolve kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block requires \(130 \times \text{sizeof(float)} = 520\) bytes of shared memory

Let’s assume array size \(N\) is very large, so the host-side kernel launch generates thousands of thread blocks.

```c
#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);
```

Let’s run this program on the fictitious two-core GPU below.

(Note: my fictitious cores are much “smaller” than the GTX1080 SM cores discussed earlier in lecture: they have fewer execution units, support for fewer active warps, less shared memory, etc.)
Running the CUDA kernel

Kernel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

GPU Work Scheduler

Core 0

Fetch/Decode

Execution context storage for 384 CUDA threads (12 warps)

“Shared” memory storage (1.5 KB)

Core 1

Fetch/Decode

Execution context storage for 384 CUDA threads (12 warps)

“Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and 520 bytes of shared storage)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 1
TOTAL = 1000

GPUWorkScheduler

Execution context storage for 384 CUDA threads
“Shared” memory storage (1.5 KB)

Block 0: support (520 bytes)
Running the CUDA kernel

Kernel's execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 2
TOTAL = 1000

GPUWorkScheduler

Block 0: support (520 bytes @0x0)
Execution context storage for 384 CUDA threads
“Shared” memory storage (1.5 KB)

Block 1: support (520 bytes @0x0)
Execution context storage for 384 CUDA threads
“Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 3
TOTAL = 1000

GPU WorkScheduler

Core 0

Block 0 (contexts 0-127)
Block 2 (contexts 128-255)
Execution context storage for 384 CUDA threads
"Shared" memory storage (1.5 KB)

Block 1 (contexts 0-127)
Block 1: support (520 bytes @0x0)
Execution context storage for 384 CUDA threads
"Shared" memory storage (1.5 KB)

Core 1

Block 0: support (520 bytes @0x0)
Block 2: support (520 bytes @0x520)
Running the CUDA kernel

Kernel's execution requirements:

- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).

Only two thread blocks fit on a core (third block won't fit due to insufficient shared storage 3×520 bytes > 1.5 KB)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

GPU Work Scheduler

NEXT = 4
TOTAL = 1000

Core 0

- Block 0 (contexts 0-127)
- Block 2 (contexts 128-255)

Execution context storage for 384 CUDA threads

- Block 0: support (520 bytes @0x0)
- Block 2: support (520 bytes 0x520)

“Shared” memory storage (1.5 KB)

Core 1

- Block 1 (contexts 0-127)
- Block 3 (contexts 128-255)

Execution context storage for 384 CUDA threads

- Block 1: support (520 bytes @0x0)
- Block 3: support (520 bytes @ 0x520)

“Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 4: thread block 0 completes on core 0

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4
TOTAL = 1000

GPUWorkScheduler

Fetch/Decode

Core 0

Block 2 (contexts 128-255)
Execution context storage for 384 CUDA threads

Block 2: support (520 bytes @0x520)
“Shared” memory storage (1.5 KB)

Fetch/Decode

Core 1

Block 1 (contexts 0-127)
Block 1: support (520 bytes @0x0)

Block 3 (contexts 128-255)
Block 3: support (520 bytes @0x520)

Execution context storage for 384 CUDA threads

“Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

GPU Work Scheduler

NEXT = 5
TOTAL = 1000

Fetch/Decode

Core 0

Block 4 (contexts 0-127)
Block 2 (contexts 128-255)
Execution context storage for 384 CUDA threads

Block 4: support (520 bytes @ 0x0)
Block 2: support (520 bytes @0x520)
“Shared” memory storage (1.5 KB)

Core 1

Block 1 (contexts 0-127)
Block 3 (contexts 128-255)
Execution context storage for 384 CUDA threads

Block 1: support (520 bytes @0x0)
Block 3: support (520 bytes @0x520)
“Shared” memory storage (1.5 KB)
Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate $130 \times \text{sizeof(float)} = 520$ bytes of shared memory

Step 6: thread block 2 completes on core 0

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 5
TOTAL = 1000

GPU WorkScheduler

Fetch/Decode

Core 0
Block 4 (contexts 0-127)
"Shared" memory storage (1.5 KB)
Execution context storage for 384 CUDA threads

Block 4: support (520 bytes @0x0)

Core 1
Block 1 (contexts 0-127)
"Shared" memory storage (1.5 KB)

Execution context storage for 384 CUDA threads

Block 1: support (520 bytes @0x0)

Block 3 (contexts 128-255)
Block 3: support (520 bytes @0x520)
Running the CUDA kernel

Kernel’s execution requirements:
- Each thread block must execute 128 CUDA threads
- Each thread block must allocate \(130 \times \text{sizeof(float)} = 520 \) bytes of shared memory

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

GPU WorkScheduler

NEXT = 6
TOTAL = 1000

Core 0

Block 4: support (520 bytes @0x0)
Block 5: support (520 bytes @0x520)

Execution context storage for 384 CUDA threads

Core 1

Block 1: support (520 bytes @0x0)
Block 3: support (520 bytes @0x520)

Execution context storage for 384 CUDA threads

“Shared” memory storage (1.5 KB)
More advanced scheduling questions:

(If you understand the following examples you really understand how CUDA programs run on a GPU, and also have a good handle on the work scheduling issues we’ve discussed in the course up to this point.)
Imagine a thread block with 256 CUDA threads (see code, top-right)

Assume a fictitious SM core with only 4 warps worth of parallel execution in HW (illustrated above)

Why not just run four warps (threads 0-127) to completion then run next four warps (threads 128-255) to completion in order to execute the entire thread block?

CUDA kernels may create dependencies between threads in a block

Simplest example is _syncthreads()

Threads in a block **cannot** be executed by the system in any order when dependencies exist.

CUDA semantics: threads in a block **ARE** running concurrently. If a thread in a block is runnable it will eventually be run! (no deadlock)
Implementation of CUDA abstractions

- Thread blocks can be scheduled in any order by the system
 - System assumes no dependencies between blocks
 - Logically concurrent
 - A lot like ISPC tasks, right?

- CUDA threads in same block DO run at the same time
 - When block begins executing, all threads are running
 (these semantics impose a scheduling constraint on the system)
 - A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
 - Threads in thread block are concurrent, cooperating “workers”

- CUDA implementation:
 - A NVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances
 (but unlike an ISPC gang, the warp concept does not exist in the programming model*)
 - All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency communication through shared memory variables
 - When all threads in block complete, block resources (shared memory allocations, warp execution contexts) become available for next block

*Exceptions to this statement include intra-warp builtin operations like swizzle and vote
Consider a program that creates a histogram:

- This example: build a histogram of values in an array
 - All CUDA threads atomically update shared variables in global memory
- Notice I have never claimed CUDA thread blocks were guaranteed to be independent. I only stated CUDA reserves the right to schedule them in any order.
- This is valid code! This use of atomics does not impact implementation’s ability to schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

```c
int* A = {0, 3, 4, 1, 9, 2, \ldots, 8, 4, 1}; //array of integers between 0-9
```
But is this reasonable CUDA code?

- Consider implementation of on a single core GPU with resources for one CUDA thread block per core
 - What happens if the CUDA implementation runs block 0 first?
 - What happens if the CUDA implementation runs block 1 first?

```c
int myFlag

// do stuff here
atomicAdd(&myFlag, 1);

... 

while(atomicAdd(&myFlag, 0) == 0)
{
}

// do stuff here

Global memory

int myFlag

(assume myFlag is initialized to 0)
```
“Persistent thread” CUDA programming style

```c
#define THREADS_PER_BLK 128
#define BLOCKS_PER_CHIP 20 * (2048/128) // specific to GTX 1080 GPU

device_ int workCounter = 0; // global mem variable

__global__ void convolve(int N, float* input, float* output)
{
    __shared__ int startingIndex;
    __shared__ float support[THREADS_PER_BLK+2]; // shared across block

    while (1) {
        if (threadIdx.x == 0)
            startingIndex = atomicInc(workCounter, THREADS_PER_BLK);
        __syncthreads();
        if (startingIndex >= N)
            break;

        int index = startingIndex + threadIdx.x; // thread local
        support[threadIdx.x] = input[index];
        if (threadIdx.x < 2)
            support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
        __syncthreads();

        float result = 0.0f; // thread-local variable
        for (int i=0; i<3; i++)
            result += support[threadIdx.x + i];
        output[index] = result;
        __syncthreads();
    }
}

// host code ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// properly initialize contents of devInput here ...
convolve<<<BLOCKS_PER_CHIP, THREADS_PER_BLK>>>(N, devInput, devOutput);
```

Idea: write CUDA code that requires knowledge of the number of cores and blocks per core that are supported by underlying GPU implementation.

Programmer launches exactly as many thread blocks as will fill the GPU (Program makes assumptions about GPU implementation: that GPU will in fact run all blocks concurrently. Ugg!)

Now, work assignment to blocks is implemented entirely by the application (circumvents GPU's thread block scheduler)

Now the programmer’s mental model is that *all* CUDA threads are concurrently running on the GPU at once.
CUDA summary

- **Execution semantics**
 - Partitioning of problem into thread blocks is in the spirit of the data-parallel model (intended to be machine independent: system schedules blocks onto cores)
 - Threads in a thread block actually do run concurrently (they cooperate)
 - Inside a single thread block: SPMD shared address space programming
 - There are subtle, but notable differences between these models of execution. Make sure you understand it. (And ask yourself what semantics are being used whenever you encounter a parallel programming system)

- **Memory semantics**
 - Distributed address space: host/device memories
 - Thread local/block shared/global variables within device memory
 - Loads/stores move data between them (so it is correct to think about local/shared/global memory as being distinct address spaces)

- **Key implementation details:**
 - Threads in a thread block are scheduled onto same core to allow fast communication through shared memory
 - Threads in a thread block are grouped into warps for SIMD on GPU hardware