
Distributed	Computing		
using	Spark	

(leveraging	data-parallel	program	structure)	

1

Review:	which	program	performs	better?
void	add(int	n,	float*	A,	float*	B,	float*	C)	{		

for	(int	i=0;	i<n;	i++)
C[i]	=	A[i]	+	B[i];

}

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{		
for	(int	i=0;	i<n;	i++)

C[i]	=	A[i]	*	B[i];
}

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here

//	compute	E	=	D	+	((A	+	B)	*	C)		
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{		
for	(int	i=0;	i<n;	i++)	

E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];
}

//	compute	E	=	D	+	(A	+	B)	*	C		
fused(n,	A,	B,	C,	D,	E);

Two	loads,	one	store	per	math	op		
(arithmetic	intensity	= 	1/3)	

Two	loads,	one	store	per	math	op		
(arithmetic	intensity	= 	1/3)

Four	loads,	one	store	per	3	math	ops		
(arithmetic	intensity	= 	3/5)

Overall	arithmetic	intensity	= 	1/3

Program	1

Program	2

The	transformation	of	the	code	in	program	1	to	the	code	in	program	2	is	called	“loop	fusion”		
The	idea	of	loop	fusion	is	to	reorganize	the	computation	to	improve	arithmetic	intensity.

2

The	previous	example	involved	globally	restructuring	the	order		
of	computation	to	improve	producer-consumer	locality

(improve	arithmetic	intensity	of	program)

3

Parallel	computers	in	class	so	far

Many	cores	connected	to	a	single	shared	memory	system	
Image	credit:	https://wccftech.com/intel-cascade-lake-advanced-performance-48-core-xeon-cpus-announced/

4

Warehouse	scale	computing

5

Scale	out	cluster	computing
▪ Inexpensive	way	to	realize	a	high	core	count,	high	

memory	(in		aggregate)	computer	
- Made	from	(somewhat*)	commodity	Linux	servers	
(commodity	processors,	networking,	and	storage)	

- Private	per-server	address	space	

- Relatively	low	bandwidth	connectivity	between	servers

*	Cloud	vendors	like	AWS,	Google,	MS	Azure,	Facebook	make	significant	customizations	in	their	datacenters.
6

Typically	commodity	server

DRAM		
(64-512	GB)

CPU	x2	
(8-64	cores)

50	GB/s

Network
Top-of-Rack	Switch

1-4	GB/s

0.1-4	GB/s

1-4	GB/s	

50	MB/s	each	

Disks	x10		
(10-30	TB)	

Nodes	in	 Nodes	in	
Same	Rack	 Other	Racks	

~40	1RU	servers	per	rack
7

Why	write	an	application	for	a	cluster?
▪ Motivating	problem:	
- Consider	processing	100	TB	of	data	
- On	one	node	with	one	disk:	scanning	at	50	MB/s	=	23	das	
- On	1000	nodes,	each	scanning	at	50	MBs	=	33	min!	

▪ Challenge:	it	can	be	hard	to	effectively	utilize	1000	nodes	
- Need	to	program	1000	x	cores_per_node	total	cores	
- Have	to	worry	about	machine	failures	
- Or	machines	that	are	faster	or	slower	than	others	
- It	would	be	nice	to	have	parallel	programming	frameworks	
that	make	it	easier	to	utilize	resources	at	this	scale!	*

*	We’ve	already	seen	programming	languages/frameworks	to	help	us	with	SIMD,	multi-core,		
and	GPU-based	programming.

8

Today	I	need	you	to	assume	cluster	storage		
systems	exist
▪ If	nodes	can	fail,	how	do	we	store	data	persistently?	

▪ Modern	solution:	distributed	storage	systems	
- Provide	a	global	namespace	for	files	

- Examples:	Google	GFX,	Hadoop	HDFS,	Amazon	S3	

▪ Typical	usage	patterns	
- Huge	files	(100s	GB	to	TBs)	
- Data	is	rarely	updated	in	place	

- Reads	and	appends	are	common	(e.g.,	log	files)
9

Example:	Hadoop	distributed	FS	(HDFS)

• Global	namespace

• Files	split	into	~200MB	blocks

• Each	block	replicated	on	multiple		
DataNodes

• Intelligent	client	
–	Finds	locations	of	blocks	from		
NameNode;	requests	data	from		
DataNode

NameNode

Client

DataNode

3 41

File1	->		
Block1,	Block2

DataNode

1 42

DataNode

2 3

Get	block		
locations

Read/write		
data	blocks

File2	->		
Block3,	Block4	

…

Track	locations

10

Let’s	say	website	gets	very	
popular…

11

The	log	of	page	views	gets	quite	large…

1TB	disk

Node	0

CPU

DRAM

log.txt		
block	0

log.txt		
block	1

1TB	disk

Node	1

CPU

DRAM

log.txt		
block	2

log.txt		
block	3

1TB	disk

Node	3

CPU

DRAM

log.txt		
block	6

log.txt		
block	7

1TB	disk

Node	2

CPU

DRAM

log.txt		
block	4

log.txt		
block	5

Assume	cog.txt	is	a	large	file,	stored	in	a	distributed	file	system,	like	HDFS	
Below:	cluster	of	4	nodes,	each	node	with	a	1	TB	disk	
Contents	of	log.txtare	distributed	evenly	in	blocks	across	the	cluster

12

Imagine	your	professors	want	to	know	a	bit	more	about	the		
students	visiting	the	431	web	site…

For	example:	
“What	type	of	mobile	phone	are	all	these	students	using?”			
“When	did	they	first	download	the	handout	for	the	
homework		assignment	due	tomorrow?”

13

Consider	a	simple	programming	model
//	this	function	is	called	once	per	line	in	input	file	by	runtime	
//	input:	string	(line	of	input	file)	
//	output:	adds	(user_agent,	1)	entry	to	list	
void	mapper(string	line,	multimap<string,string>&	results)	{		

string	user_agent	=	parse_requester_user_agent(line);	
if	(is_mobile_client(user_agent))		

results.add(user_agent,	1);	
}	

//	this	function	is	called	once	per	unique	key	(user_agent)	in	results	
//	values	is	a	list	of	values	associated	with	the	given	key		
void	reducer(string	key,	list<string>	values,	int&	result)	{	

int	sum	=	0;	
for	(v	in	values)		

sum	+=	v;	
result	=	sum;	

}	

//	iterator	over	lines	of	text	file		
LineByLineReader	input(“hdfs://431log.txt”);	

//	stores	output	
Writer	output(“hdfs://…”);	

//	do	stuff	
runMapReduceJob(mapper,	reducer,	input,	output);

(The	code	above	computes	the	count	of	page	views	by	each	type	of	mobile	phone.)
14

Let’s	design	an	
implementation	of		
runMapReduceJob

15

Step	1:	running	the	mapper	function

Node	0

log.txt		
block	0

Disk

CPU

//	called	once	per	line	in	file	
void	mapper(string	line,	multimap<string,string>&	results)	{		

string	user_agent	=	parse_requester_user_agent(line);	
if	(is_mobile_client(user_agent))		

results.add(user_agent,	1);	
}

//	called	once	per	unique	key	in	results	
void	reducer(string	key,	list<string>	values,	int&	result)	{		

int	sum	=	0;	
for	(v	in	values)		

sum	+=	v;	
result	=	sum;	

}

LineByLineReader	input(“hdfs://431log.txt”);		
Writer	output(“hdfs://…”);		
runMapReduceJob(mapper,	reducer,	input,	output);

log.txt	
	block	1

Node	1

log.txt		
	block	2

Disk

CPU

log.txt	
	block	3

Node	2

log.txt	
	block	4

Disk

CPU

log.txt	
	block	5

Node	3

log.txt	
	block	6

Disk

CPU

log.txt	
	block	7

Step	1:	run	mapper	function	on	all	lines	of	file		
Question:	How	to	assign	work	to	nodes?

Idea	2:	data	distribution	based		
assignment:	Each	node	processes	lines		in	
blocks	of	input	file	that	are	stored		locally.

Idea	1:	use	work	queue	for		list	of	input	
blocks	to	process	
Dynamic	assignment:	free	node		takes	next	
available	block

block	0
block	1
block	2
.	.	.

16

Steps	2	and	3:	gathering	data,	running	the	reducer

Node	0

log.txt		
	block	0

Disk

CPU

//	called	once	per	line	in	file	
void	mapper(string	line,	map<string,string>	results)	

{		string	user_agent	=	
parse_requester_user_agent(line);		if	
(is_mobile_client(user_agent))	

results.add(user_agent,	1);	
}
//	called	once	per	unique	key	in	results	
void	reducer(string	key,	list<string>	values,	int&	result)	{		

int	sum	=	0;	
for	(v	in	values)		

sum	+=	v;	
result	=	sum;	

}

LineByLineReader	input(“hdfs://431log.txt”);		
Writer	output(“hdfs://…”);		
runMapReduceJob(mapper,	reducer,	input,	output);

log.txt		
	block	1

Node	1

log.txt		
	block	2

Disk

CPU

log.txt		
	block	3

Node	2

log.txt		
	block	4

Disk

CPU

log.txt		
	block	5

Node	3

log.txt		
	block	6

Disk

CPU

log.txt		
	block	7

Safari	iOS
Chrome

Safari	iWatch
Chrome	Glass

Step	2:	Prepare	intermediate	data	for	reducer		
Step	3:	Run	reducer	function	on	all	keys		
Question:	how	to	assign	reducer	tasks?	
Question:	how	to	get	all	data	for	key	onto	the		
correct	worker	node?	

Keys	to	reduce:	
(generated	by	mapper):

Safari	iOS	values	0

Chrome	values	0

Safari	iOS	values	1

Chrome	values	1

Safari	iOS	values	2

Chrome	values	2

Safari	iOS	values	3

Chrome	values	3

Safari	iWatch		
values	3

Chrome	Glass		
values	0

17

Node	0

log.txt	
	block	0

Disk

CPU

//	gather	all	input	data	for	key,	then	execute	reducer	
//	to	produce	final	result	
void	runReducer(string	key,	reducer,	result)	{		

list<string>	inputs;	
for	(n	in	nodes)	{	

filename	=	get_filename(key,	n);	
read	lines	of	filename,	append	into	inputs;	

}	
reducer(key,	inputs,	result);	

}

log.txt		
	block	1

Step	2:	Prepare	intermediate	data	for	reducer.		
Step	3:	Run	reducer	function	on	all	keys.	
Question:	how	to	assign	reducer	tasks?		
Question:	how	to	get	all	data	for	key	onto	the
correct	worker	node?

Node	1

log.txt		
	block	2

Disk

CPU

log.txt		
	block	3

Node	2

log.txt		
	block	4

Disk

CPU

log.txt		
	block	5

Node	3

log.txt		
	block	6

Disk

CPU

log.txt		
	block	7

Safari	iOS
Chrome

Safari	iWatch
Chrome	Glass

Keys	to	reduce:		
(generated	by	mapper):

Safari	iOS	values	0

Chrome	values	0

Safari	iOS	values	1

Chrome	values	1

Safari	iOS	values	2

Chrome	values	2

Safari	iOS	values	3

Chrome	values	3

Safari	iWatch		
values	3

Chrome	Glass		
values	0

Example:	
Assign	Safari	iOS	to	Node	0

Steps	2	and	3:	gathering	data,	running	the	reducer

18

Additional	implementation	challenges	at	scale

Node	0

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	1

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	2

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	3

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	4

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	5

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	6

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	7

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	8

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	9

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	10

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	11

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	996

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	997

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	998

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

Node	999

log.txt		
	block	…

Disk
log.txt		

	block	…

CPU

.	.	.

Nodes	may	fail	during		
program	execution

Some	nodes	may	run		
slower	than	others	
(due	to	different	amounts	of		
work,	heterogeneity	in	the		
cluster,	etc..)

19

Job	scheduler	responsibilities

▪ Exploit	data	locality:	“move	computation	to	the	data”	
- Run	mapper	jobs	on	nodes	that	contain	input	files	

- Run	reducer	jobs	on	nodes	that	already	have	most	of	data	for	a	certain	key	

▪ Handling	node	failures	
- Scheduler	detects	job	failures	and	reruns	job	on	new	machines	
-	 This	is	possible	since	inputs	reside	in	persistent	storage	(distributed	file	
system)	

- Scheduler	duplicates	jobs	on	multiple	machines	(reduce	overall	
processing	latency		incurred	by	node	failures)	

▪ Handling	slow	machines	
- Scheduler	duplicates	jobs	on	multiple	machines

20

runMapReduceJob	problems?
▪ Permits	only	a	very	simple	program	structure	

- Programs	must	be	structured	as:	map,	followed	by	reduce	
by	key	

- See	DryadLINQ	for	generalization	to	DAGs	

▪ Iterative	algorithms	must	load	from	disk	each	iteration	
- No	primitives	for	sharing	data	directly	between	jobs

iter.	1 iter.	2 ...

Input

HDFS	
write

HDFS	
read

HDFS	
write

Iterative	Job:	

HDFS	
read

21

in-memory,	fault-tolerant	distributed	computing	
http://spark.apache.org/

[Zaharia	et	al.	NSDI	2012]
22

http://spark.apache.org/

Goals
▪ Programming	model	for	cluster-scale	computations	

where		there	is	significant	reuse	of	intermediate	
datasets	
- Iterative	machine	learning	and	graph	algorithms	
- Interactive	data	mining:	load	large	dataset	into	aggregate	

memory	of		cluster	and	then	perform	multiple	ad-hoc	queries	

▪ Don’t	want	incur	inefficiency	of	writing	intermediates	
to		persistent	distributed	file	system	(want	to	keep	it	
in	memory)	
- Challenge:	efficiently	implementing	fault	tolerance	for	large-

scale		distributed	in-memory	computations.

23

Fault	tolerance	for	in-memory	calculations
▪ Replicate	all	computations	

- Expensive	solution:	decreases	peak	throughput	

▪ Checkpoint	and	rollback	
- Periodically	save	state	of	program	to	persistent	storage	
- Restart	from	last	checkpoint	on	node	failure	

▪ Maintain	log	of	updates	(commands	and	data)	
- High	overhead	for	maintaining	logs	

Recall	map-reduce	solutions:	
- Checkpoints	after	each	map/reduce	step	by	writing	results	to	file	system	
- Scheduler’s	list	of	outstanding	(but	not	yet	complete)	jobs	is	a	log	
- Functional	structure	of	programs	allows	for	restart	at	granularity	of	a	single	

mapper	or	reducer	invocation	(don’t	have	to	restart	entire	program)
24

Resilient	distributed	dataset	(RDD)
Spark’s	key	programming	abstraction:
- Read-only	ordered	collection	of	records	(immutable)	
- RDDs	can	only	be	created	by	deterministic	transformations	on	data	in	

persistent	storage	or	on	existing	RDDs	
- Actions	on	RDDs	return	data	to	application

//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://431log.txt”);

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileClient(x));

//	another	filter()	transformation
var	safariViews	=	mobileViews.filter((x:	String)	=>	x.contains(“Safari”));

//	then	count	number	of	elements	in	RDD	via	count()	action		
var	numViews	=	safariViews.count();

lines

mobileViews

numViews

safariViews

.count()

.filter(...)

.filter(...)

.textFile(…)

431log.txt

int

RDDs

25

Repeating	the	map-reduce	example
// 1. create RDD from file	system	data
// 2. create RDD with only	lines	from	mobile	clients
// 3. create RDD with elements	of	type	(String,Int) from line string
//	4.	group	elements	by	key	
//	5.	call	provided	reduction	function	on	all	keys	to	count	views
var	perAgentCounts	= spark.textFile(“hdfs://431log.txt”)	

.filter(x	=>	isMobileClient(x))	

.map(x	=>	(parseUserAgent(x),1));	

.reduceByKey((x,y)	=>	x+y)	

.collect();

lines

.map(parseUserAgent(…))

.filter(isMobileClient(…)))

.textFile(…)

431log.txtArray[String,int]

.reduceByKey(…)	

.collect()	

PerAgentCounts

“Lineage”:		
Sequence	of	RDD	operations		
needed	to	compute	output

26

Another	Spark	program
//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://431log.txt”);	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileClient(x));	

//	instruct	Spark	runtime	to	try	to	keep	mobileViews	in	memory		
mobileViews.persist();

//	create	a	new	RDD	by	filtering	mobileViews	
//	then	count	number	of	elements	in	new	RDD	via	count()	action		
var	numViews	=	mobileViews.filter(_.contains(“Safari”)).count();

// 1. create	new	RDD	by filtering	only	Chrome views
//	
//

2. for	each	element,	
page	view

split	string	and	take timestamp of

//	3.	convert	RDD	to	a	scalar	sequence	(collect()	action)		
var	timestamps	=	mobileViews.filter(_.contains(“Chrome”))

.map(_.split(“	”)(0))	

.collect();

lines

mobileViews

.collect()	

timestamps

.filter(isMobileClient(…)))

.textFile(…)

431log.txt

.map(split(…)).count()

numViews

.filter(contains(“Safari”);	 .filter(contains(“Chrome”);

27

flatMap(f : T) Seq[U]) RDD[T]) RDD[U]
RDD[T]) RDD[T] (Deterministic sampling)sample(fraction : Float)

groupByKey() RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V, V)) V) RDD[(K, V)]) RDD[(K, V)]

(RDD[T], RDD[T])) RDD[T]
(RDD[(K, V)], RDD[(K, W)])) RDD[(K, (V, W))]
(RDD[(K, V)], RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]

union()
join()

cogroup()
crossProduct() (RDD[T], RDD[U])) RDD[(T, U)]

mapValues(f : V) W) RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning)
RDD[(K, V)]) RDD[(K, V)]sort(c : Comparator[K])

partitionBy(p : Partitioner[K])

map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]

:
:
:
:
:
:
:
:
:
:
:

RDD[(K, V)]) RDD[(K, V)]

count()
collect()

reduce(f : (T, T)) T) RDD[T]) T
RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)lookup(k : K)

save(path : String)

: RDD[T]) Long
: RDD[T]) Seq[T]
:
:
: Outputs RDD to a storage system, e.g., HDFS

RDD	transformations	and	actions
Transformations:	(data	parallel	operators	taking	an	input	RDD	to	a	new	RDD)

Actions:	(provide	data	back	to	the	“host”	application)

28

How	do	we	implement	RDDs?	
In	particular,	how	should	they	be	stored?

var lines = spark.textFile(“hdfs://431log.txt”);
var lower = lines.map(_.toLower());
var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();

Node	0

log.txt		
	block	0

Disk

CPU

log.txt		
	block	1

DRAM

Node	1

log.txt		
	block	2

Disk

CPU

log.txt		
	block	3

DRAM

Node	2

log.txt		
	block	4

Disk

CPU

log.txt		
	block	5

DRAM

Node	3

log.txt		
	block	6

Disk

CPU

log.txt		
	block	7

DRAM

Question:	should	we	think	of	RDD’s	like	arrays?

29

How	do	we	implement	RDDs?	
In	particular,	how	should	they	be	stored?

var lines = spark.textFile(“hdfs://431log.txt”);
var lower = lines.map(_.toLower());

Node	0

log.txt		
	block	0

Disk

CPU

log.txt		
	block	1

DRAM
lines		

(partition	0)
lower		

(partition	0)
mobileView
s		(part	0)

lines
(partition	1)	

lower		
(partition	1)	
mobileViews		
(part	1)

Node	1

log.txt		
	block	2

Disk

CPU

log.txt		
	block	3

DRAM
lines		

(partition	2)
lower		

(partition	2)
mobileViews		
(part	2)

lines
(partition	3)

lower		
(partition	3)
mobileViews
(part	3)

Node	2

log.txt		
	block	4

Disk

CPU

log.txt		
	block	5

DRAM
lines		

(partition	4)
lower		

(partition	4)
mobileViews
(part	4)

lines
(partition	5)

lower		
(partition	5)
mobileViews		
(part	5)

Node	2

log.txt		
	block	6

Disk

CPU

log.txt		
	block	7

DRAM
lines		

(partition	6)
lower		

(partition	6)
mobileViews		
(part	6)

lines
(partition	7)

lower		
(partition	7)
mobileViews
(part	7)

var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();	

In-memory	representation	would	be	huge!	(larger	than	original	file	on	disk)

30

RDD	partitioning	and	dependencies

Node	3

block	2 block	3 block	4 block	5 block	6 block	7

.load()

var	lines	=	spark.textFile(“hdfs://431log.txt”);		
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();	

Node	0	 Node	1	 Node	2

lines		
part	2

lines		
part	3

lines		
part	4

lines		
part	5

lines		
part	6

lines		
part	7

.filter()

mobileView
s		part	2

mobileView
s		part	3

mobileView
s		part	4

mobileView
s		part5

mobileView
s		part	6

mobileView
s		part7

Black	lines	show	dependencies	between	RDD	partitions.

lowe
r		
part	2

lower		
part	3

lower		
part	4

lower		
part	5

lower		
part	6

lower		
part	7

.map()

block	0	
(0-1000)

block	1	
(1000-2000)

lines		
part	0	
(0-1000)

lines		
part	1	

(1000-2000)

lower		
part	0	
(0-1000)

lower		
part	1	

(1000-2000)

mobileView
s		part	0	

(670	elements)

mobileView
s		part	1	

(212	elements)

31

Implementing	sequence	of	RDD	ops	efficiently
var	lines	=	spark.textFile(“hdfs://431log.txt”);		
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();

Recall	“loop	fusion”	example	from	opening	slides	of	lecture	

The	following	code	stores	only	a	line	of	the	log	file	in	memory,	and		
only	reads	input	data	from	disk	once	(“streaming”	solution)	
int	count	=	0;	
while	(inputFile.eof())	{	

string	line	=	inputFile.readLine();		
string	lower	=	line.toLower;	
if	(isMobileClient(lower))		

count++;	
}

32

A	simple	interface	for	RDDs
var	lines	=	spark.textFile(“hdfs://431log.txt”);		
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();

RDDFromMap::next()	{	
var	el	=	parent.next();		
return	map_func(el);	

}

RDDFromFilter::next()	{	
while	(parent.hasMoreElements())	{		

var	el	=	parent.next();	
if	(filter_func(el))		

return	el;	
}

RDDFromTextFile::next()	
{		return	
inputFile.readLine();	

}

//	count	action	(forces	evaluation	of	RDD)		
RDD::count()	{	

int	count	=	0;	
while	(hasMoreElements())	{		

var	el	=	next();		count+
+;	

}	
}

RDD::hasMoreElements()	
{		parent.hasMoreElements
();	

}
//	overloaded	since	no	parent	exists		
RDDFromTextFile::hasMoreElements()	{	

return	!inputFile.eof();	
}

//	create	RDD	by	mapping	map_func	onto		
input	(parent)	RDD	
RDD::map(RDD	parent,	map_func)	{	

return	new	RDDFromMap(parent,	map_func);	
}

//	create	RDD	from	text	file	on	disk		
RDD::textFile(string	filename)	{	

return	new	RDDFromTextFile(open(filename));	
}

//	create	RDD	by	filtering	input	(parent)	RDD		
RDD::filter(RDD	parent,	filter_func)	{	

return	new	RDDFromFilter(parent,	filter_func);	
}

33

Narrow	dependencies

block	2 block	3 block	4 block	5 block	6 block	7

.load()

var	lines	=	spark.textFile(“hdfs://431log.txt”);		
var	lower	=	lines.map(_.toLower());	
var	mobileViews	=	lower.filter(x	=>	isMobileClient(x));		
var	howMany	=	mobileViews.count();

lines		
part	2

lines		
part	3

lines		
part	4

lines		
part	5

lines		
part	6

lines		
part	7

.filter()

mobileView
s		part	2

mobileView
s		part	3

mobileView
s		part	4

mobileView
s		part5

mobileView
s		part	6

mobileView
s		part7

“Narrow	dependencies”	=	each	partition	of	parent	RDD	referenced	by	at	most	one	child	RDD	partition
-	
-

Allows	for	fusing	of	operations	(here:	can	apply	map	and	then	filter	all	at	once	on	input	element)	
In	this	example:	no	communication	between	nodes	of	cluster	(communication	of	one	int	at	end	to	
perform		count()	reduction)	

Node	0	 Node	1	 Node	2	 Node	3

lowe
r		
part	2

lower		
part	3

lower		
part	4

lower		
part	5

lower		
part	6

lower		
part	7

.map()

block	0	
(0-1000)

block	1	
(1000-2000)

lines		
part	0	
(0-1000)

lines		
part	1	

(1000-2000)

lower		
part	0	
(0-1000)

lower		
part	1	

(1000-2000)

mobileView
s		part	0	

(670	elements)

mobileView
s		part	1	

(212	elements)
34

Wide	dependencies

RDD_A	
part	0

.groupByKey()

RDD_A	
part	1

RDD_A	
part	2

RDD_A	
part	3

RDD_B	
part	0

RDD_B	
part	1

RDD_B	
part	2

RDD_B	
part	3

▪ Wide	dependencies	=	each	partition	of	parent	RDD	referenced	by	multiple	child	
RDD	partitions	

▪ Challenges:	
- Must	compute	all	of	RDD_A	before	computing	RDD_B	

-	 Example:	groupByKey()	may	induce	all-to-all	communication	as	shown	
above	

- May	trigger	significant	recomputation	of	ancestor	lineage	upon	
node	failure		(I	will	address	resilience	in	a	few	slides)

groupByKey:	RDD[(K,V)]	→ RDD[(K,Seq[V])]	

“Make	a	new	RDD	where	each	element	is	a	sequence	containing	all	values	from	the	
parent	RDD	with		the	same	key.”

35

Cost	of	operations	depends	on	partitioning

RDD_C	
part	0

RDD_C	
part	1

RDD_C	
part	6

RDD_C	
part	9

.join()

RDD_A	
part	0

RDD_A	
part	1

RDD_A	
part	2

RDD_A	
part	3

RDD_B	
part	0

RDD_B	
part	1

RDD_B	
part	2

RDD_B	
part	3

(“Kayvon”,	1)	
(“Teguh”,	23)

(“Kayvon”,	“fizz”)	 (“Randy”,	1024)	 (“Randy”,	“wham”)	
(“Teguh”,	“buzz”)	 (“Ravi”,	32)	 (“Ravi”,	“pow”)

(“Alex”,	50)	
(“Riya”,	9)

(“Alex”,	“splat”)	 (“Tao”,	10)	 (“Tao”,	“slap”)	
(“Riya”,	“pop”)	 (“Junhong”,	100)	(“Junhong”,	“bam”)

RDD_C	
part	0

RDD_C	
part	1

RDD_C	
part	6

RDD_C	
part	9

.join()

RDD_A	
part	0

RDD_A	
part	1

RDD_A	
part	2

RDD_A	
part	3

RDD_B	
part	0

RDD_B	
part	1

RDD_B	
part	2

RDD_B	
part	3

(“Kayvon”,	1)	
(“Teguh”,	23)

(“Kayvon”,	“fizz”)	
(“Alex”,	“splat”)

(“Randy”,	1024)	
(“Ravi”,	32)

(“Riya”,	“pop”)	
(“Tao”,	“slap”)

(“Alex”,	50)	
(“Riya”,	9)

(“Ravi”,	“pow”)	
(“Junhong”,	“bam”)

(“Tao”,	10)	
(“Junhong”,	100)

(“Randy”,	“wham”)	
(“Teguh”,	“buzz”)

(“Kayvon”,	(1,”fizz”))	
(“Teguh”,	(23,”buzz”))

(“Randy”,	(1024,”wham”))	
(“Ravi”,	(32,”pow”))

(“Alex”,	(50,”splat”))	
(“Riya”,	(9,”pop”))

(“Tao”,	(10,”slap”))	
(“Junhong”,	(100,”bam”))

RDD_A	and	RDD_B	have	same	hash	partition:	join	only	creates	narrow	dependencies

(“Kayvon”,	(1,”fizz”))	
(“Teguh”,	(23,”buzz”))

(“Randy”,	(1024,”wham”))	
(“Ravi”,	(32,”pow”))

(“Alex”,	(50,”splat”))	
(“Riya”,	(9,”pop”))

(“Tao”,	(10,”slap”))	
(“Junhong”,	(100,”bam”))

join:	RDD[(K,V)],	RDD[(K,W)]	→ RDD[(K,(V,W))]	
Assume	data	in	RDD_A	and	RDD_B	are	partitioned	by	key:	hash	username	to	partition	id	

RDD_A	and	RDD_B	have	different	hash	partitions:	join	creates	wide	dependencies

36

PartitionBy()	transformation
▪ Inform	Spark	on	how	to	partition	an	RDD	

-	 e.g.,	HashPartitioner,	RangePartitioner	
//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://431log.txt”);	
var	clientInfo	=	spark.textFile(“hdfs://clientssupported.txt”);	//	(useragent,	“yes”/“no”)	

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter(x	=>	isMobileClient(x)).map(x	=>	parseUserAgent(x));	

//	HashPartitioner	maps	keys	to	integers	
var	partitioner	=	spark.HashPartitioner(100);

// inform	Spark	of partition
// .persist()	also instructs Spark to try to keep dataset in memory
var	mobileViewPartitioned	=	mobileViews.partitionBy(partitioner)	

.persist();	
var	clientInfoPartitioned	=	clientInfo.partitionBy(partitioner)	

.persist();	

//	join	useragents	with	whether	they	are	supported	or	not	supported	
//	Note:	this	join	only	creates	narrow	dependencies	due	to	the	explicit	partitioning	above		
void	joined	=	mobileViewPartitioned.join(clientInfoPartitioned);

▪ .persist():	
- Inform	Spark	this	RDD’s	contents	should	be	retained	in	memory	
- .persist(RELIABLE)	= 	store	contents	in	durable	storage	(like	a	checkpoint)

37

RDD_A	
part	0

RDD_A	
part	1

RDD_A	
part	2

RDD_B	
part	0

RDD_B	
part	1

RDD_B	
part	2

.groupByKey()

RDD_C	
part	0

RDD_C	
part	1

RDD_D	
part	0

RDD_D	
part	1

RDD_E	
part	0

RDD_E	
part	1

RDD_F	
part	0

RDD_F	
part	1

RDD_F	
part	2

RDD_F	
part	3

.map()

.union()

.join()

RDD_G	
part	0

RDD_G	
part	1

RDD_G	
part	2

.save()

Scheduling	Spark	computations	
Stage	1	Computation	 Stage	2	Computation

Actions	(e.g.,	save())	trigger	evaluation	of	Spark	lineage	graph.	
Stage	1	Computation:	do	nothing	since	input	already	materialized	in	memory	
Stage	2	Computation:	evaluate	map	in	fused	manner,	only	actually	materialize	RDD	F	
Stage	3	Computation:	execute	join	(could	stream	the	operation	to	disk,	do	not	need	to	materialize)

block	1block	0 block	2 = 	materialized	RDD

38

Implementing	resilience	via	lineage

//	create	RDD	from	file	system	data	
var	lines	=	spark.textFile(“hdfs://431log.txt”);

//	create	RDD	using	filter()	transformation	on	lines	
var	mobileViews	=	lines.filter((x:	String)	=>	isMobileClient(x));

// 1. create	new	RDD	by filtering	only	Chrome views
// 2. for	each	element, split	string	and	take timestamp of
//	 page	view	(first	element)	
//	3.	convert	RDD	To	a	scalar	sequence	(collect()	action)		
var	timestamps	=	mobileView.filter(_.contains(“Chrome”))	

.map(_.split(“	”)(0));

lines

mobileViews

Chrome	views

timestamps
.map(_.split(“	”)(0))

.filter(...)

.filter(...)

▪ RDD	transformations	are	bulk,	deterministic,	and	func.	
- Implication:	runtime	can	always	reconstruct	contents	of	RDD	from	its	

lineage		(the	sequence	of	transformations	used	to	create	it)	
- Lineage	is	a	log	of	transformations	
- Efficient:	since	the	log	records	bulk	data-parallel	operations,	overhead	of	

logging	is	low	(compared	to	logging	fine-grained	operations,	like	in	a	
database)

39

.load(…)

var lines = spark.textFile(“hdfs://431log.txt”);
var mobileViews = lines.filter((x:	String)	=>	

isMobileClient(x));
var timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“	”)(0));

Upon	node	failure:	recompute	lost	RDD	partitions	from	lineage

Disk	
431log.txt	 log.txt		

	block	0	 block	1	

Node	0

DRAM

log.txt		
	block	2

Disk
log.txt		
	block	3

mobileViews		
part	3

mobileViews		
part	2

Node	1	 Node	2

log.txt		
	block	4

Disk
log.txt		
	block	5

mobileViews		
part	5

mobileViews		
part	4

Node	3

log.txt		
	block	6

Disk
log.txt		
	block	7

mobileViews		
part	7

mobileViews		
part	6

timestamps		
part	1	

mobileViews		
part	1

CPU

timestamps		
part	0	

mobileViews		
part	0

DRAM

CPU

timestamps	 timestamps
part	2

DRAM
timestamps		
part	5

CPU

timestamps		
part	4

DRAM
timestamps		

part	7

CPU

timestamps		
part	6

lines

mobileViews

Chrome	views

timestamps
.map(_.split(“	”)(0))

.filter(...)

.filter(...)

.load(…)

Must	reload	required	subset	of	data	from	disk	and	recompute		
entire	sequence	of	operations	given	by	lineage	to	regenerate		
partitions	2	and	3	of	RDD	timestamps.

Note:	(not	shown):	recall	file	system	data	is	replicated	so	assume	blocks	2	and	3	remain	accessible	to	all	nodes

CRASH!	part	3

40

var lines = spark.textFile(“hdfs://431log.txt”);
var mobileViews = lines.filter((x:	String)	=>	

isMobileClient(x));
var timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“	”)(0));

log.txt		
	block	0

Disk
log.txt		
	block	1

DRAM

Node	1

log.txt		
	block	2

Disk
log.txt		
	block	3

mobileViews		
part	3

mobileViews		
part	2

Node	0	 Node	2

log.txt		
	block	4

Disk
log.txt		
	block	5

mobileViews		
part	5

mobileViews		
part	4

Node	3

log.txt		
	block	6

Disk
log.txt		
	block	7

mobileViews		
part	7

mobileViews		
part	6

timestamps		
part	1	

mobileViews		
part	1

CPU

timestamps		
part	0	

mobileViews		
part	0

DRAM

CPU

timestamps	 timestamps
part	2

AMDR
timestamps		
part	5

CPU

timestamps		
part	4

DRAM
timestamps		

part	7

CPU

timestamps		
part	6

lines

mobileViews

Chrome	views

timestamps
.map(_.split(“	”)(0))

.filter(...)

.filter(...)

.load(…)

Must	 reload	 required	 subset	 of	 data	 from	 disk	 and	
recompute		entire	sequence	of	operations	given	by	lineage	
to	regenerate		partitions	2	and	3	of	RDD	timestamps.

timestamps
part	2

timestamps
part	3

Note:	(not	shown):	file	system	data	is	replicated	so	assume	blocks	2	and	3	remain	accessible	to	all	nodes

Upon	node	failure:	recompute	lost	RDD	partitions	from	lineage

CRASH!	part	3

41

Spark	performance

13
9

46

18
2

8280

76 62

3

11
5

10
6

87

33

240
200
160
120

80
40

0
Hadoop SparkHadoop HadoopBM Spark

Logistic Regression

HadoopBM

K-Means

Ite
ra

tio
n

tim
e

(s
)

First Iteration
Later Iterations

HadoopBM	=	Hadoop	Binary	In-Memory	(convert	text	input	to	binary,	store	in	in-memory	
version	of	HDFS)	

Q.	Wait,	the	baseline	parses	text	input	in	each	iteration	of	an	iterative	
algorithm?	A.	Yes.	Sigh…	

Anything	else	puzzling	here?	

HadoopBM’s	first	iteration	is	slow	because	it	runs	an	extra	Hadoop	job	to	copy	binary	
form	of	input		data	to	in	memory	HDFS	

Accessing	data	from	HDFS,	even	if	in	memory,	has	high	overhead:	
-	 Multiple	mem	copies	in	file	system	+	a	checksum

(100GB	of	data	on	a		
100	node	cluster)

42

Caution:	“scale	out”	is	not	the	entire	story
▪ Distributed	systems	designed	for	cloud	execution	address	many	difficult	challenges,		
and		have	been	instrumental	in	the	explosion	of	“big-data”	computing	and	large-scale

-	
-	
-

Scale-out	parallelism	to	many	machines		
Resiliency	in	the	face	of	failures	
Complexity	of	managing	clusters	of	machines

▪

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

But	“scale	out”	is	not	the	whole	story.	At	the	end	of	the	day	you	want	good	performance.	

20	Iterations	of	Page	Rank	(iterative	graph	algorithm)
name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -Further	optimization	of	the	baseline		

brought	time	down	to	110s	

[“Scalability!	At	what	COST?”	McSherry	et	al.	HotOS	2015]

43

Caution:	“scale	out”	is	not	the	entire	story

scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -

-
≤ 8000s
≤ 8000s

714s
800s

X-Stream [17] 16 1159s
Spark [8] 128 1784s
Giraph [8] 128 200s
GraphLab [8] 128 242s
GraphX [8] 128 251s
Single thread (SSD) 1 153s 417s

System Graph VxE Time(s) Gflops Procs

Hadoop ?x1.1B 198 0.015 50x8
Spark 40Mx1.5B 97.4 0.03 50x2
Twister 50Mx1.4B 36 0.09 60x4
PowerGraph 40Mx1.4B 3.6 0.8 64x8
BIDMat 60Mx1.4B 6 0.5 1x8

BIDMat+disk 60Mx1.4B 24 0.16 1x8

System Docs/hr Gflops Procs

Smola[15]

PowerGraph

1.6M

1.1M

0.5

0.3

100x8

64x16

BIDMach 3.6M 30 1x8x1

Latency	Dirichlet	Allocation	(LDA)

from	McSherry	2015:	

“The	published	work	on	big	data	systems	has	fetishized	scalability		as	the	
most	important	feature	of	a	distributed	data	processing		platform.	While	
nearly	all	such	publications	detail	their	system’s		impressive	scalability,	
few	directly	evaluate	their	absolute		performance	against	reasonable	
benchmarks.	To	what	degree	are		these	systems	truly	improving	
performance,	as	opposed	to		parallelizing	overheads	that	they	
themselves	introduce?”	

COST	=	“Configuration	that	Outperforms	a	Single	Thread”	
Perhaps	surprisingly,	many	published	systems	have	
unbounded		COST—i.e.,	no	configuration	outperforms	the	
best	single-		threaded	implementation—for	all	of	the	
problems	to	which	they		have	been	applied.

BID	Data	Suite	(1	GPU	accelerated	node)	
[Canny	and	Zhao,	KDD	13]	

Page	Rank

Label	Propagation	
[McSherry	et	al.	HotOS	2015]

44

Performance	improvements	to	Spark
▪ With	increasing	DRAM	sizes	and	faster	persistent	storage	(SSD),	there	is	

interest	in		improving	the	CPU	utilization	of	Spark	applications	
- Goal:	reduce	“COST”	

▪ Efforts	looking	at	adding	efficient	code	generation	to	Spark	ecosystem	
(e.g.,		generate	SIMD	kernels,	target	accelerators	like	GPUs,	etc.)	to	
close	the	gap	on		single	node	performance	
- RDD	storage	layouts	must	change	to	enable	high-performance	SIMD	

processing		(e.g.,	struct	of	arrays	instead	of	array	of	structs)	
- See	Spark’s	Project	Tungsten,	Weld	[Palkar	Cidr	’17],	IBM’s	SparkGPU	

▪ High-performance	computing	ideas	are	influencing	design	of	future	
performance-		oriented	distributed	systems	
- Conversely:	the	scientific	computing	community	has	a	lot	to	learn	

from	the		distributed	computing	community	about	elasticity	and	
utility	computing 45

Spark	summary
▪ Opaque	sequence	abstraction	(RDD)	to	encapsulate	intermediates	of	

cluster		computations	(previously…	frameworks	like	Hadoop/
MapReduce	stored		intermediates	in	the	file	system)	
- Observation:	“files	are	a	poor	abstraction	for	intermediate	variables	in	

large-scale	data-parallel	programs”	

- RDDs	are	read-only,	and	created	by	deterministic	data-parallel	operators	
- Lineage	tracked	and	used	for	locality-aware	scheduling	and	fault-

tolerance		(allows	recomputation	of	partitions	of	RDD	on	failure,	rather	
than	restore	from		checkpoint	*)	
-	 Bulk	operations	—>	overhead	of	lineage	tracking	(logging)	is	low

▪ Simple,	versatile	abstraction	upon	which	many	domain-specific	
distributed		computing	frameworks	are	being	implemented.	
-	 See	Apache	Spark	project:	spark.apache.org	

*	Note	that	.persist(RELIABLE)	allows	programmer	to	request	checkpointing	in	long	lineage	situations.
46

Modern	Spark	ecosystem

Interleave	computation	and	database	query	
Can	apply	transformations	to	RDDs	produced	by	SQL	queries

Machine	learning	library	build	on	top	of	Spark	abstractions.

GraphLab-like	library	built	on	top	of	Spark	abstractions.

Compelling	feature:	enables	integration/composition	of	multiple	domain-specific	frameworks		
(since	all	collections	implemented	under	the	hood	with	RDDs	and	scheduled	using	Spark	scheduler)

47

