
Data-Parallel	Thinking

1

Today’s	theme
▪ Many	of	you	are	likely	accustomed	to	thinking	about	

parallel		programming	in	terms	of	“what	workers	do”	

▪ Today	I	would	like	you	to	think	about	describing	algorithms	in	
terms		of	operations	on	sequences	of	data
- map	
- filter	
- fold	/	reduce	
- scan	/	segmented	scan

▪ Main	idea:	high-performance	implementations	of	these	
operations		exist.	So	programs	written	in	terms	of	these	
primitives	can	often	run		efficiently	on	a	parallel	machine

- sort	
- groupBy	
- join	

- partition	/	flatten

2

Motivation
▪ Why	must	an	application	expose	large	amounts	of	

parallelism?	

▪ Utilize	large	numbers	of	cores	
- High	core	count	machines	

- Many	machines	(e.g.,	cluster	of	machines	in	the	cloud)	
- SIMD	processing	+	multi-threaded	cores	require	even	
more		parallelism	

- GPU	architectures	require	very	large	amounts	of	
parallelism

3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L2	Cache	(2	MB)

320	GB/sec	

GPU	memory		
(DDR5	DRAM)

Recall:	geometry	of	the	GTX	1080	GPU
1.6	GHz	clock

20	SM	cores	per	chip

20	x	128	=	2,560	SIMD	mul-add	ALUs	
=	8.1	TFLOPs

Up	to	20	x	64	= 	1280	interleaved		
warps	per	chip	(40,960	CUDA
threads/chip)

TDP:	180	watts

This	chip	can	concurrently	execute	up	to	40,960	CUDA	threads!		
(programs	that	do	not	expose	significant	amounts	of		

parallelism	will	not	run	efficiently	on	GPUs!)	*	
*	They	need	high	arithmetic	intensity	as	well.

4

Recall
▪ Key	part	of	parallel	programming	is	understanding	

when		dependencies	exist	between	operation	

▪ Lack	of	dependencies	implies	potential	for	parallel	
execution	

a + *7

- +

*

y
x

z

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

5

b

Data-parallel	model
▪ Organize	computation	as	operations	on	sequences	of	

elements	
-	 e.g.,	perform	same	function	on	all	elements	of	a	sequence

▪ Historically:	same	operation	on	each	element	of	an	array
- Matched	capabilities	SIMD	supercomputers	of	80’s	
- Connection	Machine	(CM-1,	CM-2):	thousands	of	processors,	one	

instruction	decode	unit	
- Early	Cray	supercomputers	were	vector	processors
-	 add(A,	B,	n)	← this	was	one	instruction	on	vectors	A,	B	of	length	n	

▪ A	well-known	modern	example:	NumPy:	C	=	A	+	B		
(A,	B,	and	C	are	vectors	of	same	length)

6

Key	data	type:	sequences

▪ Ordered	collection	of	elements	
▪ For	example,	in	a	C++	like	language:	

Sequence<T>	
▪ e.g.,	Scala	lists:	List[T]	
▪ In	a	functional	language	(like	Haskell):	seq	T

▪ Important:	programs	can	only	access	elements	of	a	
sequence		through	specific	operations

7

Map
▪
▪

▪

▪

Higher	order	function	(function	that	takes	a	function	as	an	argument)			
Applies	side-effect	free	unary	function	f	::	a	->	b	to	all	elements	
of		input	sequence,	to	produce	output	sequence	of	the	same	length	
In	a	functional	language	(e.g.,	Haskell)	
-	map	::	(a	->	b)	->	seq	a	->	seq	b	
In	C++:	
template<class	InputIt,	class	OutputIt,	class	UnaryOperation>		
OutputIt	transform(InputIt	first1,	InputIt	last1,	

OutputIt	d_first,		
UnaryOperation	unary_op);

f f f f f f

8

Parallelizing	map
▪ Since	 f	::	a	->	b	 is	 a	 function	 (side-effect	 free),	

then	 	applying	f	to	all	elements	of	the	sequence	can	
be	done	in	 	any	order	without	changing	the	output	of	
the	program	

▪ The	implementation	of	map	has	flexibility	to	reorder/		
parallelize	processing	of	elements	of	sequence	
however	it		sees	fit	

map	f	s	=	
partition	sequence	s	into	P	smaller	sequences		for	
each	subsequence	s_i	(in	parallel)	

out_i	=	map	f	s_i	
out	=	concatenate	out_i’s

9

Fold	(fold	left)
▪ Apply	f	to	each	element	and	an	accumulated	value	
-	 Seeded	by	initial	value	of	type	b

▪
▪

f	::	(b,a)	->	b	
fold	::	b	->	((b,a)	->	b)	->	seq	a	->	b

E.g.,	in	Scala:	
def	foldLeft[A,	B](init:	B,	f:	(B,	A)	=>	B,	l:	List[A]):	B

f f f f f returned

initial

10

Parallel	fold
▪ Apply	f	to	each	element	and	an	accumulated	value	
-	 Seeded	by	initial	value	of	type	b	(identity	for	f	and	comb)

▪
▪
▪

f	::	(b,a)	->	b	
comb	::	(b,b)	->	b	
fold_par	::	b	->	((b,a)	->	b)	->	((b,b)->b)	->seq	a	->	b

f f f f f returned

initial
f f f f f returned

initial
f f f f f returned

initial
f f f f f returned

initial

comb comb

comb

11

Scan
▪
▪

f	::	(a,a)	->	a	 (associative	binary	op)	
scan	::	a	->	((a,a)	->	a)	->	seq	a	->	seq	a

scan_inclusive(float*	in,	float*	out,	int	N)	{		
out[0]	=	in[0];	

for	(i=1;	i<N;	i++)	
out[i]	=	op(out[i-1],	in[i-1]);	

}

”Exclusive”:	the	value	of	out[i]	is	the	scan	result	for	all		elements	up	to,	but	
excluding,	in[i].

12

Parallel	Scan

13

Data-parallel	scan
let	A	=	[a0,a1,a2,a3,...,an-1]	

let	⊕ be	an	associative	binary	operator	with	identity	element	I	

scan_inclusive(⊕,	A)	=	[a0,	a0⊕a1,	a0⊕a1⊕a2,	...		

scan_exclusive(⊕,	A)	=	[I,	a0,	a0⊕a1,	...	

If	operator	is	+,	then	scan_inclusive(+,A)	is	called	“a	prefix	sum”	
prefix_sum(A)	=	[a0,	a0+a1,	a0+a1+a2,	...

14

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a1-2 a2-3 a3-4 a4-5 a5-6 a6-7 a7-8 a8-9 a9-10 a10-11a11-12a12-13 a13-14 a14-1

5

a0-1 a0-3 a2-5 a4-7 a6-9 a8-11 a10-13 a12-1

5

a0-2 a1-4 a3-6 a5-8 a7-10 a9-12 a11-1

4

a0

a0 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a1-8 a2-9 a3-10 a4-11 a5-12 a6-13 a7-14 a8-15

a0 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14 a0-15

...

*	not	showing	all	dependencies	in	last	step

Data-parallel	inclusive	scan	
(Subtract	original	vector	to	get	exclusive	scan	result:	not	shown)

Inefficient	compared	to	sequential	algorithm!Work:	O(N	lg	N)		
Span:	O(lg	N)

15

Work-efficient	parallel	exclusive	scan	(O(N)	work)
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a4-5 a6 a6-7 a8 a8-9 a10 a10-1

1

a12 a12-1

3

a14 a14-1

5

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a4-7 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 a12-1

5

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3 a8 a8-9 a10 a0-7 a12 a12-1

3

a14 a0-1

1

a0 0 a2 a0-1 a4 a0-3 a6 a0-5 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

0 a0 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-1416

Work	efficient	exclusive	scan	algorithm

(but	what	is	the	constant?)		
(but	what	is	the	constant?)

Work:	O(N)		
Span:	O(lg	N)		
Locality:	??

(with	⊕ =	“+”)	

Up-sweep:	
for	d=0	to	(log2n	-	1)	do		forall	k=0	to	n-1	by	2d+1	 do	

a[k	+	2d+1	 -	1]	=	a[k	+	2d	 -	1]	+	a[k	+	2d+1	 -	1]	

Down-sweep:	
x[n-1]	=	0	
for	d=(log2n	-	1)	down	to	0	do		forall	k=0	to	n-1	by	2d+1	

do	
tmp	=	a[k	+	2d	 -	1]	
a[k	+	2d	 -	1]	=	a[k	+	2d+1	 -	1]	
a[k	+	2d+1	 -	1]	=	tmp	+	a[k	+	2d+1	 -	1]

17

Now	consider	scan	implementation	on	just	two	cores
a0 a1 a2 a3 a4 a5 a6 a7	 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1
a2 a2-3

a4 a4-5
a6 a6-7

a8 a8-9 a10 a10-11 a14-15

a0 a0-1
a2 a0-3

a4 a4-5
a6 a4-7

a8 a8-9 a10 a8-11

a12	a12-13	 a14	

a12	a12-13	 a14
a12-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7	 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7	 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0	 a8 a8-9 a10 a8-11 a12 a12-1

3

a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3	 a8 a8-9 a10 a0-7 a12 a12-1

3

a14 a0-1

1

a0 0 a2 a0-1 a4 a0-3 a6 a0-5	 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

0 a0 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6	 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14

P1 P2
18

Exclusive	scan:	two	processor	implementation
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

Sequential	scan	on	elements	[0-7] Sequential	scan	on	elements	[8-15]

Add	base	to	elements	a8	thru	a8-11 Add	base	to	elements	a8-12	thru	a8-15

P1 P2

Work:	O(N)	 (but	constant	is	now	only	1.5)		
Data-access:	
- Very	high	spatial	locality	(contiguous	memory	access)	
- P1’s	access	to	a8	through	a8-11	may	be	more	costly	on	large	core	count	“NUMA”	system,	but	on	small-scale	
multi-core	system	the	access	cost	is	likely	the	same	as	from	P2

Let	base	= 	a0-7

19

Exclusive	scan:	CUDA	implementation

(also:	upon	completion	ptr[]	stores	inclusive	scan	result)

{
device	 int	scan_warp(volatile	int	*ptr,	const	unsigned	int	idx)	

const	unsigned	int	lane	=	idx	&	31;	//	index	of	thread	in	warp	(0..31)

if (lane >= 1) ptr[idx] = ptr[idx - 1] + ptr[idx];
if (lane >= 2) ptr[idx] = ptr[idx - 2] + ptr[idx];
if (lane >= 4) ptr[idx] = ptr[idx - 4] + ptr[idx];
if (lane >= 8) ptr[idx] = ptr[idx - 8] + ptr[idx];
if (lane >= 16) ptr[idx] = ptr[idx - 16] + ptr[idx);

return	(lane	>	0)	?	ptr[idx-1]	:	0;	
}

.	.	.

Work:	
??

Example:	perform	exclusive	scan	on	32-element	array:	SPMD	program,	assume	32-wide	SIMD	execution		
When	scan_warp	is	run	by	a	group	of	32	CUDA	threads,	each	thread	returns	the	
exclusive	scan	result	for	element	idx	

CUDA	thread
index	of	caller

20

{
device	 int	scan_warp(volatile	int	*ptr,	const	unsigned	int	idx)	

const	unsigned	int	lane	=	idx	&	31;	//	index	of	thread	in	warp	(0..31)

if (lane >= 1) ptr[idx] = ptr[idx - 1] + ptr[idx];
if (lane >= 2) ptr[idx] = ptr[idx - 2] + ptr[idx];
if (lane >= 4) ptr[idx] = ptr[idx - 4] + ptr[idx];
if (lane >= 8) ptr[idx] = ptr[idx - 8] + ptr[idx];
if (lane >= 16) ptr[idx] = ptr[idx - 16] + ptr[idx];

return	(lane	>	0)	?	ptr[idx-1]	:	0;	
}

Work:	N	lg(N)	
Work-efficient	 formulation	of	scan	 is	not	beneficial	 in	 this	context	because	 it	
results	 	in	low	SIMD	utilization.	It	would	require	more	than	2x	the	number	of	
instructions	as		the	implementation	above!

Exclusive	scan:	CUDA	implementation	
CUDA	thread		index	of	caller

21

length	32	SIMD	scan		
warp	0

length	32	SIMD	scan		
warp	1

length	32	SIMD	scan		
warp	2

length	32	SIMD	scan		
warp	3

Building	scan	on	larger	array	
Example:	128-element	scan	using	four-warp	thread	block

max	length	32	SIMD	scan		
warp	0

a0-31
a32-63	 a64-95 a96-127

add	
base[0]		
warp	1

a0-3

1

a0-63 a0-95 a0-12

7

add	
base[1]		
warp	2

add	
base[2]		
warp	3

base:

22

Multi-threaded,	CUDA	implementation
Example:	cooperating	threads	in	a	CUDA	thread	block	perform	scan
Code	assumes	length	of	array	given	by	ptr	is	same	as	number	of	threads	per	block.

device	 void	scan_block(volatile	int	*ptr,	const	unsigned	int	idx)	
{

const	unsigned	int	lane	=	idx	&	31;		
const	unsigned	int	warp_id	=	idx	>>	5;

//	index	of	thread	in	warp	(0..31)	
//	warp	index	in	block

int	val	=	scan_warp(ptr,	idx); //	Step	1.	per-warp	partial	scan	
//	(Performed	by	all	threads	in	block,	
//	with	threads	in	same	warp	communicating	
//	through	shared	memory	buffer	‘ptr’)

if	(lane	==	31) ptr[warp_id]	=	ptr[idx];
syncthreads();

//	Step	2.	thread	31	in	each	warp	copies	
//	partial-scan	bases	in	per-block	
//	shared	mem

if	(warp_id	==	0)	scan_warp(ptr,	idx);
syncthreads();

//	Step	3.	scan	to	accumulate	bases	
//	(only	performed	by	warp	0)

if (warp_id	> 0) // Step	4.	apply bases	to	
all

elements

val	=	val +	ptr[warp_id-1]; // (performed	by all	threads in	
block)

syncthreads();	

ptr[idx]	=	val;	
}

CUDA	thread		
index	of	caller

23

SIMD	scan		
warp	0

Building	a	larger	scan	
Example:	one	million	element	scan	(1024	elements	per	block)

add	
base[0]		
warp	1

...SIMD	scan		
warp	0

SIMD	scan		
warp	N-1

SIMD	scan		
warp	0

add	
base[0]		
warp	N-1

...

Block	0	Scan	 Block	1	Scan Block	N-1	Scan

...

Block	0	scan

Block	0	Add ...
Block	1	Add	 Block	N-1	Add

Exceeding	1	million	elements	requires	partitioning	phase	two	into	multiple	blocks

Kernel		
Launch	1

Kernel		
Launch	2

Kernel		
Launch	3

24

Scan	implementation
▪ Parallelism	

- Scan	algorithm	features	O(N)	parallel	work	
- But	efficient	implementations	only	leverage	as	much	parallelism	as	

required	to		make	good	utilization	of	the	machine	
-	 Goal	is	to	reduce	work	and	reduce	communication/synchronization	

▪ Locality	
- Multi-level	implementation	to	match	memory	hierarchy	

(CUDA	example:	per-block	implementation	carried	out	in	local	memory)	

▪ Heterogeneity	in	algorithm:	different	strategy	for	
performing		scan	at	different	levels	of	the	machine	
- CUDA	example:	different	algorithm	for	intra-warp	scan	than	inter-thread	

scan	

- Low-core	count	CPU	example:	based	largely	on	sequential	scan
25

Parallel	Segmented	Scan

26

Segmented	scan
▪ Common	problem:	operating	on	sequence	of	sequences	
▪ Examples:	

- For	each	vertex	in	a	graph:	
- For	each	edge	incoming	to	vertex:	

- For	each	particle	in	simulation	
- For	each	particle	within	cutoff	radius	

- For	each	document	in	a	collection	
- For	each	word	in	document	

▪ There	are	two	levels	of	parallelism	in	the	problem	that	
a		programmer	might	want	to	exploit	

▪ But	its	irregular:	the	size	of	edge	lists,	particle	neighbor	lists,		
words	per	document,	etc,	may	be	very	different	from	vertex	
to		vertex	(or	particle	to	particle)

27

Segmented	scan
▪ Generalization	of	scan	

▪ Simultaneously	perform	scans	on	arbitrary	contiguous	
partitions		of	input	collection

let A = [[1,2],[6],[1,2,3,4]]
let ⊕ = +

segmented_scan_exclusive(⊕,	A)	=	[[0,1],	[0],	[0,1,3,6]]	

Assume	a	simple	“start-flag”	representation	of	nested	sequences:	
A	=	[[1,2,3],[4,5,6,7,8]]
flag: 1 0 0 1 0 0 0 0
data: 1 2 3 4 5 6 7 8

28

Work-efficient	segmented	scan

#	must	maintain	copy	of	original	flags		
#	start	of	segmentdata[k	+	2d+1	 -	1]	=	0	

else	if	flag[k	+	2d	-	1]	==	1:		
data[k	+	2d+1	 -	1]	=	tmp	

else:
data[k	+	2d+1	 -	1]	=	tmp	+	data[k	+	2d+1	 -	1]		

flag[k	+	2d	-	1]	=	0

Down-sweep:	
data[n-1]	=	0	
for	d=(log2n	-	1)	down	to	0	do:		

forall	k=0	to	n-1	by	2d+1	 do:	
tmp	=	data[k	+	2d	-	1]	
data[k	+	2d		-	1]	=	data[k	+	2d+1	 -	1]		
if	flag_original[k	+	2d]	==	1:

Up-sweep:	
for	d=0	to	(log2n	-	1)	do:		

forall	k=0	to	n-1	by	2d+1	 do:	
if	flag[k	+	2d+1	 -	1]	==	0:	

data[k	+	2d+1	 -	1]	=	data[k	+	2d		-	1]	+	data[k	+	2d+1	 -	1]		
flag[k	+	2d+1	 -	1]	=	flag[k	+	2d		-	1]	||	flag[k	+	2d+1	 -	1]

(with	⊕ =	“+”)

29

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-1

5

0 0-1 a2 a0-3 a4 a5 a6 a8 a10 a10-1

1

a12 a12-13 a14 a12-1

5

0 0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a10-1

5

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a5 a6 0 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1
a2 0 a4 a5 a6 a0-3 a8 a8-9 a10 0 a12 a12-13 a14 a10-1

1

a0 0 a2 a0-1 a4 a0-3 a6 a5 a8 0 a10 0 a12 a10-1

1

a14 a10-1

3

a00 a0-1 a0-2 a0-3 0 a5 a5-6 0 a8 0 a10 a10-1

1

a10-1

2

a10-1

3

a10-1

4

1 1

1 1

1	
a5-7

1

11

1

1

1

1

1

1

1

1	
a8-9

1

1

1

1

1

1

1 1111

1 1111

1 111

11

1

1

a	1	a

a	1	a

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Segmented	scan	(exclusive)

30

Sparse	matrix	multiplication	example

=

x0
x1
x2
.

xn-1

y0
y1
y2
.

yn-1

0
0
0

8

3 0 1 . . .
0 2 0 . . .
0 0 4 . . .

.

0 2 6 . . .

▪ Most	values	in	matrix	are	zero	
- Note:	easy	parallelization	by	parallelizing	the	different	per-row	dot	products	
- But	different	amounts	of	work	per	row	(complicates	wide	SIMD	execution)	

▪ Example	sparse	storage	format:	compressed	sparse	row	

values	=	[[3,1],	[2],	[4],	...,	[2,6,8]]	
cols	=	[[0,2],	[1],	[2],,]	
row_starts	=	[0,	2,	3,	4,	...] 31

Sparse	matrix	multiplication	with	scan

1. Map	over	all	non-zero	values:	products[i]	=	values[i]	*	
x[cols[i]]		products	=	[3x0,	x2,	2x1,	4x2,	2x1,	6x2,	8x3]	

2. Create	flags	vector	from	row_starts:	flags	=	[1,0,1,1,0,0]	

3. Perform	inclusive	segmented-scan	on	(products,	flags)	using	addition	
operator		[3x0,	3x0+x2,	2x1,	4x2,	2x1,	2x1+6x2,	2x1+6x2+8x2]	

4. Take	last	element	in	each	segment:	
y	=	[3x0+x2,	2x1,	4x2	,	2x1+6x2+8x2]

=

x0

x1

x2
x3

y0

y1

y2

y3

3 0 1 0
0 2 0 0
0 0 4 0
0 2 6 8

x	= 	[x0,x1,x2,x3]	
values	= 	[[3,1],	[2],	[4],	[2,6,8]]	
cols	= 	[[0,2],	[1],	[2],	[1,2,3]]	
row_starts	= 	[0,	2,	3,	4]

32

Scan/segmented	scan	summary
▪ Scan	

- Theory:	parallelism	in	problem	is	linear	in	number	of	elements	
- Practice:	exploit	locality,	use	only	as	much	parallelism	as	
necessary	to	fill		the	machine’s	execution	resources	
-	Great	example	of	applying	different	strategies	at	different	
levels	of		the	machine	

▪ Segmented	scan	
- Express	computation	and	operate	on	irregular	data	structures	
(e.g.,	list		of	lists)	in	a	regular,	data	parallel	way

33

More	operations
▪ Group	by	key	
- Seq	(key,	T)	—>	Seq	(key,	Seq	T)	
- Similar	to:	sort	sequence	by	key,	the	performing		
segmented	scan	operations	on	segments	with	same	
key	

▪ Filter	
- Remove	elements	from	sequence	that	do	not	
match		predicate

34

Example:	create	grid	of	particles	data	structure	on		
large	parallel	machine	(e.g.,	a	GPU)
▪ Problem:	place	1M	point	particles	in	a	16-cell	uniform	grid	based	on	2D	position	

-	 Parallel	data	structure	manipulation	problem:	build	a	2D	array	of	lists	
▪ Recall:	Up	to	2048	CUDA	threads	per	SM	core	on	a	GTX	1080	GPU	(20	SM	cores)

0 1 2 3

3 5 7
4

5
1	 6	 4

	

2

8 9

0

10 11

12 13 14 15

35

Common	use	of	this	structure:	N-body	problems
▪ A	common	operation	is	to	compute	interactions	with	neighboring	particles	
▪ Example:	given	a	particle,	find	all	particles	within	radius	R	
- Organize	particles	by	placing	them	in	grid	with	cells	of	size	R	
- Only	need	to	inspect	particles	in	surrounding	grid	cells

R

R

36

Solution	1:	parallelize	over	cells
▪ One	possible	answer	 is	 to	decompose	work	by	cells:	 for	

each	 cell,	 	 independently	 compute	 what	 particles	 are	
within	 it	 (eliminates	 	 contention	 because	 no	
synchronization	is	required)	
- Insufficient	parallelism:	only	16	parallel	tasks,	but	need	

thousands	of		independent	tasks	to	efficiently	utilize	GPU)	
- Work	inefficient:	performs	16	times	more	particle-in-cell	

computations	than		sequential	algorithm	
list	cell_lists[16];	 //	2D	array	of	lists		

for	each	cell	c	 //	in	parallel	

for	each	particle	p	 //	sequentially		if	
(p	is	within	c)	

append	p	to	cell_lists[c]

37

Solution	2:	parallelize	over	particles
▪ Another	answer:	assign	one	particle	to	each	CUDA	

thread.	Thread		computes	cell	containing	particle,	then	
atomically	updates	per		cell	list.	
-	 Massive	contention:	thousands	of	threads	contending	for	

access	to		update	single	shared	data	structure	

list	cell_list[16];	 //	2D	array	of	lists		
lock	cell_list_lock;	

for	each	particle	p	 //	in	parallel		c	
=	compute	cell	containing	p		
lock(cell_list_lock)	
append	p	to	cell_list[c]		
unlock(cell_list_lock)

38

Solution	3:	use	finer-granularity	locks
▪ Alleviate	contention	for	single	global	lock	by	using	per-

cell	locks	
-	 Assuming	uniform	distribution	of	particles	in	2D	space...	

~16x	less		contention	than	solution	2

list	cell_list[16];	 //	2D	array	of	lists		
lock	cell_list_lock[16];	

for	each	particle	p	 //	in	parallel		
c	=	compute	cell	containing	p		
lock(cell_list_lock[c])	
append	p	to	cell_list[c]		
unlock(cell_list_lock[c])

39

Solution	4:	compute	partial	results	+	merge
▪ Yet	another	answer:	generate	N	“partial”	grids	in	parallel,	then		

- Example:	create	N	thread	blocks	(at	least	as	many	thread	blocks	as	SM	cores)	
- All	threads	in	thread	block	update	same	grid	
-	 Enables	faster	synchronization:	contention	reduced	by	factor	of	N	and	
cost	of	synchronization	is	lower	because	it	is	performed	on	block-local	
variables	(in		CUDA	shared	memory)	

- Requires	extra	work:	merging	the	N	grids	at	the	end	of	the	computation	
- Requires	extra	memory	footprint:	Store	N	grids	of	lists,	rather	than	1

40

Solution	5:	data-parallel	approach 0 1 2 3

3	
4	
5

5
1	 6	
4	
2

7

8 9	 0
10 11

12 13 14 15

9 6 6 4 6 4

4 4 6 6 6 9

Step	3:	find	start/end	of	each	cell	(parallel	over	particle_index	elements)	
particle_cell	=	grid_cell[index];
if	(index	==	0)		

cell_starts[particle_cell]	=	index;	
else	if	(particle_cell	!=	grid_cell[index-1])	{		

cell_starts[particle_cell]	=	index;		
cell_ends[grid_cell[index-1]]	=	index;	

}	
if	(index	==	numParticles-1)	//	special	case	for	last	cell		

cell_ends[particle_cell]	=	index+1;

This	solution	maintains	a	large	amount	of		
parallelism	and	removes	the	need	for	fine-		
grained	synchronization...	at	cost	of	a	sort		
and	extra	passes	over	the	data	(extra	BW)

Step	1:	map	
compute	cell	containing	each	particle	(parallel	over	input	particles)	
particle_index:	 0	 1	 2	 3	 4	 5	

grid_cell:

Step	2:	sort	results	by	cell	(particle	index	array	permuted	based	on	sort)	

particle_index:	 3	 5	 1	 2	 4	 0	

grid_cell:

This	code	is	run	for	each	element	of	the		
particle_index	array.	(each	invocation	has		
a	unique	valid	of	‘index’)

2 5 6 .	.	.

0 2 5 .	.	.

0 1 2 3 4 5 6 7 8 9 10

cell_starts	

cell_ends		
(not	inclusive) 41

Another	example:	parallel	histogram
▪ Consider	compute	a	histogram	for	a	large	sequence	of	values	
int	f(float	value);	 //	maps	array	values	to	bin	id’s		

float	input[N];	

int	histogram_bins[NUM_BINS];	 //	assume	bins	are	initialized	to	0	

for	(int	i=0;	i<N;	i++)	
{		histogram_bins[f(input[i])]
++;	

}	

▪ Create	a	massively	parallel	implementation	of	histogram	given	only		
map()	and	sort()	on	sequences

42

Another	example:	parallel	histogram	(part	1)
void	compute_bin(float*	input,	int*	bin_ids)	{		

bin_ids[idx]	=	f(input[idx]);	
}	

void	find_starts(int*	bin_ids,	int*	starts)	{	
if	(idx	==	0	||	bin_ids[idx]	!=	bin_ids[idx-1])

} starts[bin_ids[idx]] =	idx;

float input[N];

int bin_ids[N];	 // bin_ids[i]	=	id of bin	that	element	i	goes	in
int sorted_bin_idx[N];
int bin_starts[NUM_BINS]; //	initialized to -1

//	map	f	onto	input	to	get	bin	ids	of	all	elements	
launch<<<N>>>compute_bin(input,	bin_ids);	

//	find	starting	point	of	each	bin	in	sorted	list		
sort(N,	bin_ids,	sorted_bin_ids);		
launch<<<N>>>find_starts(sorted_bin_ids,	bin_starts);

43

Another	example:	parallel	histogram
void	bin_sizes(int*	bin_starts,	int*	histogram_bins,	int	num_items,	int	num_bins)	{

//	no	items	in	this	bin
if	(bin_starts[idx]	==	-1)	{		

histogram_bins[idx]	=	0;	
}	else	{

//	find	start	of	next	bin	in	order	to	determined	size	of	current	bin	

//	Tricky	edge	case:	if	the	next	bin	is	empty,	then	must	search	forward	to	find		
the	next	non-empty	bin	
int	next_idx	=	idx+1;	
while(next_idx	<	num_bins	&&	bin_starts[next_idx]	==	-1)		

id++;	

if	(next_idx	<	num_bins)	
histogram_bins[idx]	=	bin_starts[next_idx]	-	bin_starts[idx];		

else	
histogram_bins[idx]	=	num_items	-	bin_starts[idx];	

}	
}

launch<<<NUM_BINS>>>bin_sizes(bin_starts,	histogram_bins,	N,	NUM_BINS);

44

Scatter/gather	operations	on	sequences
▪ gather(index,	input,	output)	
- output[i]	=	input[index[i]]	

▪ scatter(index,	input,	output)	
- output[index[i]]	=	input[i]

45

Gather	instruction

3 12 4 9 9 15 13 0

gather(R1,	R0,	mem_base);

Index	vector:	R0	 Result	vector:	R1	

Gather	supported	with	AVX2	in	2013	
But	AVX2	does	not	support	SIMD	scatter	(must	implement	as	scalar	loop)		
Scatter	instruction	exists	in	AVX512	

Hardware	supported	gather/scatter	does	exist	on	GPUs.	
(still	an	expensive	operation	compared	to	load/store	of	contiguous	vector)

“Gather	from	buffer	mem_base	into	R1	according	to	indices	specified	by	R0.”

Array	in	memory	with	(base	address	= 	mem_base)	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

mem_base

46

Turning	scatter	into	sort/gather

temp	=	sort	input	sequence	by	values	in	index	sequence		
output[i]	=	temp[i]

▪ scatter(index,	input,	output)	
-	 output[index[i]]	= 	input[i]	

▪ Assume	elements	of	index	are	unique	and	all	elements		
references	in	index	(scatter	is	a	permutation)

47

Turning	scatter	with	atomic	sort/map/scan

[0,	0,	0, 1,	1,	2]
[input[2]
,

input[4], input[5], input[0], input[1], input[3]]

Compute	starts	of	each	range	of	the	same	index	number	

[1,	0,	0,	1,	0,	1]	

Segmented	scan	(using	‘op’)	each	range	

[op(op(input[2],	input[4]),	input[5]),	op(input[0],	input[1]),	input[3])

for	all	elements	in	sequence		
atomicOp(output[index[i]],	input[i])	

Assume	elements	in	index	are	not	unique,	so	synchronization	is	required		
for	atomicity!	

Sort	input	sequence	according	to	values	in	index	sequence

48

Summary
▪ Data	parallel	thinking:	
-	 Implementing	algorithms	in	terms	of	simple	(often	widely		
parallelizable,	efficiently	implemented)	operations	on	
large		data	collections	

▪ Turn	irregular	parallelism	into	regular	parallelism	

▪ Turn	fine-grained	synchronization	into	coarse	
(barrier)		synchronization	

▪ But	most	solutions	require	multiple	passes	over	data	
—		bandwidth	hungry!

49

Summary
▪ Data	parallel	primitives	are	basis	for	many	parallel/	distributed		

systems	today	

▪ CUDA’s	Thrust	Library

▪ Apache	Spark	/	Hadoop

50

