Matrix multiplication

\[(i, j) \rightarrow (i, k) \rightarrow (k, j)\]
Matrix multiplication (matmul)

- Simple C++ implementation:

```cpp
/* Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void multMatrixSimple(int N, float *matA, float *matB, float *matC) {
  for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++) {
      float sum = 0.0;
      for (int k = 0; k < N; k++)
        sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];
      matC[RM(i,j,N)] = sum;
    }
}
```
Translating matmul to CUDA

- **SPMD** (single program, multiple data) parallelism
 - “Map this function to all of this data”: map($f, data$)
 - Similar to SIMD, but doesn’t require lockstep execution

- What this means: You write the “inner loop”, compiler + GPU execute it in parallel
Translating matmul to CUDA

- Simple CUDA implementation:

```c
/* Find element based on row-major ordering */
#define RM(r, c, width) ((r) * (width) + (c))

// Standard multiplication
void multMatrixSimple(int N, float *matA, float *matB, float *matC) {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++) {
            float sum = 0.0;
            for (int k = 0; k < N; k++)
                sum += matA[RM(i,k,N)] * matB[RM(k,j,N)];
            matC[RM(i,j,N)] = sum;
        }
}
```

1. Find the inner loop
Translating matmul to CUDA

- Simple CUDA implementation:

```c
__global__ void
cudaSimpleOldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;
    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```

2. Write it as a separate function
Translating matmul to CUDA

- Simple CUDA implementation:

```c
__global__ void
cudaSimpleOldKernel(int N, float* dmatA, float* dmatB, float * dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;
    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```

3. Compute loop index + test bound (no outer loop)
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax
- Get results (from GPU to CPU)
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
 - These addresses are only valid on GPU

    ```
    cudaMemcpy(aDevData, aData, N*N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(bDevData, bData, N*N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(cDevData, cData, N*N * sizeof(float), cudaMemcpyHostToDevice);
    ```

- Invoke CUDA with special syntax

- Get results (from GPU to CPU)
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax

#define N 1024
#define LBLK 32
dim3 threadsPerBlock(LBLK, LBLK);
dim3 blocks(updiv(N, LBLK), updiv(N, LBLK)); // updiv() divides + rounds up
cudaSimpleKernelOld<<<blocks, threadsPerBlock>>>(N, aDevData, bDevData, cDevData);

- Get results (from GPU to CPU)

These addresses are only valid on GPU
Invoking CUDA matmul

- Setup memory (from CPU to GPU)
- Invoke CUDA with special syntax
- Get results (from GPU to CPU)

\[t_{\text{HostData}} = (\text{float} *) \text{malloc}(N*\text{N}, \text{sizeof(float)}); \]
\[\text{cudaMemcpy}(t_{\text{HostData}}, t_{\text{DevData}}, N*\text{N} \times \text{sizeof(float)}, \text{cudaMemcpyDeviceToHost}); \]
\[\text{cudaFree}(a_{\text{DevData}}); \text{cudaFree}(b_{\text{DevData}}); \text{cudaFree}(c_{\text{DevData}}); \]
Compiling + running CUDA

- **CUDA code is in separate *.cu file (cudaMatrix.cu)**
 - Compiled like:
 - `nvcc cudaMatrix.cu -O3 -c -o cudaMatrix.o`
 - *(See assignment 6 for $PATH, etc)*

- **Linked with gcc + flags, e.g.**:
 - `g++ -O3 -L/path/to/cuda -lcudart -o matrix *.o`

- **Run like a normal program, e.g.**:
 - `./matrix`
Profiling Results

matmul is memory bound!
Improving matmul memory usage

Why is matmul accessing memory so much?

```c
__global__ void
cudaSimpleOldKernel(int N, float* dmatA,
                     float* dmatB, float * dmatC) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i >= N || j >= N)
        return;
    float sum = 0.0;
    for (int k = 0; k < N; k++) {
        sum += dmatA[RM(i,k,N)] * dmatB[RM(k,j,N)];
    }
    dmatC[RM(i,j,N)] = sum;
}
```
Improving matmul memory usage: Peeking under the hood

- Need to think about how threads within a warp access memory...
 - (This is bad – warps aren’t part of programming model)

- CUDA maps threads -> warps
 - *row-major*: Same y values, consecutive x values
 - Warp 0:
 - (0,0) (1,0) (2,0) … (31,0)
Improving matmul memory usage: Warp memory access pattern

- What memory locations does warp 0 access?

```c
int i = blockIdx.x * blockDim.x + threadIdx.x;  int j = blockIdx.y * blockDim.y + threadIdx.y;
```

- **Access:** `dmatA[RM(i,k,N)]`, `dmatB[RM(k,j,N)]`, `dmatC[RM(i,j,N)]` where `RM(i,j,N) = i*N + j`

- Threads have same $y +$ consecutive x
- Threads accesses the same col $+$ consecutive i
- Threads access memory at stride of N floats
- 1 reads + 1 writes per thread
Improving matmul memory usage: Better spatial locality

- What if we flipped it around?

```c
int i = blockIdx.y * blockDim.y + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;
```

- Threads have same \(y \) + consecutive \(x \)
- Threads access the same \(i \) + consecutive \(j \)
- Threads access memory at stride of 1
- GPU coalesces reads + writes to memory block
- 1 read + 1 write per warp (if large memory blocks)
Benchmarking improved simple CUDA matmul

- ./matrix -n 1024 -N 1024 -m csimple

- Simple C++: 1300 ms, 1.6 Gflops
- Simple CUDA: 33 ms, 65 Gflops
- Simple++ CUDA: 2.4 ms, 900 Gflops
Profiling improved simple CUDA matmul ***

- nvprof --analysis-metrics -f -o csimple.nvprof
 ./matrix -n 1024 -N 1024 -m csimple
- nvvp csimple.nvprof

- Doing better!

- ...Still memory bound, though

*** - Using deprecated profiling tools
CUDA disassembly + its limits

- You can look at PTX assembly:
 cuobjdump --dump-ptx matrix

- ...But you will not see difference in this case
 (Coalescing done by hardware, not compiler)

```assembly
.visible .entry _Z19cudaSimpleKernel0OldiPfS_S_(
  ...
  ld.global.f32 %f6, [%rd9];
  ld.global.f32 %f7, [%rd7];
  ...
  st.global.f32 [%rd12], %f9;
  ...

.visible .entry _Z19cudaSimpleKerneliPfS_S_(
  ...
  ld.global.f32 %f6, [%rd9];
  ld.global.f32 %f7, [%rd7];
  ...
  st.global.f32 [%rd12], %f9;
  ...
```
Blocked matmul: Even better memory usage

- Problem: Entire matrix doesn’t fit in local cache

- Classic solution: Block into sub-matrices that do fit in cache, and then multiply and sum sub-matrices
 - (This is just a re-association of the original computation)
Blocked matmul: C++ version

void multMatrixBlocked(int N, float *matA, float *matB, float *matC) {
 /* Zero out C */
 memset(matC, 0, N * N * sizeof(float));
 int i, j, k;
 for (i = 0; i <= N - SBLK; i+= SBLK) {
 for (j = 0; j <= N - SBLK; j+= SBLK) {
 for (k = 0; k <= N - SBLK; k+= SBLK) {
 for (int bi = 0; bi < SBLK; bi++) {
 for (int bj = 0; bj < SBLK; bj++) {
 float sum = 0.0;
 for (int bk =0; bk < SBLK; bk++)
 sum += matA[RM(i+bi,k+bk,N)] * matB[RM(k+bk,j+bj,N)];
 matC[RM(i+bi,j+bj,N)] += sum;
 }
 }
 }
 }
 }
}

Note: This code assumes SBLK evenly divides N; need extra loops for “leftovers” in general
Benchmarking blocked matmul in C++

- ./matrix -n 1024 -N 1024 -m block

- Simple C++: 1300 ms, 1.6 Gflops
- Simple CUDA: 33 ms, 65 Gflops
- Simple++ CUDA: 2.4 ms, 900 Gflops

- Block C++: 500 ms, 4.3 Gflops
Blocked matmul: CUDA version

1. Find the inner loop

2. Write it as a separate function

3. Compute indices from block/thread id
Blocked matmul: Attempt #1

__global__ void
cudaBlockKernelCoarse(int N, float *dmatA, float *dmatB, float *dmatC) {
 int i = blockIdx.y * blockDim.y + threadIdx.y; i *= LBLK;
 int j = blockIdx.x * blockDim.x + threadIdx.x; j *= LBLK;

 for (int bi = 0; bi < LBLK; bi++)
 for (int bj = 0; bj < LBLK; bj++)
 dmatC[RM(i+bi,j+bi,N)] = 0;

 for (int k = 0; k <= N-LBLK; k+=LBLK) {
 for (int bi = 0; bi < LBLK; bi++)
 for (int bj = 0; bj < LBLK; bj++) {
 float sum = 0.0;
 for (int bk = 0; bk < LBLK; bk++) {
 sum += dmatA[RM(i+bi,k+bk,N)]
 * dmatB[RM(k+bk,j+bj,N)];
 }
 dmatC[RM(i+bi,j+bj,N)] += sum;
 }
 }
}
Blocked matmul: Attempt #1 + Local memory

```c
__global__ void cudaBlockKernelCoarse(int N, float *dmatA, float *dmatB,
                                      float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y; i *= LBLK;
    int j = blockIdx.x * blockDim.x + threadIdx.x; j *= LBLK;
    float subA[LBLK * LBLK];  // Keep a local copy
    float subB[LBLK * LBLK];  // of submatrix
    float subC[LBLK * LBLK];  

    for (int bi = 0; bi < LBLK; bi++) {  /* Zero out C */
        for (int bj = 0; bj < LBLK; bj++)
            subC[RM(bi,bj,LBLK)] = 0;
    }

    for (int k = 0; k <= N-LBLK; k+=LBLK) {
        for (int bi = 0; bi < LBLK; bi++) {
            for (int bj = 0; bj < LBLK; bj++) {
                subA[RM(bi,bj,LBLK)] = dmatA[RM(i+bi,k+bi,N)];
                subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j+bi,N)];
            }
            for (int bj = 0; bj < LBLK; bj++) {  /* Only reference local copy in loop */
                float sum = 0.0;
                for (int bk = 0; bk < LBLK; bk++) {
                    sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];
                }
                subC[RM(bi,bj,LBLK)] += sum;
            }
        }
    }

    for (int bi = 0; bi < LBLK; bi++) {
        for (int bj = 0; bj < LBLK; bj++) {
            dmatC[RM(i+bi,j+bj,N)] = subC[RM(bi,bj,LBLK)];
        }
    }
}
```
Benchmarking blocked matmul

- ./matrix -n 1024 -N 1024 -m block
 - Simple C++: 1300 ms, 1.6 Gflops
 - Simple CUDA: 33 ms, 65 Gflops
 - Simple++ CUDA: 2.4 ms, 900 Gflops

- Block C++: 500 ms, 4.4 Gflops
- Block CUDA: 107 ms, 20 Gflops 😞
Profiling blocked matmul ***

- `nvprof --analysis-metrics -f -o ccblock.nvprof
 ./matrix -n 1024 -N 1024 -m ccblock`
- `nvvp ccblock.nvprof`

- Huh...

*** - Using deprecated profiling tools
Blocked matmul: What went wrong?

- How much parallelism is there in our first attempt?

- Each thread generates 32×32 output elements
- Each thread block is 32×32 threads
- There are 1024×1024 output elements

- We only spawn one thread block!
- Need to split loops across more threads
Blocked matmul: Attempt #2

- Original matmul had one thread for each output element: 1024×1024 threads
 - 1 thread for each i, j loop iteration in C++ code

- Idea: Unroll the inner $bi \& bj$ loops in Attempt #1 across a threads in a block

- Thread block shares a single copy of submatrix
Blocked matmul: Attempt #2

```c
__global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y;
    int j = blockIdx.x * blockDim.x + threadIdx.x;
    int bi = threadIdx.y;  // But now mapped within a LBLK × LBLK block
    int bj = threadIdx.x;

    __shared__ float subA[LBLK * LBLK];  // Keep a block-shared copy of submatrix
    __shared__ float subB[LBLK * LBLK];  // Copy of submatrix
    float sum = 0;

    for (int k = 0; k < N; k += LBLK) {
        subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bi,N)];
        subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];  // Explicitly read from global to shared memory

        for (int bk = 0; bk < LBLK; bk++) {
            sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];
        }
    }
    dmatC[RM(i,j,N)] = sum;  // Explicitly write from local to global memory
}
```

Is this code correct?
Blocked matmul: Attempt #2

```c
__global__ void cudaBlockKernel(int N, float *dmatA, float *dmatB, float *dmatC) {
    int i = blockIdx.y * blockDim.y + threadIdx.y;
    int j = blockIdx.x * blockDim.x + threadIdx.x;

    int bi = threadIdx.y;
    int bj = threadIdx.x;

    __shared__ float subA[LBLK * LBLK];
    __shared__ float subB[LBLK * LBLK];
    float sum = 0;

    for (int k = 0; k < N; k += LBLK) {
        subA[RM(bi,bj,LBLK)] = dmatA[RM(i,k+bj,N)];
        subB[RM(bi,bj,LBLK)] = dmatB[RM(k+bi,j,N)];

        __syncthreads();
        for (int bk = 0; bk < LBLK; bk++) {
            sum += subA[RM(bi,bk,LBLK)] * subB[RM(bk,bj,LBLK)];
        }
        __syncthreads();
    }

    dmatC[RM(i,j,N)] = sum;
}
```

Need barriers across thread block to ensure subA/subB are ready to be read/updated

(A block is executed as multiple warps, which can proceed at different rates through the kernel)
Benchmarking improved blocked matmul

- ./matrix -n 1024 -N 1024 -m cblock

- Simple C++: 1300 ms, 1.6 Gflops
- Simple CUDA: 33 ms, 65 Gflops
- Simple++ CUDA: 2.4 ms, 900 Gflops

- Block C++: 500 ms, 4.4 Gflops
- Block CUDA: 100 ms, 20 Gflops
- Block++ CUDA: 1.9ms, 1130 Gflops
Benchmarking at 2048×2048 (8 \times more work)

- ./matrix -n 2048 -N 2048 -m ...

- Simple C++: 44000 ms, 0.4 Gflops
- Simple CUDA: 208 ms, 82 Gflops
- Simple++ CUDA: 18 ms, 940 Gflops

- Block C++: 5500 ms, 3.2 Gflops
- Block CUDA: 206 ms, 83 Gflops
- Block++ CUDA: 15 ms, 1180 Gflops

Big drop-off—data falls out of L3 cache

Big improvement—increased parallelism
Debugging tips and pitfalls

- printf() is available, but will reorder or lose output
 - So be cautious using printf() for debugging!

- Check your error codes

```c
#define CHK(ans) gpuAssert((ans),__FILE__,__LINE__);

void gpuAssert(CUDAError_t code, const char *file, int line){
    if (code != CUDASuccess)
        fprintf(stderr, "GPUassert: %s %s %s\n",
                CUDAGetErrorString(code), file, line);
}

#define POSTKERNEL CHK(CUDAPeekAtLastError())
```
Debugging tips and pitfalls

- Write reference version on host in C++

- Watch out for out-of-bounds memory errors (all kinds of crazy stuff will happen)

- Don’t assume stuff about N (e.g., that it’s a multiple of LBLK)

- cuda-gdb lets you step through + inspect code
Debugging tips and pitfalls

- What will happen here?

```c
for (int k = 0; k < N; k+= LBLK) {
    if (i >= N || j >= N) continue;
    // Some computation
    __syncthreads();
    // Some more computation
    __syncthreads();
}
```
Optimization advice

- Get the high-level abstraction + implementation first
 - Don’t start with low-level optimizations

- Use nvprof to figure out where your bottleneck is
 - Low utilization of compute + memory ➔ no parallelism
 - Low utilization of compute ➔ memory bound
 - Low utilization of memory ➔ compute bound

- Memory is often key
 - E.g., when to use local/shared/global memory
CUDA syntax

- `__shared` / `global`: Place variable in block-/device-shared memory
- `cudaMalloc/cudaMemcpy/cudaFree`: Manage device memory (flag sets to/from device)
- `__syncthreads()`: Barrier within a thread block
- `kernel<<<blocks,threadsPerBlock>>>()`: Invoke kernel on device
- `blockIdx/threadIdx`: current block/thread id
- `blockDim/gridDim`: Num threads per block/blocks per grid
CUDA as a vector processor

- **NVIDIA has abused architecture terminology badly**

<table>
<thead>
<tr>
<th>CUDA/GPU Terminology</th>
<th>Classic vector terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>Vectorizable loop</td>
</tr>
<tr>
<td>Thread</td>
<td>Loop iteration</td>
</tr>
<tr>
<td>Block</td>
<td>??</td>
</tr>
<tr>
<td>Warp</td>
<td>Thread</td>
</tr>
<tr>
<td>GPU/Device</td>
<td>Vector multicore</td>
</tr>
<tr>
<td>SM (streaming multiprocessor)</td>
<td>Core</td>
</tr>
<tr>
<td>Core</td>
<td>(Vector) Lane</td>
</tr>
<tr>
<td>Global memory</td>
<td>Memory</td>
</tr>
<tr>
<td>Shared memory</td>
<td>Local memory</td>
</tr>
<tr>
<td>Local memory</td>
<td>Registers</td>
</tr>
</tbody>
</table>