
7.1 Introduction 540
7.2 Guidelines for DSAs 543
7.3 Example Domain: Deep Neural Networks 544
7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator 557
7.5 Microsoft Catapult, a Flexible Data Center Accelerator 567
7.6 Intel Crest, a Data Center Accelerator for Training 579
7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit 579
7.8 Cross-Cutting Issues 592
7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators 595
7.10 Fallacies and Pitfalls 602
7.11 Concluding Remarks 604
7.12 Historical Perspectives and References 606

Case Studies and Exercises by Cliff Young 606

7
Domain-Specific Architectures

Moore’s Law can’t continue forever … We have another 10 to
20 years before we reach a fundamental limit

Gordon Moore,
Intel Co-Founder (2005)

Computer Architecture. https://doi.org/10.1016/B978-0-12-811905-1.00007-9
© 2019 Elsevier Inc. All rights reserved.

7.1 Introduction

Gordon Moore not only predicted the amazing growth of transistors per chip in
1965, but the opening chapter quote shows that he also predicted its demise
50 years later. As evidence, Figure 7.1 shows that even the company he
founded—which for decades proudly used Moore’s Law as a guideline for capital
investment—is slowing its development of new semiconductor processes.

During the semiconductor boom time, architects rode Moore’s Law to create
novel mechanisms that could turn the cornucopia of transistors into higher perfor-
mance. The resources for a five-stage pipeline, 32-bit RISC processor—which
needed as little as 25,000 transistors in the 1980s—grew by a factor of 100,000
to enable features that accelerated general-purpose code on general-purpose
processors, as earlier chapters document:

■ 1st-level, 2nd-level, 3rd-level, and even 4th-level caches

■ 512-bit SIMD floating-point units

■ 15+ stage pipelines

■ Branch prediction

■ Out-of-order execution

■ Speculative prefetching

■ Multithreading

■ Multiprocessing

These sophisticated architectures targeted million-line programs written in effi-
cient languages like C++. Architects treated such code as black boxes, generally

2000 2002 2004 2006 2008

In
te

l p
ro

ce
ss

 (
nm

)

2010 2012 2014 2016

14

22

32

45

65
90

130

180

10

100

Figure 7.1 Time before new Intel semiconductor process technology measured
in nm. The y-axis is log scale. Note that the time stretched previously from about
24 months per new process step to about 30 months since 2010.

540 ■ Chapter Seven Domain-Specific Architectures

without understanding either the internal structure of the programs or even what
they were trying to do. Benchmark programs like those in SPEC2017 were just
artifacts to measure and accelerate. Compiler writers were the people at the
hardware-software interface, which dates back to the RISC revolution in the
1980s, but they have limited understanding of the high-level application behavior;
that’s why compilers cannot even bridge the semantic gap between C or C++ and
the architecture of GPUs.

As Chapter 1 described, Dennard scaling ended much earlier than Moore’s
Law. Thus more transistors switching now means more power. The energy budget
is not increasing, and we’ve already replaced the single inefficient processor with
multiple efficient cores. Hence, we have nothing left up our sleeves to continue
major improvements in cost-performance and energy efficiency for general-
purpose architectures. Because the energy budget is limited (because of electromi-
gration, mechanical and thermal limits of chips), if we want higher performance
(higher operations/second), we need to lower the energy per operation.

Figure 7.2 is another take on the relative energy costs of memory and logic
mentioned in Chapter 1, this time calculated as overhead for an arithmetic instruc-
tion. Given this overhead, minor twists to existing cores may get us 10% improve-
ments, but if we want order-of-magnitude improvements while offering
programmability, we need to increase the number of arithmetic operations per
instruction from one to hundreds. To achieve that level of efficiency, we need a
drastic change in computer architecture from general-purpose cores to domain-
specific architectures (DSAs).

Thus, just as the field switched from uniprocessors to multiprocessors in the
past decade out of necessity, desperation is the reason architects are now working
on DSAs. The new normal is that a computer will consist of standard processors to
run conventional large programs such as operating systems along with domain-
specific processors that do only a narrow range of tasks, but they do them
extremely well. Thus such computers will be much more heterogeneous than
the homogeneous multicore chips of the past.

RISC instruction Overhead 125 pJALU

32-bit addition 7 pJ+

8-bit addition 0.2–0.5 pJ+

SP floating point 15–20 pJ+

D-$Load/Store Overhead 150 pJALU

Figure 7.2 Energy costs in picoJoules for a 90 nm process to fetch instructions or
access a data cache compared to the energy cost of arithmetic operations
(Qadeer et al., 2015).

7.1 Introduction ■ 541

Part of the argument is that the preceding architecture innovations from the past
few decades that leveraged Moore’s Law (caches, out-of-order execution, etc.)
may not be a good match to some domains—especially in terms of energy
usage—so their resources can be recycled to make the chip a better match to
the domain. For example, caches are excellent for general-purpose architectures,
but not necessarily for DSAs; for applications with easily predictable memory
access patterns or huge data sets like video that have little data reuse, multilevel
caches are overkill, hording area and energy that could be put to better use. There-
fore the promise of DSAs is both improved silicon efficiency and better energy
efficiency, with the latter typically being the more important attribute today.

Architects probably won’t create a DSA for a large C++ program like a com-
piler as found in the SPEC2017 benchmark. Domain-specific algorithms are
almost always for small compute-intensive kernels of larger systems, such as
for object recognition or speech understanding. DSAs should focus on the subset
and not plan to run the entire program. In addition, changing the code of the bench-
mark is no longer breaking the rules; it is a perfectly valid source of speedup for
DSAs. Consequently, if they are going to make useful contributions, architects
interested in DSA must now shed their blinders and learn application domains
and algorithms.

In addition to needing to expand their areas of expertise, a challenge for
domain-specific architects is to find a target whose demand is large enough to jus-
tify allocating dedicated silicon on an SOC or even a custom chip. The nonrecur-
ring engineering (NRE) costs of a custom chip and supporting software are
amortized over the number of chips manufactured, so it is unlikely to make eco-
nomic sense if you need only 1000 chips.

One way to accommodate smaller volume applications is to use reconfigurable
chips such as FPGAs because they have lower NRE than custom chips and because
several different applications may be able to reuse the same reconfigurable hard-
ware to amortize its costs (see Section 7.5). However, since the hardware is less
efficient than custom chips, the gains from FPGAs are more modest.

Another DSA challenge is how to port software to it. Familiar programming
environments like the C++ programming language and compiler are rarely the
right vehicles for a DSA.

The rest of this chapter provides five guidelines for the design of DSAs and
then a tutorial on our example domain, which is deep neural networks (DNNs).
We chose DNNs because they are revolutionizing many areas of computing today.
Unlike some hardware targets, DNNs are applicable to a wide range of problems,
so we can reuse a DNN-specific architecture for solutions in speech, vision, lan-
guage, translation, search ranking, and many more areas.

We follow with four examples of DSAs: two custom chips for the data center
that accelerate DNNs, an FPGA for the data center that accelerates many domains,
and an image-processing unit designed for personal mobile devices (PMDs). We
then compare the cost-performance of the DSAs along with CPUs and GPUs using
DNN benchmarks, and conclude with a prediction of an upcoming renaissance for
computer architecture.

542 ■ Chapter Seven Domain-Specific Architectures

7.2 Guidelines for DSAs

Here are five principles that generally guided the designs of the four DSAs we’ll
see in Sections 7.4–7.7. Not only do these five guidelines lead to increased area and
energy efficiency, they also provide two valuable bonus effects. First, they lead to
simpler designs, which reduce the cost of NRE of DSAs (see the fallacy in
Section 7.10). Second, for user-facing applications that are commonplace with
DSAs, accelerators that follow these principles are a better match to the 99th-
percentile response-time deadlines than the time-varying performance optimiza-
tions of traditional processors, as we will see in Section 7.9. Figure 7.3 shows
how the four DSAs followed these guidelines.

1. Use dedicated memories to minimize the distance over which data is moved.
The many levels of caches in general-purpose microprocessors use a great deal
of area and energy trying to move data optimally for a program. For example, a
two-way set associative cache uses 2.5 times as much energy as an equivalent
software-controlled scratchpad memory. By definition, the compiler writers
and programmers of DSAs understand their domain, so there is no need for
the hardware to try to move data for them. Instead, data movement is reduced
with software-controlled memories that are dedicated to and tailored for specific
functions within the domain.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
As Section 7.1 describes, architects turned the bounty from Moore’s Law into
the resource-intensive optimizations for CPUs and GPUs (out-of-order execu-
tion, multithreading, multiprocessing, prefetching, address coalescing, etc.).

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC PMD ASIC/SOC IP

1. Dedicated
memories

24 MiB Unified Buffer,
4 MiB Accumulators

Varies N.A. Per core: 128 KiB line
buffer, 64 KiB P.E.
memory

2. Larger
arithmetic unit

65,536 Multiply-
accumulators

Varies N.A. Per core: 256 Multiply-
accumulators (512 ALUs)

3. Easy
parallelism

Single-threaded, SIMD,
in-order

SIMD, MISD N.A. MPMD, SIMD, VLIW

4. Smaller data
size

8-Bit, 16-bit integer 8-Bit, 16-bit integer
32-bit Fl. Pt.

21-bit Fl. Pt. 8-bit, 16-bit, 32-bit integer

5. Domain-
specific lang.

TensorFlow Verilog TensorFlow Halide/TensorFlow

Figure 7.3 The four DSAs in this chapter and how closely they followed the five guidelines. Pixel Visual Core typ-
ically has 2–16 cores. The first implementation of Pixel Visual Core does not support 8-bit arithmetic.

7.2 Guidelines for DSAs ■ 543

Given the superior understanding of the execution of programs in these nar-
rower domains, these resources are much better spent on more processing units
or larger on-chip memory.

3. Use the easiest form of parallelism that matches the domain.
Target domains forDSAs almost always have inherent parallelism.Thekeydeci-
sions for aDSAare how to take advantage of that parallelismandhow to expose it
to the software. Design theDSA around the natural granularity of the parallelism
of the domain and expose that parallelism simply in the programmingmodel. For
example,with respect to data-level parallelism, if SIMDworks in the domain, it’s
certainly easier for the programmer and the compiler writer than MIMD. Simi-
larly, if VLIW can express the instruction-level parallelism for the domain, the
design can be smaller and more energy-efficient than out-of-order execution.

4. Reduce data size and type to the simplest needed for the domain.
As we will see, applications in many domains are typically memory-bound, so
you can increase the effective memory bandwidth and on-chip memory utiliza-
tion by using narrower data types. Narrower and simpler data also let’s you pack
more arithmetic units into the same chip area.

5. Use a domain-specific programming language to port code to the DSA.
As Section 7.1 mentions, a classic challenge for DSAs is getting applications to
run on your novel architecture. A long-standing fallacy is assuming that your
new computer is so attractive that programmers will rewrite their code just for
your hardware. Fortunately, domain-specific programming languages were
becoming popular even before architects were forced to switch their attention
to DSAs. Examples are Halide for vision processing and TensorFlow for DNNs
(Ragan-Kelley et al., 2013; Abadi et al., 2016). Such languages make porting
applications to your DSAmuch more feasible. As previously mentioned, only a
small, compute-intensive portion of the application needs to run on the DSA in
some domains, which also simplifies porting.

DSAs introduce many new terms, mostly from the new domains but also from
novel architecture mechanisms not seen in conventional processors. As we did
in Chapter 4, Figure 7.4 lists the new acronyms, terms, and short explanations
to aid the reader.

7.3 Example Domain: Deep Neural Networks

Artificial intelligence (AI) is not only the next big wave in computing—it’s the
next major turning point in human history… the Intelligence Revolution will be
driven by data, neural networks and computing power. Intel is committed to
AI [thus]… we’ve added a set of leading-edge accelerants required for the
growth and widespread adoption of AI.

Brian Krzanich,
Intel CEO (2016)

544 ■ Chapter Seven Domain-Specific Architectures

Area Term Acronym Short explanation
G
en
er
al

Domain-specific
architectures

DSA A special-purpose processor designed for a particular domain. It relies on
other processors to handle processing outside that domain

Intellectual
property block

IP A portable design block that can be integrated into an SOC. They enable a
marketplace where organizations offer IP blocks to others who compose them
into SOCs

System on a chip SOC A chip that integrates all the components of a computer; commonly found in
PMDs

D
ee
p
ne
ur
al

ne
tw
or
ks

Activation — Result of “activating” the artificial neuron; the output of the nonlinear
functions

Batch — A collection of datasets processed together to lower the cost of fetching
weights

Convolutional
neural network

CNN A DNN that takes as inputs a set of nonlinear functions of spatially nearby
regions of outputs from the prior layer, which are multiplied by the weights

Deep neural
network

DNN A sequence of layers that are collections of artificial neurons, which consist of
a nonlinear function applied to products of weights times the outputs of the
prior layer

Inference — The production phase of DNNs; also called prediction

Long short-term
memory

LSTM An RNN well suited to classify, process, and predict time series. It is a
hierarchical design consisting of modules called cells

MultiLayer
perceptron

MLP A DNN that takes as inputs a set of nonlinear functions of all outputs from the
prior layer multiplied by the weights. These layers are called fully connected

Rectified linear
unit

ReLU A nonlinear function that performs f(x)¼max(x,0). Other popular
nonlinear functions are sigmoid and hyperbolic tangent (tanh)

Recurrent neural
network

RNN A DNN whose inputs are from the prior layer and the previous state

Training — The development phase of DNNs; also called learning

Weights — The values learned during training that are applied to inputs; also called
parameters

T
PU

Accumulators — The 4096 256"32-bit registers (4 MiB) that collect the output of the MMU
and are input to the Activation Unit

Activation unit — Performs the nonlinear functions (ReLU, sigmoid, hyperbolic tangent, max
pool, and average pool). Its input comes from the Accumulators and its output
goes to the Unified Buffer

Matrix multiply
unit

MMU A systolic array of 256"256 8-bit arithmetic units that perform multiply-add.
Its inputs are the Weight Memory and the Unified Buffer, and its output is the
Accumulators

Systolic array — An array of processing units that in lockstep input data from upstream
neighbors, compute partial results, and pass some inputs and results to
downstream neighbors

Unified buffer UB A 24 MiB on-chip memory that holds the activations. It was sized to try to
avoid spilling activations to DRAM when running a DNN

Weight memory — An 8MiB external DRAMchip containing the weights for theMMU.Weights
are transferred to a Weight FIFO before entering the MMU

Figure 7.4 A handy guide to DSA terms used in Sections 7.3–7.6. Figure 7.29 on page 472 has a guide for
Section 7.7.

Artificial intelligence (AI) has made a dramatic comeback since the turn of the cen-
tury. Instead of building artificial intelligence as a large set of logical rules, the
focus switched tomachine learning from example data as the path to artificial intel-
ligence. The amount of data needed to learn was much greater than thought. The
warehouse scale computers (WSCs) of this century, which harvest and store peta-
bytes of information found on the Internet from the billions of users and their
smartphones, supply the ample data. We also underestimated the amount of com-
putation needed to learn from the massive data, but GPUs—which have excellent
single-precision floating-point cost-performance—embedded in the thousands of
servers of WSCs deliver sufficient computing.

One part of machine learning, called DNNs, has been the AI star for the past
five years. Example DNN breakthroughs are in language translation, which DNNs
improved more in a single leap than all the advances from the prior decade (Tung,
2016; Lewis-Kraus, 2016); the switch to DNNs in the past five years reduced the
error rate in an image recognition competition from 26% to 3.5% (Krizhevsky
et al., 2012; Szegedy et al., 2015; He et al., 2016); and in 2016, DNNs enabled
a computer program for the first time to beat a human champion at Go (Silver
et al., 2016). Although many of these run in the cloud, they have also enabled Goo-
gle Translate on smartphones, which we described in Chapter 1. In 2017 new, sig-
nificant DNN results appear nearly every week.

Readers interested in learning more about DNNs than found in this section
should download and try the tutorials in TensorFlow (TensorFlow Tutorials,
2016), or for the less adventurous, consult a free online textbook on DNNs
(Nielsen, 2016).

The Neurons of DNNs

DNNs were inspired by the neuron of the brain. The artificial neuron used for neu-
ral networks simply computes the sum over a set of products of weights or param-
eters and data values that is then put through a nonlinear function to determine its
output. As we will see, each artificial neuron has a large fan-in and a large fan-out.

For an image-processing DNN, the input data would be the pixels of a photo,
with the pixel values multiplied by the weights. Although many nonlinear func-
tions have been tried, a popular one today is simply f(x)¼max(x,0), which
returns 0 if the x is negative or the original value if positive or zero. (This simple
function goes by the complicated name rectified linear unit or ReLU.) The output
of a nonlinear function is called an activation, in that it is the output of the artificial
neuron that has been “activated.”

A cluster of artificial neurons might process different portions of the input, and
the output of that cluster becomes the input to the next layer of artificial neurons. The
layers between the input layer and the output layer are called hidden layers. For
image processing, you can think of each layer as looking for different types of fea-
tures, going from lower-level ones like edges and angles to higher-level ones like
eyes and ears. If the image-processing application was trying to decide if the image

546 ■ Chapter Seven Domain-Specific Architectures

contained a dog, the output of the last layer could be a probability number between
0 and 1 or perhaps a list of probabilities corresponding to a list of dog breeds.

The number of layers gave DNNs their name. The original lack of data
and computing horsepower kept most neural networks relatively shallow.
Figure 7.5 shows the number of layers for a variety of recent DNNs, the number
of weights, and the number of operations per weight fetched. In 2017 some DNNs
have 150 layers.

Training Versus Inference

The preceding discussion concerns DNNs that are in production. DNN develop-
ment starts by defining the neural network architecture, picking the number and
type of layers, the dimensions of each layer, and the size of the data. Although
experts may develop new neural network architectures, most practitioners will
choose among the many existing designs (e.g., Figure 7.5) that have been shown
to perform well on problems similar to theirs.

Once the neural architecture has been selected, the next step is to learn the
weights associated with each edge in the neural network graph. The weights deter-
mine the behavior of the model. Depending on the choice of neural architecture,
there can be anywhere from thousands to hundreds of millions of weights in a sin-
gle model (see Figure 7.5). Training is the costly process of tuning these weights so
that the DNN approximates the complex function (e.g., mapping from pictures to
the objects in that picture) described by the training data.

This development phase is universally called training or learning, whereas
the production phase has many names: inference, prediction, scoring, implemen-
tation, evaluation, running, or testing. Most DNNs use supervised learning in
that they are given a training set to learn from where the data is preprocessed
in order to have the correct labels. Thus, in the ImageNet DNN competition
(Russakovsky et al., 2015), the training set consists of 1.2 million photos, and
each photo has been labeled as one of 1000 categories. Several of these categories

Name DNN layers Weights Operations/Weight

MLP0 5 20M 200

MLP1 4 5M 168

LSTM0 58 52M 64

LSTM1 56 34M 96

CNN0 16 8M 2888

CNN1 89 100M 1750

Figure 7.5 Six DNN applications that represent 95% of DNN workloads for inference
at Google in 2016, which we use in Section 7.9. The columns are the DNN name, the
number of layers in the DNN, the number of weights, and operations per weight (oper-
ational intensity). Figure 7.41 on page 595 goes into more detail on these DNNs.

7.3 Example Domain: Deep Neural Networks ■ 547

are quite detailed, such as specific breeds of dogs and cats. The winner is deter-
mined by evaluating a separate secret set of 50,000 photos to see which DNN has
the lowest error rate.

Setting the weights is an iterative process that goes backward through the neu-
ral network using the training set. This process is called backpropagation. For
example, because you know the breed of a dog image in the training set, you
see what your DNN says about the image, and then you adjust the weights to
improve the answer. Amazingly, the weights at the start of the training process
should be set to random data, and you just keep iterating until you’re satisfied with
the DNN accuracy using the training set.

For the mathematically inclined, the goal of learning is to find a function that
maps the inputs to the correct outputs over the multilayer neural network architec-
ture. Backpropagation stands for “back propagation of errors.” It calculates a gra-
dient over all the weights as input to an optimization algorithm that tries to
minimize the errors by updating the weights. The most popular optimization
algorithm for DNNs is stochastic gradient descent. It adjusts the weights propor-
tionally to maximize the descent of the gradient obtained from backpropagation.
Readers interested in learning more should see Nielsen (2016) or TensorFlow
Tutorials (2016).

Training can take weeks of computation, as Figure 7.6 shows. The inference
phase is often below 100 ms per data sample, which is a million times less.
Although training takes much longer than a single inference, the total compute time
for inference is a product of the number of customers of the DNN and how
frequently they invoke it.

After training, you deploy your DNN, hoping that your training set is
representative of the real world, and that your DNN will be so popular that
your users will spend much more time employing it than you’ve put into devel-
oping it!

Type of data Problem area

Size of
benchmark’s
training set

DNN
architecture Hardware

Training
time

text [1] Word prediction
(word2vec)

100 billion words
(Wikipedia)

2-layer skip
gram

1 NVIDIA Titan X
GPU

6.2 hours

audio [2] Speech recognition 2000 hours (Fisher
Corpus)

11-layer RNN 1 NVIDIA K1200
GPU

3.5 days

images [3] Image
classification

1 million images
(ImageNet)

22-layer CNN 1 NVIDIA K20
GPU

3 weeks

video [4] activity recognition 1 million videos
(Sports-1M)

8-layer CNN 10 NVIDIA GPUs 1 month

Figure 7.6 Training set sizes and training time for several DNNs (Iandola, 2016).

548 ■ Chapter Seven Domain-Specific Architectures

There are tasks that don’t have training datasets, such as when trying to predict
the future of some real-world event. Although we won’t cover it here, reinforce-
ment learning (RL) is a popular algorithm for such learning in 2017. Instead of a
training set to learn from, RL acts on the real world and then gets a signal from a
reward function, depending on whether that action made the situation better
or worse.

Although it’s hard to imagine a faster changing field, only three types
of DNNs reign as most popular in 2017: MultiLayer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs), and Recurrent Neural Networks
(RNNs). They are all examples of supervised learning, which rely on
training sets.

Multilayer Perceptron

MLPs were the original DNNs. Each new layer is a set of nonlinear functions F of
weighted sum of all outputs from a prior one yn¼F(W"yn#1). The weighted sum
consists of a vector-matrix multiply of the outputs with the weights (see
Figure 7.7). Such a layer is called fully connected because each output neuron
result depends on all input neurons of the prior layer.

We can calculate the number of neurons, operations, and weights per layer for
each of the DNN types. The easiest is MLP because it is just a vector-matrix

Dim[i]

Dim[i]

Vector matrix multiply

Nonlinear function

Dim[i-1]

D
im

[i-
1]

Layer[i-1] Layer[i]

nlf

VMX Output

Weights

Input

nlf

VMX

Figure 7.7 MLP showing the input Layer[i21] on the left and the output Layer[i] on
the right. ReLU is a popular nonlinear function for MLPs. The dimensions of the input
and output layers are often different. Such a layer is called fully connected because it
depends on all the inputs from the prior layer, even if many of them are zeros. One study
suggested that 44% were zeros, which presumably is in part because ReLU turns neg-
ative numbers into zeros.

7.3 Example Domain: Deep Neural Networks ■ 549

multiply of the input vector times the weights array. Here are the parameters and
the equations to determine weights and operations for inference (we count multiply
and add as two operations):

■ Dim[i]: Dimension of the output vector, which is the number of neurons

■ Dim[i#1]: Dimension of the input vector

■ Number of weights: Dim[i#1]"Dim[i]

■ Operations: 2"Number of weights

■ Operations/Weight: 2

This final term is the operational intensity from the Roofline model discussed in
Chapter 4. We use operations per weight because there can be millions of
weights, which usually don’t fit on the chip. For example, the dimensions of
one stage of an MLP in Section 7.9 has Dim[i#1]¼4096 and Dim[i]¼2048,
so for that layer, the number of neurons is 2048, number of weights is
8,388,608, the number of operations is 16,777,216, and the operational intensity
is 2. As we recall from the Roofline model, low operational intensity makes it
harder to deliver high performance.

Convolutional Neural Network

CNNs are widely used for computer vision applications. As images have a two-
dimensional structure, neighboring pixels are the natural place to look to find rela-
tionships. CNNs take as inputs a set of nonlinear functions from spatially nearby
regions of outputs from the prior layer and then multiplies by the weights, which
reuses the weights many times.

The idea behind CNNs is that each layer raises the level of abstraction of the
image. For example, the first layer might identify only horizontal lines and vertical
lines. The second layer might combine them to identify corners. The next step
might be rectangles and circles. The following layer could use that input to detect
portions of a dog, like eyes or ears. The higher layers would be trying to identify
characteristics of different breeds of dogs.

Each neural layer produces a set of two-dimensional feature maps, where each
cell of the two-dimensional feature map is trying to identify one feature in the cor-
responding area of the input.

Figure 7.8 shows the starting point where a 2"2 stencil computation from the
input image creates the elements of the first feature map. A stencil computation
uses neighboring cells in a fixed pattern to update all the elements of an array.
The number of output feature maps will depend on how many different features
you are trying to capture from the image and the stride used to apply the stencil.

The process is actually more complicated because the image is usually not just
a single, flat two-dimensional layer. Typically, a color image will have three levels
for red, green, and blue. For example, a 2"2 stencil will access 12 elements: 2"2

550 ■ Chapter Seven Domain-Specific Architectures

of red pixels, 2"2 of green pixels, and 2"2 of blue pixels. In this case, you need
12 weights per output feature map for a 2"2 stencil on three input levels of
an image.

Figure 7.9 shows the general case of an arbitrary number of input and output
feature maps, which occurs after that first layer. The calculation is a three-
dimensional stencil over all the input feature maps with a set of weights to produce
one output feature map.

For the mathematically oriented, if the number of input feature maps and output
feature maps both equal 1 and the stride is 1, then a single layer of a two-dimensional
CNN is the same calculation as a two-dimensional discrete convolution.

As we see in Figure 7.9, CNNs are more complicated than MLPs. Here are the
parameter and the equations to calculate the weights and operations:

■ DimFM[i#1]: Dimension of the (square) input Feature Map

■ DimFM[i]: Dimension of the (square) output Feature Map

■ DimSten[i]: Dimension of the (square) stencil

■ NumFM[i#1]: Number of input Feature Maps

■ NumFM[i]: Number of output Feature Maps

■ Number of neurons: NumFM[i]"DimFM[i]2

Output feature map

Weights

Input image

nlfVMX

Vector matrix multiply

Nonlinear functionnlf

VMX

Figure 7.8 Simplified first step of a CNN. In this example, every group of four pixels of
the input image aremultiplied by the same four weights to create the cells of the output
feature map. The pattern depicted shows a stride of two between the groups of input
pixels, but other strides are possible. To relate this figure to MLP, you can think of each
2"2 convolution as a tiny fully connected operation to produce one point of the output
featuremap. Figure 7.9 shows howmultiple featuremaps turn the points into a vector in
the third dimension.

7.3 Example Domain: Deep Neural Networks ■ 551

■ Number of weights per output Feature Map: NumFM[i#1]"DimSten[i]2

■ Total number of weights per layer: NumFM[i]"Number of weights per output
Feature Map

■ Number of operations per output Feature Map: 2"DimFM[i]2"Number of
weights per output Feature Map

■ Total number of operations per layer: NumFM[i]"Number of operations per
output Feature Map¼2"DimFM[i]2"NumFM[i]"Number of weights per
output Feature Map¼2"DimFM[i]2"Total number of weights per layer

■ Operations/Weight: 2"DimFM[i]2

A CNN in Section 7.9 has a layer with DimFM[i#1]¼28, DimFM[i]¼14, Dim-
Sten[i]¼3, NumFM[i#1]¼64 (number of input feature maps), and NumFM[i]¼
128 (number of output feature maps). That layer has 25,088 neurons, 73,728
weights, does 28,901,376 operations, and has an operational intensity of 392.
As our example indicates, CNN layers generally have fewer weights and greater
operational intensity than the fully connected layers found in MLPs.

Vector matrix multiply

Nonlinear functionnlf

VMX

W
ei

g
h

ts

N
um

F
M

[i
-1

]

N
um

F
M

[i]

Dim
FM

[i] DimFM[i]

Dim
FM

[i-
1] DimFM[i-1]

nlfVMX

DimSten[i]
DimSten[i]

N
um

F
M

[i-
1]

Layer[i-1]
(input feature maps)

Layer[i]
(output feature maps)

Figure 7.9 CNN general step showing input feature maps of Layer[i21] on the left,
the output feature maps of Layer[i] on the right, and a three-dimensional stencil over
input feature maps to produce a single output feature map. Each output feature map
has its own unique set of weights, and the vector-matrix multiply happens for every one.
The dotted lines show future output feature maps in this figure. As this figure illustrates,
the dimensions and number of the input and output featuremaps are often different. As
with MLPs, ReLU is a popular nonlinear function for CNNs.

552 ■ Chapter Seven Domain-Specific Architectures

Recurrent Neural Network

The third type of DNN is RNNs, which are popular for speech recognition or lan-
guage translation. RNNs add the ability to explicitly model sequential inputs by
adding state to the DNN model so that RNNs can remember facts. It’s analogous
to the difference in hardware between combinational logic and a state machine. For
example, you might learn the gender of the person, which you would want to pass
along to remember later when translating words. Each layer of an RNN is a col-
lection of weighted sums of inputs from the prior layer and the previous state. The
weights are reused across time steps.

Long short-term memory (LSTM) is by far the most popular RNN today.
LSTMs mitigate a problem that previous RNNs had with their inability to remem-
ber important long-term information.

Unlike the other two DNNs, LSTM is a hierarchical design. LSTM consists of
modules called cells. You can think of cells as templates or macros that are linked
together to create the full DNN model, similar to how layers of an MLP line up to
form a complete DNN model.

Figure 7.10 shows how the LSTM cells are linked together. They are hooked
up from left to right, connecting the output of one cell to the input of the next. They
are also unrolled in time, which runs top down in Figure 7.10. Thus a sentence is
input a word at a time per iteration of the unrolled loop. The long-term and short-
term memory information that gives the LSTM its name is also passed top-down
from one iteration to the next.

Figure 7.11 shows the contents of an LSTM cell. As we would expect from
Figure 7.10, the input is on the left, the output is on the right, the two memory
inputs are at the top, and the two memory outputs are at the bottom.

Each cell does five vector-matrix multiplies using five unique sets of weights.
The matrix multiply on the input is just like theMLP in Figure 7.7. Three others are
called gates in that they gate or limit how much information from one source is
passed along to the standard output or the memory output. The amount of infor-
mation sent per gate is set by their weights. If the weights are mostly zeros or small
values, then little gets through; conversely, if they are mostly large, then the gate
lets most information flow. The three gates are called the input gate, the output
gate, and the forget gate. The first two filter the input and output, and the last
one determines what to forget along the long-term memory path.

The short-term memory output is a vector-matrix multiply using the Short
Term Weights and the output of this cell. The short-term label is applied because
it does not directly use any of the inputs to the cell.

Because the LSTM cell inputs and outputs are all connected together, the size
of the three input-output pairs must be the same. Looking inside the cell, there are
enough dependencies that all of the inputs and outputs are often the same size.
Let’s assume they are all the same size, called Dim.

Even so, the vector-matrix multiplies are not all the same size. The vectors for
the three gate multiplies are 3"Dim, because the LSTM concatenates all three
inputs. The vector for the input multiply is 2"Dim, because the LSTM

7.3 Example Domain: Deep Neural Networks ■ 553

concatenates the input with the short-term memory input as the vector. The vector
for the last multiply is just 1"Dim, because it is just the output.

Now we can finally calculate the weights and operations:

■ Number of weights per cell: 3" (3"Dim"Dim)+(2"Dim"Dim)
+(1"Dim"Dim)¼12"Dim2

■ Number of operations for the 5 vector-matrix multiplies per cell: 2"Number
of weights per cell¼24"Dim2

■ Number of operations for the 3 element-wise multiplies and 1 addition (vectors
are all the size of the output): 4"Dim

■ Total number of operations per cell (5 vector-matrix multiplies and the 4
element-wise operations): 24"Dim2+4"Dim

■ Operations/Weight: $2

LSTM0 LSTM1 . . . LSTMn“now”

LSTM0 LSTM1 . . . LSTMn“is”

LSTM0 LSTM1 . . . LSTMn“the”T
im

e
LSTM0 LSTM1 . . . LSTMn“time”

LSTM0 LSTM1 . . . LSTMn<end_input>

LSTM0 LSTM1 . . . LSTMn“momento”

LSTM0 LSTM1 . . . LSTMn“el”

LSTM0 LSTM1 . . . LSTMn“es”

LSTM0 LSTM1 . . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

LSTMn“ahora”

“momento”

“el”

“es”

“ahora”

<end_output>

Figure 7.10 LSTM cells connected together. The inputs are on the left (English words),
and the outputs are on the right (the translated Spanish words). The cells can be thought
of as being unrolled over time, from top to bottom. Thus the short-term and long-term
memory of LSTM is implemented by passing information top-down between unrolled
cells. They are unrolled enough to translate whole sentences or even paragraphs. Such
sequence-to-sequence translation models delay their output until they get to the end
of the input (Wu et al., 2016). They produce the translation in reverse order, using themost
recent translatedword as input to the next step, so “now is the time” becomes “ahora es el
momento.” (This figure and the next are often shown turned 90 degrees in LSTM litera-
ture, but we’ve rotated them to be consistent with Figures 7.7 and 7.8.)

554 ■ Chapter Seven Domain-Specific Architectures

Dim is 1024 for one of the six cells of an LSTM in Section 7.9. Its number of
weights is 12,582,912, its number of operations is 25,169,920, and its operational
intensity is 2.0003. Thus LSTMs are like MLPs in that they typically have more
weights and a lower operational intensity than CNNs.

OutputInput

LTMemoryin STMemoryin

LTMemoryout STMemoryout

nlfVMX

nlf
nlf

:

:

:

•

•

+

+

•

VMX

VMX

nlfVMX

•

nlf

Output gate
weights

Forget gate
weights

Input gate
weights

VMX

Short term
weights

nlfVMX

Input
weights

Vector matrix multiply

Element-wise multiply

Element-wise addition

Nonlinear function

Concatenation

Figure 7.11 This LSTM cell contains 5 vector-matrix multiplies, 3 element-wise multiplies, 1 element-wise add,
and 6 nonlinear functions. The standard input and short-term memory input are concatenated to form the vector
operand for the input vector-matrix multiply. The standard input, long-term memory input, and short-term memory
input are concatenated to form the vector that is used in three of the other four vector-matrix multiplies. The non-
linear functions for the three gates are Sigmoids f(x)¼1/(1+exp(#x)); the others are hyperbolic tangents. (This figure
and the previous one are often shown turned 90 degrees in LSTM literature, but we’ve rotated them to be consistent
with Figures 7.7 and 7.8.)

7.3 Example Domain: Deep Neural Networks ■ 555

Batches

Because DNNs can have many weights, a performance optimization is to reuse
the weights once they have been fetched from memory across a set of inputs,
thereby increasing effective operational intensity. For example, an image-
processing DNN might work on a set of 32 images at a time to reduce the
effective cost of fetching weights by a factor of 32. Such datasets are called
batches or minibatches. In addition to improving the performance of inference,
backpropagation needs a batch of examples instead of one at a time in order to
train well.

Looking at an MLP in Figure 7.7, a batch can be seen as a sequence of input
row vectors, which you can think of as a matrix with a height dimension that
matches the batch size. A sequence of row vector inputs to the five matrix multi-
plies of LSTMs in Figure 7.11 can also be considered a matrix. In both cases, com-
puting them as matrices instead of sequentially as independent vectors improves
computing efficiency.

Quantization

Numerical precision is less important for DNNs than for many applications. For
example, there is no need for double-precision floating-point arithmetic, which
is the standard bearer of high-performance computing. It’s even unclear that
you need the full accuracy of the IEEE 754 floating-point standard, which aims
to be accurate within one-half of a unit in the last place of the floating-point
significand.

To take advantage of the flexibility in numerical precision, some devel-
opers use fixed point instead of floating point for the inference phase. (Train-
ing is almost always done in floating-point arithmetic.) This conversion is
called quantization, and such a transformed application is said to be quantized
(Vanhoucke et al., 2011). The fixed-point data width is usually 8 or 16 bits,
with the standard multiply-add operation accumulating at twice the width
of the multiplies. This transformation typically occurs after training, and
it can reduce DNN accuracy by a few percentage points (Bhattacharya and
Lane, 2016).

Summary of DNNs

Even this quick overview suggests that DSAs for DNNs will need to perform at
least these matrix-oriented operations well: vector-matrix multiply, matrix-matrix
multiply, and stencil computations. They will also need support for the nonlinear
functions, which include at a minimum ReLU, Sigmoid, and tanh. These modest
requirements still leave open a very large design space, which the next four
sections explore.

556 ■ Chapter Seven Domain-Specific Architectures

7.4 Google’s Tensor Processing Unit, an Inference Data
Center Accelerator

The Tensor Processing Unit (TPU)1 is Google’s first customASICDSA forWSCs.
Its domain is the inference phase of DNNs, and it is programmed using the Tensor-
Flow framework, which was designed for DNNs. The first TPUwas been deployed
in Google data centers in 2015.

The heart of the TPU is a 65,536 (256"256) 8-bit ALU Matrix Multiply Unit
and a large software-managed on-chip memory. The TPU’s single-threaded, deter-
ministic execution model is a good match to the 99th-percentile response-time
requirement of the typical DNN inference application.

TPU Origin

Starting as far back as 2006, Google engineers had discussions about deploying
GPUs, FPGAs, or custom ASICs in their data centers. They concluded that the
few applications that could run on special hardware could be done virtually for free
using the excess capacity of the large data centers, and it’s hard to improve on free.
The conversation changed in 2013 when it was projected that if people used voice
search for three minutes a day using speech recognition DNNs, it would have
required Google’s data centers to double in order to meet computation demands.
That would be very expensive to satisfy with conventional CPUs. Google then
started a high-priority project to quickly produce a custom ASIC for inference
(and bought off-the-shelf GPUs for training). The goal was to improve cost-
performance by 10" over GPUs. Given this mandate, the TPU was designed, ver-
ified (Steinberg, 2015), built, and deployed in data centers in just 15 months.

TPU Architecture

To reduce the chances of delaying deployment, the TPU was designed to be a
coprocessor on the PCIe I/O bus, which allows it to be plugged into existing
servers. Moreover, to simplify hardware design and debugging, the host server
sends instructions over the PCIe bus directly to the TPU for it to execute, rather
than having the TPU fetch the instructions. Thus the TPU is closer in spirit to
an FPU (floating-point unit) coprocessor than it is to a GPU, which fetches instruc-
tions from its memory.

Figure 7.12 shows the block diagram of the TPU. The host CPU sends TPU
instructions over the PCIe bus into an instruction buffer. The internal blocks are
typically connected together by 256-byte-wide (2048-bits) paths. Starting in the
upper-right corner, the Matrix Multiply Unit is the heart of the TPU. It contains

1This section is based on the paper “In-Datacenter Performance Analysis of a Tensor Processing Unit” Jouppi et al., 2017,
of which one of your book authors was a coauthor.

7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator ■ 557

256"256 ALUs that can perform 8-bit multiply-and-adds on signed or unsigned
integers. The 16-bit products are collected in the 4 MiB of 32-bit Accumulators
below the matrix unit. When using a mix of 8-bit weights and 16-bit activations
(or vice versa), the Matrix Unit computes at half-speed, and it computes at a
quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle
and can perform either a matrix multiply or a convolution. The nonlinear functions
are calculated by the Activation hardware.

The weights for the matrix unit are staged through an on-chipWeight FIFO that
reads from an off-chip 8 GiB DRAM called Weight Memory (for inference,
weights are read-only; 8 GiB supports many simultaneously active models).
The intermediate results are held in the 24 MiB on-chip Unified Buffer, which
can serve as inputs to the Matrix Multiply Unit. A programmable DMA controller
transfers data to or from CPU Host memory and the Unified Buffer.

Control Control

Control

Off-chip I/O

Data buffer

Computation

Control

P
C

Ie
 G

en
3

x1
6

in
te

rf
ac

e

H
os

t i
nt

er
fa

ce
Control Control

Unified
buffer
(local

activation
storage)

Systolic
data
setup

DDR3-2133
interfaces

Weight FIFO
(weight fetcher)

Accumulators

Activation

Normalize / Pool

10
GiB/s

167 GiB/s

167
GiB/s

14 GiB/s 30 GiB/s

30 GiB/s

30 GiB/s

DDR3 DRAM chips

14
GiB/s

14
GiB/s

In
st

r
Matrix multiply

unit
(64K per cycle)

Figure 7.12 TPU Block Diagram. The PCIe bus is Gen3 "16. The main computation part is the light-shaded Matrix
Multiply Unit in the upper-right corner. Its inputs are the medium-shaded Weight FIFO and the medium-shaded Uni-
fied Buffer and its output is the medium-shaded Accumulators. The light-shaded Activation Unit performs the non-
linear functions on the Accumulators, which go to the Unified Buffer.

558 ■ Chapter Seven Domain-Specific Architectures

TPU Instruction Set Architecture

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow
the CISC tradition, including a repeat field. The TPU does not have a program
counter, and it has no branch instructions; instructions are sent from the host
CPU. The clock cycles per instruction (CPI) of these CISC instructions are typi-
cally 10–20. It has about a dozen instructions overall, but these five are the key
ones:

1. Read_Host_Memory reads data from the CPU host memory into the
Unified Buffer.

2. Read_Weights reads weights fromWeight Memory into theWeight FIFO as
input to the Matrix Unit.

3. MatrixMultiply/Convolve causes the Matrix Multiply Unit to perform a
matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multi-
ply, an element-wise vector multiply, or a convolution from the Unified Buffer
into the Accumulators. A matrix operation takes a variable-sized B*256 input,
multiplies it by a 256"256 constant input, and produces a B*256 output, taking
B pipelined cycles to complete. For example, if the input were 4 vectors of 256
elements, B would be 4, so it would take 4 clock cycles to complete.

4. Activate performs the nonlinear function of the artificial neuron, with
options for ReLU, Sigmoid, tanh, and so on. Its inputs are the Accumulators,
and its output is the Unified Buffer.

5. Write_Host_Memorywrites data from the Unified Buffer into the CPU host
memory.

The other instructions are alternate host memory read/write, set configuration, two
versions of synchronization, interrupt host, debug-tag, nop, and halt. The CISC
MatrixMultiply instruction is 12 bytes, of which 3 are Unified Buffer address; 2
are accumulator address; 4 are length (sometimes 2 dimensions for convolutions);
and the rest are opcode and flags.

The goal is to run whole inference models in the TPU to reduce interactions
with the host CPU and to be flexible enough to match the DNN needs of 2015
and beyond, instead of just what was required for 2013 DNNs.

TPU Microarchitecture

The microarchitecture philosophy of the TPU is to keep the Matrix Multiply Unit
busy. The plan is to hide the execution of the other instructions by overlapping their
execution with the MatrixMultiply instruction. Thus each of the preceding
four general categories of instructions have separate execution hardware (with read
and write host memory combined into the same unit). To increase instruction par-
allelism further, the Read_Weights instruction follows the decoupled access/

7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator ■ 559

execute philosophy (Smith, 1982b) in that they can complete after sending their
addresses but before the weights are fetched fromWeightMemory. The matrix unit
has not-ready signals from the Unified Buffer and the Weight FIFO that will cause
the matrix unit to stall if their data are not yet available.

Note that a TPU instruction can execute for many clock cycles, unlike the
traditional RISC pipeline with one clock cycle per stage.

Because reading a large SRAM is much more expensive than arithmetic,
the Matrix Multiply Unit uses systolic execution to save energy by reducing
reads and writes of the Unified Buffer (Kung and Leiserson, 1980;
Ramacher et al., 1991; Ovtcharov et al., 2015b). A systolic array is a two-
dimensional collection of arithmetic units that each independently compute a
partial result as a function of inputs from other arithmetic units that are con-
sidered upstream to each unit. It relies on data from different directions arriv-
ing at cells in an array at regular intervals where they are combined. Because
the data flows through the array as an advancing wave front, it is similar to
blood being pumped through the human circulatory system by the heart, which
is the origin of the systolic name.

Figure 7.13 demonstrates how a systolic array works. The six circles at the bot-
tom are the multiply-accumulate units that are initialized with the weights wi. The
staggered input data xi are shown coming into the array from above. The 10 steps of
the figure represent 10 clock cycles moving down from top to bottom of the page.
The systolic array passes the inputs down and the products and sums to the right.
The desired sum of products emerges as the data completes its path through the
systolic array. Note that in a systolic array, the input data is read only once from
memory, and the output data is written only once to memory.

In the TPU, the systolic array is rotated. Figure 7.14 shows that the weights are
loaded from the top and the input data flows into the array in from the left. A given
256-element multiply-accumulate operation moves through the matrix as a diag-
onal wave front. The weights are preloaded and take effect with the advancing
wave alongside the first data of a new block. Control and data are pipelined to give
the illusion that the 256 inputs are read at once, and after a feed delay, they update
one location of each of 256 accumulator memories. From a correctness perspec-
tive, software is unaware of the systolic nature of the matrix unit, but for perfor-
mance, it does worry about the latency of the unit.

TPU Implementation

The TPU chip was fabricated using the 28-nm process. The clock rate is 700 MHz.
Figure 7.15 shows the floor plan of the TPU. Although the exact die size is not
revealed, it is less than half the size of an Intel Haswell server microprocessor,
which is 662 mm2.

The 24MiB Unified Buffer is almost a third of the die, and the Matrix Multiply
Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size
was picked in part to match the pitch of the Matrix Unit on the die and, given the

560 ■ Chapter Seven Domain-Specific Architectures

X3

X2

X1

W11

W21

W12

W22

(A)

W13

W23

W12
X2

W11

X3

(E)

W13

W23W22W21
X1

(B)

X3

X2

X1

W11

W21

W12

W22

W13

W23

*

(C)

X3

X2

W11
X1

W21

W12

W22

W13

W23

W12
X2

W11

X3

(F)

W13

W23W22W21
X1

*

+

+

(G)

W13
X3

W11 W12

W23W21 W22
X2

(H)

W13
X3

W11 W12

W23W21 W22
X2

+

y1 = w11x1 + w12x2 + w13x3

(I)

W11 W12 W13

W23
X3W21 W22

y1 = w11x1 + w12x2 + w13x3

(D)

X3

X2

W11
X1

W21

W12

W22

W13

W23

+

*

(J)

W11 W12 W13

W23
X3W21 W22

y1 = w11x1 + w12x2 + w13x3

y2 = w21x1 + w22x2 + w23x3

Figure 7.13 Example of systolic array in action, from top to bottom on the page. In this example, the six weights
are already inside the multiply-accumulate units, as is the norm for the TPU. The three inputs are staggered in time to
get the desired effect, and in this example are shown coming in from the top. (In the TPU, the data actually comes in
from the left.) The array passes the data down to the next element and the result of the computation to the right to
the next element. At the end of the process, the sum of products is found to the right. Drawings courtesy of Yaz Sato.

Local Unified Buffer for
activations

(96Kx256x8b = 24 MiB)
29% of chip

Matrix multiply unit
(256x256x8b = 64K MAC)

24%

Host
Interf. 2%

Accumulators
(4Kx256x32b = 4 MiB) 6%

D
R
A
M

port
ddr3
3%

D
R
A
M

port
ddr3
3%

Activation pipeline 6%Control 2%

PCle
Interface 3% Misc. I/O 1%

Figure 7.15 Floor plan of TPU die. The shading follows Figure 7.14. The light data
buffers are 37%, the light computation units are 30%, the medium I/O is 10%, and
the dark control is just 2% of the die. Control is much larger (and much more difficult
to design) in a CPU or GPU. The unused white space is a consequence of the emphasis
on time to tape-out for the TPU.

Data

Partial sums

+ + +

Done. . .

. .
 .

Control

+

Figure 7.14 Systolic data flow of the Matrix Multiply Unit.

562 ■ Chapter Seven Domain-Specific Architectures

short development schedule, in part to simplify the compiler. Control is just 2%.
Figure 7.16 shows the TPU on its printed circuit card, which inserts into existing
servers in a SATA disk slot.

TPU Software

The TPU software stack had to be compatible with that developed for CPUs and
GPUs so that applications could be ported quickly. The portion of the application
run on the TPU is typically written using TensorFlow and is compiled into an API
that can run on GPUs or TPUs (Larabel, 2016). Figure 7.17 shows TensorFlow
code for a portion of an MLP.

Like GPUs, the TPU stack is split into a User Space Driver and a Kernel
Driver. The Kernel Driver is lightweight and handles only memory management
and interrupts. It is designed for long-term stability. The User Space driver
changes frequently. It sets up and controls TPU execution, reformats data into
TPU order, and translates API calls into TPU instructions and turns them into
an application binary. The User Space driver compiles a model the first time
it is evaluated, caching the program image and writing the weight image into
the TPUWeight Memory; the second and following evaluations run at full speed.
The TPU runs most models completely from inputs to outputs, maximizing the
ratio of TPU compute time to I/O time. Computation is often done one layer at a
time, with overlapped execution allowing the matrix unit to hide most noncritical
path operations.

Figure 7.16 TPU printed circuit board. It can be inserted into the slot for an SATA disk
in a server, but the card uses the PCIe bus.

7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator ■ 563

Improving the TPU

The TPU architects looked at variations of the microarchitecture to see whether
they could have improved the TPU.

Like an FPU, the TPU coprocessor has a relatively easy microarchitecture
to evaluate, so the TPU architects created a performance model and estimated
performance as the memory bandwidth, the matrix unit size, and the clock rate
and number of accumulators varied. Measurements using TPU hardware coun-
ters found that the modeled performance was on average within 8% of the
hardware.

Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)

tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])

Create model
def multilayer_perceptron(x, weights, biases):

Hidden layer with ReLU activation
layer_1 = tf.add(tf.matmul(x, weights[’h1’]), biases[’b1’])
layer_1 = tf.nn.relu(layer_1)
Hidden layer with ReLU activation
layer_2 = tf.add(tf.matmul(layer_1, weights[’h2’]), biases[’b2’])
layer_2 = tf.nn.relu(layer_2)
Output layer with linear activation
out_layer = tf.matmul(layer_2, weights[’out’]) + biases[’out’]
return out_layer

Store layers weight & bias
weights = {

’h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1])),
’h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
’out’: tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

}
biases = {

’b1’: tf.Variable(tf.random_normal([n_hidden_1])),
’b2’: tf.Variable(tf.random_normal([n_hidden_2])),
’out’: tf.Variable(tf.random_normal([n_classes]))

}

Figure 7.17 Portion of the TensorFlow program for the MNIST MLP. It has two hidden 256"256 layers, with each
layer using a ReLU as its nonlinear function.

564 ■ Chapter Seven Domain-Specific Architectures

Figure 7.18 shows the performance sensitivity of the TPU as these parameters
scale over the range for 0.25" to 4". (Section 7.9 lists the benchmarks used.) In
addition to evaluating the impact of only raising clock rates (clock in Figure 7.18),
Figure 7.18 also plots a design (clock+) that increases the clock rate and scales the
number of accumulators correspondingly so that the compiler can keep more mem-
ory references in flight. Likewise, Figure 7.18 plots matrix unit expansion if the
number of accumulators increase with the square of the rise in one dimension
(matrix+), because the matrix grows in both dimensions, as well as only increasing
the matrix unit (matrix).

First, increasing memory bandwidth (memory) has the biggest impact: perfor-
mance improves 3" on average when memory bandwidth increases 4", because it
reduces the time waiting for weight memory. Second, clock rate has little benefit on
average with or without more accumulators. Third, the average performance in
Figure 7.18 slightly degrades when the matrix unit expands from 256"256 to
512"512 for all applications, whether or not they get more accumulators. The
issue is analogous to internal fragmentation of large pages, only worse because
it’s in two dimensions.

Consider the 600"600 matrix used in LSTM1. With a 256"256 matrix unit,
it takes nine steps to tile 600"600, for a total of 18 μs of time. The larger
512"512 unit requires only four steps, but each step takes four times longer,
or 32 μs of time. The TPU’s CISC instructions are long, so decode is insignificant
and does not hide the overhead of loading from the DRAM.

0.0
0.0

0.5 1.0 1.5 2.0
Scale relative to original MPU

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 o
ri

gi
na

l
M

P
U

2.5 3.0 3.5 4.0

memory

matrix+

matrix

clock+

clock

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 7.18 Performance as metrics scale from 0.25× to 4×: memory bandwidth,
clock rate+accumulators, clock rate, matrix unit dimension+accumulators, and
one dimension of the square matrix unit This is the average performance calculated
from six DNN applications in Section 7.9. The CNNs tend to be computation-bound, but
the MLPs and LSTMs are memory-bound. Most applications benefit from a faster mem-
ory, but a faster clock makes little difference, and a bigger matrix unit actually hurts per-
formance. This performancemodel is only for code running inside the TPU and does not
factor in the CPU host overhead.

7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator ■ 565

Given these insights from the performance model, the TPU architects next
evaluated an alternative and hypothetical TPU that they might have designed
in the same process technology if they’d had more than 15 months to do so. More
aggressive logic synthesis and block design might have increased the clock rate
by 50%. The architects found that designing an interface circuit for GDDR5
memory, as used by the K80, would improve Weight Memory bandwidth by
more than a factor of five. As Figure 7.18 shows, increasing clock rate to
1050 MHz, but not helping memory, made almost no change in performance.
If the clock is left at 700 MHz, but it uses GDDR5 instead for Weight Memory,
performance is increased by 3.2", even accounting for the host CPU overhead of
invoking the DNN on the revised TPU. Doing both does not improve average
performance further.

Summary: How TPU Follows the Guidelines

Despite living on an I/O bus and having relatively little memory bandwidth that
limits full utilization of the TPU, a small fraction of a big number can, nonetheless,
be relatively large. As we will see in Section 7.9, the TPU delivered on its goal of a
tenfold improvement in cost-performance over the GPU when running DNN infer-
ence applications. Moreover, a redesigned TPU with the only change being a
switch to the same memory technology as in the GPU would be three times faster.

One way to explain the TPU’s success is to see how it followed the guidelines
in Section 7.2.

1. Use dedicated memories to minimize the distance over which data is moved.
The TPU has the 24MiBUnified Buffer that holds the intermediate matrices and
vectors of MLPs and LSTMs and the feature maps of CNNs. It is optimized for
accesses of 256 bytes at a time. It also has the 4MiB Accumulators, each 32-bits
wide, that collect the output of the Matrix Unit and act as input to the hardware
that calculates the nonlinear functions. The 8-bit weights are stored in a separate
off-chipweightmemoryDRAMand are accessed via an on-chipweight FIFO. In
contrast, all these types and sizes of data would exist in redundant copies at sev-
eral levels of the inclusive memory hierarchy of a general-purpose CPU.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
The TPU offers 28 MiB of dedicated memory and 65,536 8-bit ALUs, which
means it has about 60% of the memory and 250 times as many ALUs as a
server-class CPU, despite being half its size and power (see Section 7.9). Com-
pared to a server-class GPU, the TPU has 3.5 times the on-chip memory and 25
times as many ALUs.

3. Use the easiest form of parallelism that matches the domain.
The TPU delivers its performance via a two-dimensional SIMD parallelism
with its 256"256 Matrix Multiply Unit, which is internally pipelined with a
systolic organization, plus a simple overlapped execution pipeline of its

566 ■ Chapter Seven Domain-Specific Architectures

instructions. GPUs rely instead on multiprocessing, multithreading, and one-
dimensional SIMD, and CPUs rely on multiprocessing, out-of-order execution,
and one-dimensional SIMD.

4. Reduce data size and type to the simplest needed for the domain.
The TPU computes primarily on 8-bit integers, although it supports 16-bit
integers and accumulates in 32-bit integers. CPUs and GPUs also support
64-bit integers and 32-bit and 64-bit floating point.

5. Use a domain-specific programming language to port code to the DSA.
The TPU is programmed using the TensorFlow programming framework,
whereas GPUs rely on CUDA and OpenCL and CPUs must run virtually
everything.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator

At the same time that Google was thinking about deploying a custom ASIC in its
data centers, Microsoft was considering accelerators for theirs. The Microsoft
perspective was that any solution had to follow these guidelines:

■ It had to preserve homogeneity of servers to enable rapid redeployment of
machines and to avoid making maintenance and scheduling even more com-
plicated, even if that notion is a bit at odds with the concept of DSAs.

■ It had to scale to applications that might need more resources than could fit into
a single accelerator without burdening all applications with multiple
accelerators.

■ It needed to be power-efficient.

■ It couldn’t become a dependability problem by being a single point of failure.

■ It had to fit within the available spare space and power in existing servers.

■ It could not hurt data center network performance or reliability.

■ The accelerator had to improve the cost-performance of the server.

The first rule prevented deploying an ASIC that helped only some applications on
some servers, which was the decision that Google made.

Microsoft started a project called Catapult that placed an FPGA on a PCIe bus
board into data center servers. These boards have a dedicated network for appli-
cations that need more than one FPGA. The plan was to use the flexibility of
the FPGA to tailor its use for varying applications both on different servers and
to reprogram the same server to accelerate distinct applications over time. This plan
increased the return on its investment of the accelerator. Another advantage of
FPGAs is that they should have lower NRE than ASICs, which could again
improve return on investment. We discuss two generations of Catapult, showing
how the design evolved to meet the needs of WSCs.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 567

One interesting upside of FPGAs is that each application—or even each phase
of an application—can be thought of as its own DSA, so in this section, we get to
see many examples of novel architectures in one hardware platform.

Catapult Implementation and Architecture

Figure 7.19 shows a PCIe board that Microsoft designed to fit within its
servers, which limited power and cooling to 25 W. This constraint led to
the selection of the 28-nm Altera Stratix V D5 FPGA for its first implemen-
tation of Catapult. The board also has 32 MiB of flash memory and includes
two banks of DDR3-1600 DRAM with a total capacity of 8 GiB. The FPGA
has 3926 18-bit ALUs, 5 MiB of on-chip memory, and 11 GB/s bandwidth to
DDR3 DRAMs.

Figure 7.19 The Catapult board design. (A) shows the block diagram, and (B) is a pho-
tograph of both sides of the board, which is 10 cm"9 cm"16 mm. The PCIe and inter-
FPGA network are wired to a connector on the bottom of the board that plugs directly
into the motherboard. (C) is a photograph of the server, which is 1U (4.45 cm) high and
half a standard rack wide. Each server has two 12-core Intel Sandy Bridge Xeon CPUs, 64
GiB of DRAM, 2 solid-state drives, 4 hard-disk drives, and a 10-Gbit Ethernet network
card. The highlighted rectangle on the right in (C) shows the location of the Catapult
FPGA board on the server. The cool air is sucked in from the left in (C), and the hot
air exhausts to the right, which passes over the Catapult board. This hot spot and
the amount of the power that the connector could deliver mean that the Catapult board
is limited to 25 watts. Forty-eight servers share an Ethernet switch that connects to the
data center network, and they occupy half of a data center rack.

568 ■ Chapter Seven Domain-Specific Architectures

Each of the 48 servers in half of a data center rack contains a Catapult board.
Catapult follows the preceding guidelines about supporting applications that need
more than a single FPGA without affecting the performance of the data center net-
work. It adds a separate low-latency 20 Gbit/s network that connects 48 FPGAs.
The network topology is a two-dimensional 6"8 torus network.

To follow the guideline about not being a single point of failure, this network
can be reconfigured to operate even if one of the FPGAs fails. The board also has
SECDED protection on all memories outside the FPGA, which is required for
large-scale deployment in a data center.

Because FPGAs use a great deal of memory on the chip to deliver programma-
bility, they are more vulnerable than ASICs to single-event upsets (SEUs) because
of radiation as the process geometries shrink. The Altera FPGA in Catapult boards
includes mechanisms to detect and correct SEUs inside the FPGA and reduces the
chances of SEUs by periodically scrubbing the FPGA configuration state.

The separate network has an added benefit of reducing the variability of com-
munication performance as compared to a data center network. Network unpredict-
ability increases tail latency—which is especially detrimental for applications that
face end users—so a separate network makes it easier to successfully offload work
from the CPU to the accelerator. This FPGA network can run a much simpler pro-
tocol than in the data center because the error rates are considerably lower and the
network topology is well defined.

Note that resiliency requires care when reconfiguring FPGAs so that they nei-
ther appear as failed nodes nor crash the host server or corrupt their neighbors.
Microsoft developed a high-level protocol for ensuring safety when reconfiguring
one or more FPGAs.

Catapult Software

Possibly the biggest difference between Catapult and the TPU is having to program
in a hardware-description language such as Verilog or VHDL. As the Catapult
authors write (Putnam et al., 2016):

Going forward, the biggest obstacle to widespread adoption of FPGAs in the
datacenter is likely to be programmability. FPGA development still requires
extensive hand-coding in Register Transfer Level and manual tuning.

To reduce the burden of programming Catapult FPGAs, the Register Transfer Level
(RTL) code is divided into the shell and the role, as Figure 7.20 shows. The shell
code is like the system library on an embedded CPU. It contains the RTL code that
will be reused across applications on the same FPGA board, such as datamarshaling,
CPU-to-FPGA communication, FPGA-to-FPGA communication, data movement,
reconfiguration, and health monitoring. The shell RTL code is 23% of the Altera
FPGA. The role code is the application logic, which the Catapult programmer writes
using the remaining 77% of the FPGA resources. Having a shell has the added
benefit of offering a standard API and standard behavior across applications.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 569

CNNs on Catapult

Microsoft developed a configurable CNN accelerator as an application for
Catapult. Configuration parameters include the number of neural network
layers, the dimension of those layers, and even the numerical precision to be
used. Figure 7.21 shows the block diagram of the CNN accelerator. Its key
features are:

■ Run-time configurable design, without requiring recompilation using the
FPGA tools.

■ To minimize memory accesses, it offers efficient buffering of CNN data struc-
tures (see Figure 7.21).

■ A two-dimensional array of Processing Elements (PEs) that can scale up to
thousands of units.

Shell

Role

DDR3 Core 0

4 GB DDR3-1333
ECC SO-DIMM

DDR3 Core 1

72

4 GB DDR3-1333
ECC SO-DIMM

256 Mb
QSPI
Config
Flash

Config
Flash
(RSU)

JTAG

LEDs

Temp
Sensors

xcvr
reconfig

x8 PCIe
Core

Host
CPU

DMA
Engine

SEU

I2C

72

4

8

2 2 2 2

Inter-FPGA Router

North
SLIII

South
SLIII

East
SLIII

West
SLIII

Application

Figure 7.20 Components of Catapult shell and role split of the RTL code.

570 ■ Chapter Seven Domain-Specific Architectures

Images are sent to DRAM and then input into a multibank buffer in the FPGA. The
inputs are sent to multiple PEs to perform the stencil computations that produce the
output feature maps. A controller (upper left in Figure 7.21) orchestrates the flow
of data to each PE. The final results are then recirculated to the input buffers to
compute the next layer of the CNN.

Like the TPU, the PEs are designed to be used as a systolic array. Figure 7.22
shows the details of the PE design.

Top
controller

Layer
controller

Address
generation Scan chain

Broad-cast

Input
volume

Segment 0

Input
volume

Segment 1

Input
volume

Segment N-2

Input volume

Input
volume

Segment N-1

Layer
config.

Data re-distribution

Output volume
z

z

x

x

y

y

Output
feature

map
Input
kernel
weight

0

PE

PE

PE

PE

Output
feature

map
Input
kernel
weight

1

PE

PE

PE

PE

Output
feature

map
Input
kernel
weight

M-2

PE

PE

PE

PE

Output
feature

map
Input
kernel
weight

M-1

PE

PE

PE

PE

• •
•

•
••

•• •

•
••

••

Figure 7.21 CNN Accelerator for Catapult. The Input Volume of the left correspond to Layer[i#1] on the left of
Figure 7.20, with NumFM[i#1] corresponding to y and DimFM[i#1] corresponding to z. Output Volume at the top
maps to Layer[i], with z mapping to NumFM[i] and DimFM[i] mapping to x. The next figure shows the inside of
the Processing Element (PE).

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 571

IBW0

FU0,0

Max pool
control

Max pool command

Bias data load

Input double
Buffer array

Umi Dram
Fetcher

DRAMPCle

Umi
command

Shallow
FIFO
Array

Control

Address

Ring
Arbitor

F
unctional unit array

IBD0

OB0

FU1,0

FU2,0

FUn,0

+b0

MPE0

•
•
•

•
•
•

•
•
•

0

IBW1

FU0,0

OB1

FU1,1

FU2,1

FUn,1

+b1

MPE1

•
•
•

1

IBW2

FU0,0

OB2

FU1,2

FU2,2

FUn,2

+b2

MPE2

•
•
•

• • •

• • •

2

IBWn

FU0,n

OBn

FU1,n

FU2,n

FUn,n

+bn

MPEn

•
•
•

n

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

IBD0

IBD0

IBD0

Single Layer
Control

Register
interface

Multi layer
control Kernel weights

Buffer array

Output buffer
Array

Bias buffer
Array

Activation
Function array

Max pooling
array

Umi command

Figure 7.22 The Processing Element (PE) of the CNN Accelerator for Catapult in Figure 7.21. The two-dimension
Functional Units (FU) consist of just an ALU and a few registers.

572 ■ Chapter Seven Domain-Specific Architectures

Search Acceleration on Catapult

Theprimary application to test the returnon investmentofCatapultwas a critical func-
tionof theMicrosoftBingsearchenginecalled ranking. It ranks theorder of the results
from a search. The output is a document score, which determines the position of the
document on thewebpage that is presented to theuser.The algorithmhas three stages:

1. Feature Extraction extracts thousands of interesting features from a document
based on the search query, such as the frequency that the query phrase appears
in a document.

2. Free-Form Expressions calculates thousands of combinations of features from
the prior stage.

3. Machine-Learned Scoring uses machine-learning algorithms to evaluate the
features from the first two stages to calculate a floating-point score of a docu-
ment that is returned to the host search software.

The Catapult implementation of ranking produces identical results to equivalent
Bing software, even reproducing known bugs!

Taking advantage of one of the preceding guidelines, the ranking function does
not have to fit within a single FPGA. Here is how the ranking stages are split across
eight FPGAs:

■ One FPGA does Feature Extraction.

■ Two FPGAs do Free-Form Expressions.

■ One FPGA does a compression stage that increases scoring engine efficiency.

■ Three FPGA do Machine-Learned Scoring.

The remaining FPGA is a spare used to tolerate faults. Using multiple FPGAs for
one application works well because of the dedicated FPGA network.

Figure 7.23 shows the Feature Extraction stage organization. It uses 43 feature-
extraction state machines to compute in parallel 4500 features per document-
query pair.

Next is the following Free-Form Expressions stage. Rather than implement the
functions directly in gates or in state machines, Microsoft developed a 60-core pro-
cessor that overcomes long-latency operations with multithreading. Unlike a GPU,
Microsoft’s processor does not require SIMD execution. It has three features that
let it match the latency target:

1. Each core supports four simultaneous threads where one can stall on a long
operation but the others can continue. All functional units are pipelined, so they
can accept a new operation every clock cycle.

2. Threads are statically prioritized using a priority encoder. Expressions with the
longest latency use thread slot 0 on all cores, then the next slowest is in slot 1 on
all cores, and so on.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 573

3. Expressions that are too large to fit in the time allocated for a single FPGA can
be split across the two FPGAs used for free-form expressions.

One cost of the reprogrammability in an FPGA is a slower clock rate than custom
chips. Machine-Learned Scoring uses two forms of parallelism to try to overcome
that disadvantage. The first is to have a pipeline that matches the available pipeline
parallelism in the application. For ranking, the limit is 8 μs per stage. The second
version of parallelism is the rarely seen multiple instruction streams, single data
stream (MISD) parallelism, where a large number of independent instruction
streams operate in parallel on a single document.

Figure 7.24 shows the performance of the ranking function on Catapult. As we
will see in Section 7.9, user-facing applications often have rigid response times; it
doesn’t matter how high the throughput is if the application misses the deadline.
The x-axis shows the response-time limit, with 1.0 as the cutoff. At this maximum
latency, Catapult is 1.95 times as fast as the host Intel server.

Catapult Version 1 Deployment

Before populating a whole warehouse-scale computer with tens of thousands of
servers, Microsoft did a test deployment of 17 full racks, which contained
17"48"2 or 1632 Intel servers. The Catapult cards and network links were tested
at manufacture and system integration, but at deployment, seven of the 1632 cards
failed (0.43%), and one of the 3264 FPGA network links (0.03%) was defective.
After several months of deployment, nothing else failed.

Feature extraction FSMs

Feature-
gathering
network

Hit vector
preprocessing

FSM

Figure 7.23 The architecture of FPGA implementation of the Feature Extraction
stage. A hit vector, which describes the locations of query words in each document,
is streamed into the hit vector preprocessing state machine and then split into control
and data tokens. These tokens are issued in parallel to the 43 unique feature state
machines. The feature-gathering network collects generated feature and value pairs
and forwards them to the following Free-Form Expressions stage.

574 ■ Chapter Seven Domain-Specific Architectures

Catapult Version 2

Although the test deployment was successful, Microsoft changed the architecture
for the real deployment to enable both Bing and Azure Networking to use the same
boards and architecture (Caulfield et al., 2016). The main problem with the V1
architecture was that the independent FPGA network did not enable the FPGA
to see and process standard Ethernet/IP packets, which prevented it from being
used to accelerate the data center network infrastructure. In addition, the cabling
was expensive and complicated, it was limited to 48 FPGAs, and the rerouting
of traffic during certain failure patterns reduced performance and could
isolate nodes.

The solution was to place the FPGA logically between the CPU and NIC, so
that all network traffic goes through the FPGA. This “bump-on-a-wire” placement
removes many weaknesses of the FPGA network in Catapult V1. Moreover, it
enables the FPGAs to run their own low-latency network protocol that allows them
to be treated as a global pool of all the FPGAs in the data center and even across
data centers.

Three changes occurred between V1 and V2 to overcome the original concerns
of Catapult applications interfering with data center network traffic. First, the data
center network was upgraded from 10Gbit/s to 40 Gbit/s, increasing the headroom.
Second, Catapult V2 added a rate limiter for FPGA logic, ensuring that an FPGA
application could not overwhelm the network. The final and perhaps most

0
0

0.5 1
Latency (normalized to 95th percentile target)

95% more

95th percentile latency versus throughput

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

1.5 2

1

2

3

4

5

Software
FPGA

29% lower latency

Throughput

Figure 7.24 Performance for the ranking function on Catapult for a given
latency bound. The x-axis shows the response time for the Bing ranking function.
The maximum response time at the 95th percentile for the Bing application on the
x-axis is 1.0, so data points to the right may have a higher throughput but arrive too
late to be useful. The y-axis shows the 95% throughputs on Catapult and pure software
for a given response time. At a normalized response time of 1.0, Catapult has 1.95 the
throughput of Intel server running in pure software mode. Stated alternatively, if Cat-
apult matches the throughput that the Intel server has at 1.0 normalized response time,
Catapult’s response time is 29% less.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 575

important change was that the networking engineers would now had their own use
cases for the FPGA, given its bump-in-the-wire placement. That placement trans-
formed these former interested bystanders into enthusiastic collaborators.

By deploying Catapult V2 in the majority of its new servers, Microsoft essen-
tially has a second supercomputer composed of distributed FPGAs that shares the
same network wires as the CPU servers and is at the same scale, as there is one
FPGA per server. Figures 7.25 and 7.26 show the block diagram and the board
for Catapult V2.

Catapult V2 follows the same shell and role split of the RTL to simplify pro-
gramming, but at the time of publication, the shell uses almost half of the FPGA
resources (44%) because of the more complicated network protocol that shares the
data center network wires.

Catapult V2 is used for both Ranking acceleration and function network accel-
eration. In Ranking acceleration, rather than perform nearly all of the ranking func-
tion inside the FPGA, Microsoft implemented only the most compute-intensive
portions and left the rest to the host CPU:

■ The feature functional unit (FFU) is a collection of finite state machines that
measure standard features in search, such as counting the frequency of a par-
ticular search term. It is similar in concept to the Feature Extraction stage of
Catapult V1.

2-socket server blade

TOR
40Gb/s40Gb/s

D
R

A
M

CPU

FPGANIC

DRAM

CPU

DRAM

Gen3 2x8

A
cc

el
er

at
or

 c
ar

d

Gen3 x8

QPI

QSFP QSFP QSFP

Figure 7.25 The Catapult V2 block diagram. All network traffic is routed through the
FPGA to the NIC. There is also a PCIe connector to the CPUs, which allows the FPGA to be
used as a local compute accelerator, as in Catapult V1.

576 ■ Chapter Seven Domain-Specific Architectures

■ The dynamic programming feature (DPF) creates a Microsoft proprietary set
of features using dynamic programming and bears some similarity to the Free-
Form Expressions stage of Catapult V1.

Both are designed so that they can use non-local FPGAs for these tasks, which
simplifies scheduling.

Figure 7.27 shows the performance of Catapult V2 compared to software in
a format similar to Figure 7.24. The throughput can now be increased 2.25"
without endangering latency, whereas the speedup was previously 1.95".
When ranking was deployed and measured in production, Catapult V2 had bet-
ter tail latencies than software; that is, the FPGA latencies never exceeded the
software latencies at any given demand despite being able to absorb twice the
workload.

Summary: How Catapult Follows the Guidelines

Microsoft reported that adding Catapult V1 to the servers in the pilot phase
increased the total cost of ownership (TCO) by less than 30%. Thus, for this appli-
cation, the net gain in cost-performance for Ranking was at least 1.95/1.30, or a
return on investment of about 1.5. Although no comment was made about TCO
concerning Catapult V2, the board has a similar number of the same type of chips,
so we might guess that the TCO is no higher. If so, the cost-performance of Cat-
apult V2 is about 2.25/1.30, or 1.75 for Ranking.

Here is how Catapult followed the guidelines from Section 7.2.

40G QSFP Ports
(NIC and TOR)

Stratix V
D5 FPGA

4GB DDR3

Figure 7.26 The Catapult V2 board uses a PCIe slot. It uses the same FPGA as Catapult
V1 and has a TDP of 32 W. A 256-MB Flash chip holds the golden image for the FPGA that
is loaded at power on, as well as one application image.

7.5 Microsoft Catapult, a Flexible Data Center Accelerator ■ 577

1. Use dedicated memories to minimize the distance over which data is moved.
The Altera V FPGA has 5 MiB of memory on-chip, which an application can
customize for its use. For example, for CNNs, it is used for the input and output
feature maps of Figure 7.21.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
The Altera V FPGA also has 3926 18-bit ALUs that are tailored to the appli-
cation. For CNNs, they are used to create the systolic array that drives the Pro-
cessing Elements in Figure 7.22, and they form the datapaths of the 60-core
multiprocessor used by Free Form Expression stage of ranking.

3. Use the easiest form of parallelism that matches the domain.
Catapult picks the form of parallelism that matches the application. For exam-
ple, Catapult uses two-dimensional SIMD parallelism for the CNN application
and MISD parallelism in the Machine Scoring phase stream Ranking.

4. Reduce data size and type to the simplest needed for the domain.
Catapult can use whatever size and type of data that the application wants, from
an 8-bit integer to a 64-bit floating point.

5. Use a domain-specific programming language to port code to the DSA.
In this case, programming is done in the hardware register-transfer language
(RTL)Verilog, which is an even less productive language than C orC++.Micro-
soft did not (and possibly could not) follow this guideline given its use of FPGAs.

Although this guideline concerns the one-time porting of an application from software
to FPGA, applications are not frozen in time.Almost bydefinition, software evolves to
add features or fix bugs, especially for something as important as web search.

0
0

1

2

3

4

0.5 1

Latency (normalized to 99th percentile target)

T
h

ro
u

g
h

p
u

t
(n

o
rm

al
iz

ed
)

1.5 2

FPGA Software

Figure 7.27 Performance for the ranking function on Catapult V2 in the same format
as Figure 7.24. Note that this version measures 99th percentile while the earlier figure
plots 95th percentile.

578 ■ Chapter Seven Domain-Specific Architectures

Maintenance of successful programs can be most of software’s development costs.
Moreover,when programming in anRTL, softwaremaintenance is evenmore burden-
some. TheMicrosoft developers, like all others who use FPGAs as accelerators, hope
that future advances in domain-specific languages and systems for hardware-software
co-design will reduce the difficulty of programming FPGAs.

7.6 Intel Crest, a Data Center Accelerator for Training

The quotation by the Intel CEO that opens Section 7.3 came from the press release
announcing that Intel was going to start shipping DSAs (“accelerants”) for DNN. The
first example was Crest, which was announced while we were writing this edition.
Despite the limited details,we include it here because of the significance of a traditional
microprocessor manufacturer like Intel taking this bold step of embracing DSAs.

Crest is aimed at DNN training. The Intel CEO said the goal is to accelerate
DNN training a hundredfold over the next three years. Figure 7.6 shows that train-
ing can take a month. There is likely to be a demand to decrease the DNN training
to just eight hours, which would be 100 times quicker than the CEO predicted.
DNNs will surely become even more complex over the next 3 years, which will
require a much greater training effort. Thus there seems little danger that a
100" improvement in training is overkill.

Crest instructions operate on blocks of 32"32 matrices. Crest uses a number
format called flex point, which is a scaled fixed-point representation: 32"32matri-
ces of 16-bit data share a single 5-bit exponent that is provided as part of the
instruction set.

Figure 7.28 shows the block diagramof the LakeCrest chip. To compute on these
matrices, Crest uses the12 processing clusters of Figure 7.28. Each cluster includes a
large SRAM, a big linear algebra processing unit, and a small amount of logic for on-
and off-chip routing.The four 8GiBHBM2DRAMmodules offer 1TB/s ofmemory
bandwidth, which should lead to an attractive Roofline model for the Crest chip. In
addition to high-bandwidth paths to main memory, Lake Crest supports high band-
width interconnects directly between compute cores inside the processing clusters,
which facilitates quick core-to-core communication without passing through shared
memory. Lake Crest’s goal is a factor of 10 improvement in training over GPUs.

Figure 7.28 shows 12 Inter-Chip Links (ICLs) and 2 Inter-Chip Controllers
(ICCs), so Crest is clearly designed to allow many Crest chips to collaborate, sim-
ilar in spirit to the dedicated network connecting the 48 FPGAs in Catapult. It’s
likely that the 100" improvement in training will require ganging together several
Crest chips.

7.7 Pixel Visual Core, a Personal Mobile Device Image
Processing Unit

Pixel Visual Core is a programmable, scalable DSA intended for image processing
and computer vision from Google, initially for cell phones and tablets running the

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 579

Android operating system, and then potentially for Internet of Things (IoT)
devices. It is a multicore design, supporting between 2 and 16 cores to deliver a
desired cost-performance. It is designed either to be its own chip or to be part
of a system on a chip (SOC). It has a much smaller area and energy budget than
its TPU cousin. Figure 7.29 lists terms and acronyms found in this section.

Pixel Visual Core is an example of a new class of domain specific architectures
for vision processing that we call image processing units (IPUs). IPUs solve the
inverse problem of GPUs: they analyze and modify an input image in contrast
to generating an output image. We call them IPUs to signal that, as a DSA, they
do not need to do everything well because there will also be CPUs (and GPUs) in
the system to perform non-input-vision tasks. IPUs rely on stencil computations
mentioned above for CNNs.

The innovations of Pixel Visual Core include replacing the one-dimensional
SIMD unit of CPUs with a two-dimensional array of processing elements
(PEs). They provide a two-dimensional shifting network for the PEs that is aware
of the two-dimensional spatial relationship between the elements, and a two-
dimensional version of buffers that reduces accesses to off-chip memory. This
novel hardware makes it easy to perform stencil computations that are central to
both vision processing and CNN algorithms.

ISPs, the Hardwired Predecessors of IPUs

Most portable mobile devices (PMDs) have multiple cameras for input, which has
led to hardwired accelerators called image signal processors (ISPs) for enhancing

8GB HBM2

Interposer

8GB HBM2

8GB HBM2

8GB HBM2

HBM
PHY

Mem
Ctrlr

HBM
PHY

Mem
Ctrlr

PCl Express ×16
PCle Controller & DMA

SPI, IC2,
GPIO

Mem
Ctrlr

HBM
PHY

Mem
Ctrlr

HBM
PHY

MGMT
CPU

ICC

ICC

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

IC
L

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Processing
Cluster

Figure 7.28 Block diagram of the Intel Lake Crest processor. Before being acquired by Intel, Crest said that the chip
is almost a full reticle in TSMC 28 nm, which would make the die size 600–700 mm2. This chip should be available in
2017. Intel is also building Knights Crest, which is a hybrid chip containing Xeon x86 cores and Crest accelerators.

580 ■ Chapter Seven Domain-Specific Architectures

input images. The ISP is usually a fixed function ASIC. Virtually every PMD today
includes an ISP.

Figure 7.30 shows a typical organization of an image-processing system,
including the lens, sensor, ISP, CPU, DRAM, and display. The ISP receives
images, removes artifacts in images from the lens and the sensor, interpolates miss-
ing colors, and significantly improves the overall visual quality of the image.
PMDs tend to have small lens and thus tiny noisy pixels, so this step is critical
to producing high-quality photos and videos.

An ISP processes the input image in raster scan order by calculating a series of
cascading algorithms via software configurable hardware building blocks, typi-
cally organized as a pipeline to minimize memory traffic. At each stage of the pipe-
line and for each clock cycle, a few pixels are input, and a few are output.
Computation is typically performed over small neighborhoods of pixels
(stencils). Stages are connected by buffers called line buffers. The line buffers help

Term Acronym Short explanation

Core – A processor. Pixel Visual Core can have 2–16 cores. The first implementation has 8;
also called stencil processor (STP)

Halide – A domain-specific programming language for image processing that separates the
algorithm from its execution schedule

Halo – An extended region around the 16"16 computation array to handle stencil computation
near the borders of the array. It holds values, but doesn’t compute

Image signal
processors

ISP A fixed function ASIC that improves the visual quality of an image; found in virtually
all PMDs with cameras

Image processing
unit

IPU A DSA that solves the inverse problem of a GPU: it analyzes and modifies an input
image in contrast to generating an output image

Line buffer pool LB A line buffer is designed to capture a sufficient number of full lines of an intermediate image
to keep the next stage busy. Pixel Visual Core uses two-dimensional line buffers, each
Change64 to128KiB.TheLineBufferPool contains oneLBper core plus oneLB forDMA

Network on chip NOC The network that connects the cores in Pixel Visual Core

Physical ISA pISA The Pixel Visual Core instruction set architecture (ISA) that is executed by the hardware

Processing
element array

– The 16"16 array of Processing Elements plus the halo that performs the 16-bit
multiply-add operations. Each Processing Element includes a Vector Lane and local
memory. It can shift data en mass to neighbors in any of four directions

Sheet generator SHG Does memory accesses of blocks of 1 " 1 to 31 " 31 pixels, which are called sheets.
The different sizes allow the option of including the space for the halo or not

Scalar lane SCL Same operations as the Vector Lane except it adds instructions that handle jumps,
branches, and interrupts, controls instruction flow to the vector array, and schedules all
the loads and stores for the sheet generator. It also has a small instruction memory. It
plays the same role as the scalar processor in a vector architecture

Vector lane VL Portion of the Processing Element that performs the computer arithmetic

Virtual ISA vISA ThePixelVisualCore ISAgenerated by the compiler. It ismapped to pISAbefore execution

Figure 7.29 A handy guide to Pixel Visual Core terms in Section 7.7. Figure 7.4 on page 437 has a guide for
Sections 7.3–7.6.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 581

keep the processing stages utilized via spatial locality by capturing just enough full
lines of an intermediate image to facilitate the computation required by the
next stage.

The enhanced image is either sent to a display or to DRAM for storage or for
later processing. The ISP also sends statistics about the image (e.g., color and luma
histograms, sharpness, and so on) to the CPU, which in turn it processes and sends
information to help the system adapt.

Although efficient, ISPs have two major downsides. Given the increasing
demand for improved image quality in handheld devices, the first is the inflexibil-
ity of an ISP, especially as it takes years to design and manufacture a new ISP
within an SOC. The second is that these computing resources can be used only
for the image-enhancing function, no matter what is needed at the time on the
PMD. Current generation ISPs handle workloads at up to 2 Tera-operations per
second on a PMD power budget, so a DSA replacement has to achieve similar per-
formance and efficiency.

Pixel Visual Core Software

Pixel Visual Core generalized the typical hardwired pipeline organization of ker-
nels of an ISP into a directed acyclic graph (DAG) of kernels. Pixel Visual Core
image-processing programs are typically written in Halide, which is a domain-
specific functional programming language for image processing. Figure 7.31 is
a Halide example that blurs an image. Halide has a functional section to express
the function being programmed and a separate schedule section to specify how
to optimize that function to the underlying hardware.

Output
image

(Display)

Image

Img &
Stats

AWBAEAF

Sensor
(CCD or CMOS)Lens

DRAM

CPU

ISP

B
U

S

Figure 7.30 Diagram showing interconnection of the Image Signal Processor (ISP),
CPU, DRAM, lens, and sensor. The ISP sends statistics to the CPU as well as the
improved image either to the display or to DRAM for storage or later processing. The
CPU then processes the image statistics and sends information to let the system adapt:
Auto White Balance (AWB) to the ISP, Auto Exposure (AE) to the sensor, and Auto Focus
(AF) to the lens, known as the 3As.

582 ■ Chapter Seven Domain-Specific Architectures

Pixel Visual Core Architecture Philosophy

The power budget of PMDs is 6–8 W for bursts of 10–20 seconds, dropping down
to tens of milliwatts when the screen is off. Given the challenging energy goals of a
PMD chip, the Pixel Visual Core architecture was strongly shaped by the relative
energy costs for the primitive operations mentioned in Chapter 1 and made explicit
in Figure 7.32. Strikingly, a single 8-bit DRAM access takes as much energy as
12,500 8-bit additions or 7–100 8-bit SRAM accesses, depending on the organi-
zation of the SRAM. The 22" to 150" higher cost of IEEE 754 floating-point
operations over 8-bit integer operations, plus the die size and energy benefits of
storing narrower data, strongly favor using narrow integers whenever algorithms
can accommodate them.

In addition to the guidelines from Section 7.2, these observations led to other
themes that guided the Pixel Visual Core design:

■ Two-dimensional is better than one-dimensional: Two-dimensional organiza-
tions can be beneficial for processing images as it minimizes communication
distance and because the two- and three-dimensional nature of image data can
utilize such organizations.

■ Closer is better than farther: Moving data is expensive. Moreover, the relative
cost of moving data to an ALU operation is increasing. And of course DRAM
time and energy costs far exceed any local data storage or movement.

A primary goal in going from an ISP to an IPU is to get more reuse of the hardware
via programmability. Here are the three main features of the Pixel Visual Core:

Func buildBlur(Func input) {
// Functional portion (independent of target processor)

Func blur_x("blur_x"), blur_y("blur_y");
blur_x(x,y) = (input(x#1,y) + input(x,y)*2 + input(x+1,y)) / 4;
blur_y(x,y) = (blur_x(x,y#1) + blur_x(x,y)*2 + blur_x(x,y+1)) / 4;

if (has_ipu) {
// Schedule portion (directs how to optimize for target processor)
blur_x.ipu(x,y);
blur_y.ipu(x,y);

}
return blur_y;

}

Figure 7.31 Portion of a Halide example to blur an image. The ipu(x,y) suffix schedules the function to Pixel
Visual Core. A blur has the effect of looking at the image through a translucent screen, which reduces noise and detail.
A Gaussian function is often used to blur the image.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 583

1. Following the theme that two-dimensional is better than one-dimensional, Pixel
Visual Core uses a two-dimensional SIMD architecture instead of one-
dimensional SIMD architecture. Thus it has a two-dimensional array of indepen-
dent processing elements (PEs), each of which contains 2 16-bit ALUs, 1 16-bit
MAC unit, 10 16-bit registers, and 10 1-bit predicate registers. The 16-bit arith-
metic follows the guideline of providing only the precision needed by the domain.

2. Pixel Visual Core needs temporary storage at each PE. Following the guideline
from Section 7.2 of avoiding caches, this PE memory is a compiler-managed
scratchpad memory. The logical size of each PE memory is 128 entries of
16 bits, or just 256 bytes. Because it would be inefficient to implement a sep-
arate small SRAM in each PE, Pixel Visual Core instead groups the PE memory
of 8 PEs together in a single wide SRAM block. Because the PEs operate in
SIMD fashion, Pixel Visual Core can bind all the individual reads and writes
together to form a “squarer” SRAM, which is more efficient than narrow
and deep or wide and shallow SRAMs. Figure 7.33 shows four PEs.

3. To be able to perform simultaneous stencil computations in all PEs, Pixel Visual
Core needs to collect inputs from nearest neighbors. This communication pat-
tern requires a “NSEW” (North, South, East, West) shift network: it can shift
data en masse between the PEs in any compass direction. So that it doesn’t lose
pixels along the edges as it shifts images, Pixel Visual Core connects the end-
points of the network together to form a torus.

Note that the shift network is in contrast with the systolic array of processing element
arrays in the TPU and Catapult. In this case, software explicitly moves the data in the
desired direction across the array, whereas the systolic approach is a hardware-
controlled, two-dimensional pipeline that moves data as a wavefront that is invisible
to the software.

The Pixel Visual Core Halo

A 3"3, 5"5, or 7"7 stencil is going to get inputs from 1, 2, or 3 external pixels at
the edges of the two-dimensional subset being computed (half of the dimension of
the stencil minus one-half). That leaves two choices. Either Pixel Visual Core

Operation Energy (pJ) Operation Energy (pJ) Operation Energy (pJ)

8b DRAM LPDDR3 125.00 8b SRAM 1.2–17.1 16b SRAM 2.4–34.2

32b Fl. Pt. muladd 2.70 8b int muladd 0.12 16b int muladd 0.43

32b Fl. Pt. add 1.50 8b int add 0.01 16b int add 0.02

Figure 7.32 Relative energy costs per operation in picoJoules assuming TSMC 28-nm HPM process, which was
the process Pixel Visual Core used [17][18][19][20]. The absolute energy cost are less than in Figure 7.2 because of
using 28 nm instead of 90 nm, but the relative energy costs are similarly high.

584 ■ Chapter Seven Domain-Specific Architectures

under utilizes the hardware in the elements near the border, because they only pass
input values, or Pixel Visual Core slightly extends the two-dimensional PEs with
simplified PEs that leave out the ALUs. Because the difference in size between a
standard PE and a simplified PE is about 2.2", Pixel Visual Core has an extended
array. This extended region is called the halo. Figure 7.34 shows two rows of a halo
surrounding an 8x8 PE array and illustrates how an example 5"5 stencil compu-
tation in the upper-left corner relies on the halo.

A Processor of the Pixel Visual Core

The collection of 16"16 PEs and 4 halo lanes in each dimension, called the PE
array or vector array, is the main computation unit of the Pixel Visual Core. It also
has a load-store unit called a Sheet Generator (SHG). SHG refers to memory
accesses of blocks of 1 " 1 to 256 " 256 pixels, which are called sheets. This hap-
pens during downsampling, and typical values are 16 " 16 or 20 " 20.

An implementation of Pixel Visual Core can have any even number of 2 or
more cores, depending on the resources available. Thus it needs a network to con-
nect them together, so every core also has an interface to the Network on Chip
(NOC). A typical NOC implementation for Pixel Visual Core will not be an expen-
sive cross switch, however, because those require data to travel a long distance,
which is expensive. Leveraging the pipeline nature of the application, the NOC
typically needs to communicate only to neighboring cores. It is implemented as
a two-dimensional mesh, which allows power gating of pairs of cores under soft-
ware control.

Mem

Mem

S

N

Mem

Mem

S

N

E

E

S

W

W

Figure 7.33 The two-dimensional SIMD includes two-dimensional shifting “N,” “S,” “E,” “W,” show the direction
of the shift (North, South, East, West). Each PE has a software-controlled scratchpad memory.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 585

Finally, the Pixel Visual Core also includes a scalar processor that is called a
scalar lane (SCL). It is identical to the vector lane, except it adds instructions that
handle jumps, branches, and interrupts, controls instruction flow to the vector
array, and schedules all the loads and stores for the sheet generator. It also has
a small instruction memory. Note that Pixel Visual Core has a single instruction
stream that controls the scalar and vector units, similar to how a CPU core has
a single instruction stream for its scalar and SIMD units.

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

pe

5 x 5 stencil

Figure 7.34 The two-dimensional array of full processing elements (shown as
unshaded circles) surrounded by two layers of simplified processing elements
(shaded diamonds) called a halo. In this figure, there are 8"8 or 64 full PEs with 80
simplified PEs in the halo. (Pixel Visual Core actually has 16"16 or 256 full PEs and
two layers in its halo and thus 144 simplified PEs.) The edges of the halo are connected
(shown as gray lines) to form a torus. Pixel Visual Core does a series of two-dimensional
shifts across all processing elements tomove the neighbor portions of each stencil com-
putation into the center PE of the stencil. An example 5"5 stencil is shown in the upper-
left corner. Note that 16 of the 25 pieces of data for this 5"5 stencil location come from
halo processing elements.

586 ■ Chapter Seven Domain-Specific Architectures

In addition to cores, there is also a DMA engine to transfer data between
DRAM and the line buffers while efficiently converting between image memory
layout formats (e.g., packing/unpacking). As well as sequential DRAM accesses,
the DMA engines perform vector-like gather reads of DRAM as well as sequential
and strided reads and writes.

Pixel Visual Core Instruction Set Architecture

Like GPUs, Pixel Visual Core uses a two-step compilation process. The first step is
compiling the programs from the target language (e.g., Halide) into vISA instruc-
tions. The Pixel Visual Core vISA (virtual Instruction Set Architecture) is inspired
in part by the RISC-V instruction set, but it uses an image-specific memory model
and extends the instruction set to handle image processing, and in particular, the
two-dimensional notion of images. In vISA, the two-dimensional array of a core is
infinite, the number of register is unbounded, and memory size is similarly unlim-
ited. vISA instructions contain pure functions that don’t directly access DRAM
(see Figure 7.36), which greatly simplifies mapping them onto the hardware.

The next step is to compile the vISA program into a pISA (physical Instruction
Set Architecture) program. Using vISA as the target of compilers allows the proces-
sor to be software-compatible with past programs and yet accept changes to the pISA
instruction set, so vISA plays the same role that PTX does for GPUs (see Chapter 4).

Lowering from vISA to pISA takes two steps: compilation and mapping with
early-bound parameters, and then patching the code with late-bound parameters.
The parameters that must be bound include STP size, halo size, number of STPs,
mapping of line buffers, mapping of kernels to processors, as well as register and
local memory allocations.

Figure 7.35 shows that pISA is a very long instruction word (VLIW) instruc-
tion set with 119-bit-wide instructions. The first 43-bit field is for the Scalar
Lane, the next 38-bit field specifies the computation by the two-dimensional
PE array, and the third 12-bit field specifies the memory accesses by the two-
dimensional PE array. The last two fields are immediates for computation or
addressing. The operations for all the VLIW fields are what you’d expect: two’s
complement integer arithmetic, saturating integer arithmetic, logical operations,
shifts, data transfers, and a few special ones like divide iteration and count lead-
ing zeros. The Scalar Lane supports a superset of the operations in the two-
dimensional PE array, plus it adds instructions for control-flow and sheet-
generator control. The 1-bit Predicate registers mentioned above enables condi-
tional moves to registers (e.g., A ¼ B if C).

Field Scalar Math Memory Imm MemImm

Bits 43 38 12 16 10

Figure 7.35 VLIW format of the 119-bit pISA instruction.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 587

Although the pISA VLIW instruction is very wide, Halide kernels are short,
often just 200–600 instructions. Recall that as an IPU, it only needs to execute
the compute-intensive portion of an application, leaving the rest of the function-
ality to CPUs and GPUs. Thus the instruction memory of a Pixel Visual Core holds
just 2048 pISA instructions (28.5 KiB).

The Scalar Lane issues sheet generator instructions that access line buffers.
Unlike other memory accesses within Pixel Visual Core, the latency can be more
than 1 clock cycle, so they have a DMA-like interface. The lane first sets up the
addresses and transfer size in special registers.

Pixel Visual Core Example

Figure 7.36 shows the vISA code that is output from the Halide compiler for the
blur example in Figure 7.31, with comments added for clarity. It calculates a blur
first in the x direction and then in the y direction using 16-bit arithmetic. The vISA
code matches the functional part of the Halide program. This code can be thought
of as executing across all the pixels of an image.

Pixel Visual Core Processing Element

One of the architectural decisions was how big to build the halo. Pixel Visual Core
uses 16"16 PEs, and it adds a halo of 2 extra elements, so it can support 5"5

// vISA inner loop blur in x dimension
input.b16 t1 <- _input[x*1+(#1)][y*1+0][0]; // t1 = input[x#1,y]
input.b16 t2 <- _input[x*1+0][y*1+0][0]; // t2 = input[x,y]
mov.b16 st3 <- 2;
mul.b16 t4 <- t2, st3; //t4 = input[x,y] * 2
add.b16 t5 <- t1, t4; //t5 = input[x#1,y] + input[x,y]*2
input.b16 t6 <- _input[x*1+1][y*1+0][0]; // t6 = input[x+1,y]
add.b16 t7 <- t5, t6; //t7 = input[x+1,y]+input[x,y]+input[x#1,y]*2
mov.b16 st8 <- 4;
div.b16 t9 <- t7, st8; //t9 = t7/4
output.b16 _blur_x[x*1+0][y*1+0][0] <- t9; // blur_x[x,y] = t7/4
// vISA inner loop blur in y dimension
input.b16 t1 <- _blur_x[x*1+0][y*1+(#1)][0]; // t1 = blur_x[x,y#1]
input.b16 t2 <- _blur_x[x*1+0][y*1+0][0]; // t2 = blur_x[x,y]
mov.b16 st3 <- 2;
mul.b16 t4 <- t2, st3; //t4 = blur_x[x,y] * 2
add.b16 t5 <- t1, t4; //t5 = blur_x[x,y#1] + blur_x[x,y]*2
input.b16 t6 <- _blur_x[x*1+0][y*1+1][0]; // t6 = blur_x[x,y+1]
add.b16 t7 <- t5, t6; //t7 = blurx[x,y+1]+blurx[x,y#1]+blurx[x,y]*2
mov.b16 st8 <- 4;
div.b16 t9 <- t7, st8; //t9 = t7/4
output.b16 _blur_y[x*1+0][y*1+0][0] <- t9; // blur_y[x,y] = t7/4

Figure 7.36 Portion of the vISA instructions compiled from the Halide Blur code in Figure 7.31. This vISA code
corresponds to the functional part of the Halide code.

588 ■ Chapter Seven Domain-Specific Architectures

stencils directly. Note that the bigger the array of PEs, the less the halo overhead to
support a given stencil size.

For Pixel Visual Core, the smaller size of the halo PEs and the 16"16 arrays
means it only costs 20% more area for the halo. For a 5"5 stencil, Pixel Visual
Core can calculate 1.8 times as many results per clock cycle (162/122), and the ratio
is 1.3 for a 3"3 stencil (162/142).

The design of the arithmetic unit of the PE is driven by multiply-accumulate
(MAC), which is a primitive of stencil computation. Pixel Visual Core native
MACs are 16-bits wide for the multiplies, but they can accumulate at a 32-bit
width. Pipelining MAC would use energy unnecessarily because of the reading
and writing of the added pipeline register. Thus the multiply-add hardware deter-
mines the clock cycle. The other operations, previously mentioned, are the tradi-
tional logical and arithmetic operations along with saturating versions of the
arithmetic operations and a few specialized instructions.

The PE has two 16-bit ALUs that can operate in a variety of ways within a
single clock cycle:

■ Independently, producing two 16-bit results: A op B, C op D.

■ Fused, producing just one 16-bit result: A op (C op D).

■ Joined, producing one 32-bit result: A:C op B:D.

Two-Dimensional Line Buffers and Their Controller

Because DRAM accesses use so much energy (see Figure 7.32), the Pixel Visual
Core memory system was carefully designed to minimize the number of DRAM
accesses. The key innovation is the two-dimensional line buffer.

Kernels are logically running on separate cores, and they are connected in a
DAG with input from the sensor or DRAM and output to DRAM. The line buffers
hold portions of the image being calculated between kernels. Figure 7.37 shows the
logical use of line buffers in Pixel Visual Core.

2D stencil
processor

2D stencil
processor

DRAM

DRAM

Lens

2D stencil
processor

2D stencil
processor

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

LineBuffer

Figure 7.37 Programmer view of Pixel Visual Core: a directed-acyclic graph of kernels.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 589

Here are four features that the two-dimensional line buffer must support:

1. It must support two-dimensional stencil computations of various sizes, which
are unknown at design time.

2. Because of the halo, for the 16"16 PE array in Pixel Visual Core, the STPs will
want to read 20"20 blocks of pixels from the line buffer and write 16"16
blocks of pixels to the line buffer. (As previously mentioned, they call these
blocks of pixels sheets.)

3. Because the DAG is programmable, we need line buffers that can be allocated
by software between any two cores.

4. Several cores may need to read data from the same line buffer. Thus a line buffer
should support multiple consumers, although it needs just one producer.

Line buffers in Pixel Visual Core are really a multi-reader, two-dimensional FIFO
abstraction on top of a relatively large amount of SRAM: 128 KiB per instance. It
contains temporary “images” that are used just once, so a small, dedicated local
FIFO is much more efficient than a cache for data in distant memory.

To accommodate the size mismatch between reading 20"20 blocks of pixels
and writing 16"16 blocks, the fundamental unit of allocation in the FIFO is a
group of 4"4 pixels. Per stencil processor, there is one Line Buffer Pool (LBP)
that can have eight logical line buffers (LB), plus one LBP for DMA of I/O.
The LBP has three levels of abstraction:

1. At the top, the LBP controller supports eight LBs as logical instances. Each LB
has one FIFO producer and up to eight FIFO consumers per LB.

2. The controller keeps track of a set of head and tail pointers for each FIFO. Note
that the sizes of the line buffers inside the LBP are flexible and up to the
controller.

3. At the bottom are many physical memory banks to support the bandwidth
requirements. Pixel Visual Core has eight physical memory banks, each having
a 128-bit interface and 16 KiB of capacity.

The controller for the LBP is challenging because it must fulfill the bandwidth
demands of the STPs and I/O DMAs as well as schedule all their reads and writes
to the banks of physical SRAM memory. The LBP controller is one of the most
complicated pieces of Pixel Visual Core.

Pixel Visual Core Implementation

The first implementation of Pixel Visual Core was as a separate chip. Figure 7.38
shows the floorplan of the chip, which has 8 cores. It was fabricated in a TSMC
28 nm technology in 2016. The chip dimensions are 6"7.2 mm, it runs at
426 MHz, it is stacked with 512 MB DRAM as Silicon in Package, and consumes

590 ■ Chapter Seven Domain-Specific Architectures

(including the DRAM) 187–4500 mW depending on the workload. About 30% of
the power for the chip is for an ARMv7 A53 core for control, the MIPI, the PCIe,
the PCIe, and the LPDDR interfaces, interface is just over half this die at 23 mm2.
Power for Pixel Visual Core running a worst case “power virus” can go as high as
3200 mW. Figure 7.39 shows the floor plan of a core.

Summary: How Pixel Visual Core Follows the Guidelines

Pixel Visual Core is a multicore DSA for image and vision processing intended as a
stand-alone chip or as an IP block for mobile device SOCs. As we will see in
Section7.9, its performanceperwatt forCNNsare factors of 25–100better thanCPUs
and GPUs. Here is how the Pixel Visual core followed the guidelines in Section 7.2.

1. Use dedicated memories to minimize the distance over which data is moved.
Perhaps the most distinguishing architecture feature of Pixel Visual Core is the
software-controlled, two-dimensional line buffers. At 128 KiB per core, they
are a significant fraction of the area. Each core also has 64 KiB of software-
controlled PE memory for temporary storage.

2. Invest the resources saved from dropping advanced microarchitectural optimi-
zations into more arithmetic units or bigger memories.
Two other key features of Pixel Visual Core are a 16"16 two-dimensional
array of processing elements per core and a two-dimensional shifting network
between the processing elements. It offers a halo region that acts as a buffer to
allow full utilization of its 256 arithmetic units.

3 x MIPI-In
2 x MIPI-OutA53

LP
D

D
R

4

Pixel Visual Core

PCIE
4 x

Gen3

Figure 7.38 Floor plan of the 8-core Pixel Visual Core chip. A53 is an ARMv7 core.
LPDDR4 is a DRAM controller. PCIE and MIPI are I/O buses.

7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit ■ 591

3. Use the easiest form of parallelism that matches the domain.
Pixel Visual Core relies on two-dimensional SIMD parallelism using its PE
array, VLIW to express instruction-level parallelism, and multiple program
multiple data (MPMD) parallelism to utilize multiple cores.

4. Reduce data size and type to the simplest needed for the domain.
Pixel Visual Core relies primarily on 8-bit and 16-bit integers, but it also works
with 32-bit integers, albeit more slowly.

5. Use a domain-specific programming language to port code to the DSA.
Pixel Visual Core is programmed in the domain-specific language Halide for
image processing and in TensorFlow for CNNs.

7.8 Cross-Cutting Issues

Heterogeneity and System on a Chip (SOC)

The easy way to incorporate DSAs into a system is over the I/O bus, which is the
approach of the data center accelerators in this chapter. To avoid fetching memory
operands over the slow I/O bus, these accelerators have local DRAM.

Figure 7.39 Floor plan of a Pixel Visual Core. From left to right, and top down: the sca-
lar lane (SCL) is 4% of the core area, NOC is 2%, the line buffer pool (LBP) is 15%, the sheet
generator (SHG) is 5%, the halo is 11%, and the processing element array is 62%. The torus
connection of the halo makes each of the four edges of the array logical neighbors. It is
more area-efficient to collapse the halo to just two sides, which preserves the topology.

592 ■ Chapter Seven Domain-Specific Architectures

Amdahl’s Law reminds us that the performance of an accelerator is limited by
the frequency of shipping data between the host memory and the accelerator mem-
ory. There will surely be applications that would benefit from the host CPU and the
accelerators to be integrated into the same system on a chip (SOC), which is one of
the goals of Pixel Visual Core and eventually the Intel Crest.

Such a design is called an IP block, standing for Intellectual Property, but a
more descriptive name might be portable design block. IP blocks are typically
specified in a hardware description language like Verilog or VHDL to be inte-
grated into the SOC. IP blocks enable a marketplace where many companies
make IP blocks that other companies can buy to build the SOCs for their appli-
cations without having to design everything themselves. Figure 7.40 indicates
the importance of IP blocks by plotting the number of IP blocks across genera-
tions of Apple PMD SOCs; they tripled in just four years. Another indication of
the importance of IP blocks is that the CPU and GPU get only one-third of the
area of the Apple SOCs, with IP blocks occupying the remainder (Shao and
Brooks, 2015).

Designing an SOC is like city planning, where independent groups lobby for
limited resources, and finding that the right compromise is difficult. CPUs, GPUs,
caches, video encoders, and so on have adjustable designs that can shrink or
expand to use more or less area and energy to deliver more or less performance.
Budgets will differ depending on whether the SOC is for tablets or for IoT. Thus an
IP block must be scalable in area, energy, and performance. Moreover, it is espe-
cially important for a new IP block to offer a small resource version because it may
not already have a well-established foothold in the SOC ecosystem; adoption is
much easier if the initial resource request can be modest. The Pixel Visual Core
approach is a multicore design, allowing the SOC engineer to choose between 2
and 16 cores to match the area and power budget and desired performance.

A8
(2014)

A7
(2013)

A6
(2012)

of

 s
pe

ci
al

iz
ed

 IP
 b

lo
ck

s

A5
(2011)

A4
(2010)

0

10

20

30

Figure 7.40 Number of IP blocks in Apple SOCs for the iPhone and iPad between
2010 and 2014 (Shao and Brooks, 2015).

7.8 Cross-Cutting Issues ■ 593

It will be interesting to see whether the attractiveness of integration leads to
most data center processors coming from traditional CPU companies with IP accel-
erators integrated into the CPU die, or whether systems companies will continue
designing their own accelerators and include IP CPUs in their ASICs.

An Open Instruction Set

One challenge for designers of DSAs is determining how to collaborate with a CPU
to run the rest of the application. If it’s going to be on the same SOC, then a major
decision is which CPU instruction set to choose, because until recently virtually
every instruction set belonged to a single company. Previously, the practical first
step of an SOC was to sign a contract with a company to lock in the instruction set.

The alternative was to design your own custom RISC processor and to port a
compiler and libraries to it. The cost and hassle of licensing IP cores led to a sur-
prisingly large number of do-it-yourself simple RISC processors in SOCs. One
AMD engineer estimated that there were 12 instruction sets in a modern
microprocessor!

RISC-V offers a third choice: a viable free and open instruction set with plenty
of opcode space reserved for adding instructions for domain-specific coprocessors,
which enables the previously mentioned tighter integration between CPUs and
DSAs. SOC designers can now select a standard instruction set that comes with
a large base of support software without having to sign a contract.

They still have to pick the instruction set early in the design, but they don’t have
to pick one company and sign a contract. They can design a RISC-V core them-
selves, they can buy one from the several companies that sell RISC-V IP blocks, or
they can download one of the free open-source RISC-V IP blocks developed by
others. The last case is analogous to open-source software, which offers web
browsers, compilers, operating systems, and so on that volunteers maintain for
users to download and use for free.

As a bonus, the open nature of the instruction set improves the business case for
small companies offering RISC-V technology because customers don’t have to
worry about the long-term viability of a company with its own unique
instruction set.

Another attraction of RISC-V for DSAs is that the instruction set is not as
important as it is for general-purpose processors. If DSAs are programmed at
higher levels using abstractions like DAGs or parallel patterns, as is the case
for Halide and TensorFlow, then there is less to do at the instruction set level.
Moreover, in a world where performance-cost and energy-cost advances come
from adding DSAs, binary compatibility may not play as important a role as
in the past.

At the time of this writing, the future of the open RISC-V instruction set
appears promising. (We wish we could peer into the future and learn the status
of RISC-V from now to the next edition of this book!)

594 ■ Chapter Seven Domain-Specific Architectures

7.9 Putting It All Together: CPUs Versus GPUs Versus
DNN Accelerators

We now use the DNN domain to compare the cost-performance of the accelerators
in this chapter.2 We start with a thorough comparison of the TPU to standard CPUs
and GPUs and then add brief comparisons to Catapult and Pixel Visual Core.

Figure 7.41 shows the six benchmarks we use in this comparison. They consist
of two examples of each of the three types of DNNs in Section 7.3. These six
benchmarks represent 95% of TPU inference workload in Google data centers
in 2016. Typically written in TensorFlow, they are surprisingly short: just 100–
1500 lines of code. They are small pieces of larger applications that run on the host
server, which can be thousands to millions of lines of C++ code. The applications
are typically user-facing, which leads to rigid response-time limits, as we will see.

Figures 7.42 and 7.43 show the chips and servers being compared. They are
server-class computers deployed in Google data centers at the same time that TPUs
were deployed. To be deployed in Google data centers, they must at least check for
internal memory errors, which excluded some choices, such as the Nvidia Maxwell
GPU. For Google to purchase and deploy them, the machines had to be sensibly
configured, and not awkward artifacts assembled solely to win benchmarks.

The traditional CPU server is represented by an 18-core, dual-socket Haswell
processor from Intel. This platform is also the host server for GPUs or TPUs.

2This section is also largely based upon the paper “In-Datacenter Performance Analysis of a Tensor Processing Unit”
Jouppi et al., 2017, of which one of your book authors was a coauthor.

Name LOC

DNN layers

Weights TPU Ops/Weight
% deployed
TPUs 2016FC Conv Element Pool Total

MLP0 100 5 5 20M 200 61%
MLP1 1000 4 4 5M 168

LSTM0 1000 24 34 58 52M 64 29%
LSTM1 1500 37 19 56 34M 96

CNN0 1000 16 16 8M 2888 5%
CNN1 1000 4 72 13 89 100M 1750

Figure 7.41 Six DNN applications (two per DNN type) that represent 95% of the TPU’s workload. The 10 columns
are the DNN name; the number of lines of code; the types and number of layers in the DNN (FC is fully connected;
Conv is convolution; Element is element-wise operation of LSTM, see Section 7.3; and Pool is pooling, which is a
downsizing stage that replaces a group of elements with its average or maximum); the number of weights; TPU oper-
ational intensity; and TPU application popularity in 2016. The operational intensity varies between TPU, CPU, and GPU
because the batch sizes vary. The TPU can have larger batch sizes while still staying under the response time limit.
One DNN is RankBrain (Clark, 2015), one LSTM is GNM Translate (Wu et al., 2016), and one CNN is DeepMind AlphaGo
(Silver et al., 2016; Jouppi, 2016).

7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators ■ 595

Haswell is fabricated in an Intel 22-nm process. Both the CPU and GPU are very
large dies: about 600 mm2!

The GPU accelerator is the Nvidia K80. Each K80 card contains two dies and
offers SECDED on internal memory and DRAM. Nvidia states that (Nvidia, 2016)

the K80 Accelerator dramatically lowers datacenter cost by delivering applica-
tion performance with fewer, more powerful servers.

DNN researchers frequently used K80s in 2015, which is when they were deployed
at Google. Note that K80s were also chosen for new cloud-based GPUs byAmazon
Web Services and by Microsoft Azure in late 2016.

Because the number of dies per benchmarked server varies between 2 and 8,
the following figures show results normalized per die, except for Figure 7.50,
which compares the performance/watt of whole servers.

Performance: Rooflines, Response Time, and Throughput

To illustrate the performance of the six benchmarks on the three processors, we
adapt the Roofline performance model in Chapter 4. To use the Roofline model
for the TPU, when DNN applications are quantized, we first replace floating-point
operations with integer multiply-accumulate operations. As weights do not
normally fit in on-chip memory for DNN applications, the second change is to
redefine operational intensity to be integer operations per byte of weights read
(Figure 7.41).

Chip model mm2 nm MHz TDP

Measured TOPS/s

GB/s On-chip memoryIdle Busy 8b FP

Intel Haswell 662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB

NVIDIA K80 561 28 560 150W 25W 98W – 2.8 160 8 MiB

TPU <331* 28 700 75W 28W 40W 92 – 34 28 MiB

*The TPU die size is less than half of the Haswell die size.

Figure 7.42 The chips used by the benchmarked servers are Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18
cores, and the K80 has 13 SMX processors.

Server Dies/Server DRAM TDP

Measured power

Idle Busy

Intel Haswell 2 256 GiB 504W 159W 455W

NVIDIA K80 (2 dies/card) 8 256 GiB (host)+12 GiB"8 1838W 357W 991W

TPU 4 256 GiB (host)+8 GiB"4 861W 290W 384W

Figure 7.43 Benchmarked servers that use the chips in Figure 7.42. The low-power TPU allows for better rack-level
density than the high-power GPU. The 8 GiB DRAM per TPU is Weight Memory.

596 ■ Chapter Seven Domain-Specific Architectures

Figure 7.44 shows the Roofline model for a single TPU on log-log scales. The
TPU has a long “slanted” part of its Roofline, where operational intensity means
that performance is limited by memory bandwidth rather than by peak compute.
Five of the six applications are happily bumping their heads against the ceiling:
the MLPs and LSTMs are memory-bound, and the CNNs are computation-bound.
The single DNN that is not bumping its head against the ceiling is CNN1. Despite
CNNs having very high operational intensity, CNN1 is running at only 14.1 Tera
Operations Per Second (TOPS), while CNN0 runs at a satisfying 86 TOPS.

For readers interested into a deep dive into what happened with CNN1,
Figure 7.45 uses performance counters to give partial visibility into the utilization
of the TPU. The TPU spends less than half of its cycles performing matrix oper-
ations for CNN1 (column 7, row 1). On each of those active cycles, only about half
of the 65,536 MACs hold useful weights because some layers in CNN1 have shal-
low feature depths. About 35% of cycles are spent waiting for weights to load from
memory into the matrix unit, which occurs during the four fully connected layers
that run at an operational intensity of just 32. This leaves roughly 19% of cycles not

100 10001

0.1

10

0.5

1

5

10

50

Roofline

TPU log-log

Te
ra

O
ps

/s
ec

 (
lo

g
sc

al
e)

LSTM0

LSTM1

MLP1

MLP0

CNN0

CNN1

14.1

86.0

12.3

9.7

2.8
3.7

Operational intensity: MAC Ops/weight byte (log scale)

Figure 7.44 TPU Roofline. Its ridge point is far to the right at 1350 multiply-
accumulate operations per byte of weight memory. CNN1 is much further below
its Roofline than the other DNNs because it spends about a third of the time waiting
for weights to be loaded into the matrix unit and because the shallow depth of some
layers in the CNN results in only half of the elements within the matrix unit holding use-
ful values (Jouppi et al., 2017).

7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators ■ 597

explained by the matrix-related counters. Because of overlapped execution on the
TPU, we do not have exact accounting for those cycles, but we can see that 23% of
cycles have stalls for RAW dependences in the pipeline and that 1% are spent
stalled for input over the PCIe bus.

Figures 7.46 and 7.47 show Rooflines for Haswell and the K80. The six NN
applications are generally further below their ceilings than the TPU in Figure 7.44.
Response-time limits are the reason. Many of these DNN applications are parts of
services that are part of end-user-facing services. Researchers have demonstrated
that small increases in response time cause customers to use a service less (see
Chapter 6). Thus, although training may not have hard response-time deadlines,
inference usually does. That is, inference cares about throughput only while it
is maintaining the latency bound.

Figure 7.48 illustrates the impact of the 99th percentile response-time limit of 7
ms for MLP0 on Haswell and the K80, which was required by the application
developer. (The inferences per second and 7-ms latency include the server host
time as well as the accelerator time.) They can operate at 42% and 37%, respec-
tively, with the highest throughput achievable for MLP0, if the response-time limit
is relaxed. Thus, although CPUs and GPUs have potentially much higher through-
put, it’s wasted if they don’t meet the response-time limit. These bounds affect the
TPU as well, but at 80% in Figure 7.48, it is operating much closer to its highest
MLP0 throughput. As compared with CPUs and GPUs, the single-threaded TPU
has none of the sophisticated microarchitectural features discussed in Section 7.1
that consume transistors and energy to improve the average case but not the 99th-
percentile case.

Application MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean Row

Array active cycles 12.7% 10.6% 8.2% 10.5% 78.2% 46.2% 28% 1

Useful MACs in 64K matrix (% peak) 12.5% 9.4% 8.2% 6.3% 78.2% 22.5% 23% 2

Unused MACs 0.3% 1.2% 0.0% 4.2% 0.0% 23.7% 5% 3

Weight stall cycles 53.9% 44.2% 58.1% 62.1% 0.0% 28.1% 43% 4

Weight shift cycles 15.9% 13.4% 15.8% 17.1% 0.0% 7.0% 12% 5

Non-matrix cycles 17.5% 31.9% 17.9% 10.3% 21.8% 18.7% 20% 6

RAW stalls 3.3% 8.4% 14.6% 10.6% 3.5% 22.8% 11% 7

Input data stalls 6.1% 8.8% 5.1% 2.4% 3.4% 0.6% 4% 8

TeraOp/s (92 Peak) 12.3 9.7 3.7 2.8 86.0 14.1 21.4 9

Figure 7.45 Factors limiting TPU performance of the NN workload based on hardware performance counters.
Rows 1, 4, 5, and 6 total 100% and are based on measurements of activity of the matrix unit. Rows 2 and 3 further
break down the fraction of 64K weights in the matrix unit that hold useful weights on active cycles. Our counters
cannot exactly explain the time when the matrix unit is idle in row 6; rows 7 and 8 show counters for two possible
reasons, including RAW pipeline hazards and PCIe input stalls. Row 9 (TOPS) is based onmeasurements of production
code while the other rows are based on performance-counter measurements, so they are not perfectly consistent.
Host server overhead is excluded here. The MLPs and LSTMs are memory-bandwidth limited, but CNNs are not. CNN1
results are explained in the text.

598 ■ Chapter Seven Domain-Specific Architectures

Figure 7.49 gives the bottom line of relative inference performance per die,
including the host server overhead for the two accelerators. Recall that architects
use the geometric mean when they don’t know the actual mix of programs that will
be run. For this comparison, however, we do know the mix (Figure 7.41). The

Haswell log-log
Te

ra
O

ps
/s

ec
 (

lo
g

sc
al

e)

Roofline

LSTM0

LSTM1

MLP1

MLP0

CNN0

CNN1

100 10001
0.1

10

0.6
0.6

0.5

1.1

0.2

0.3

Operational intensity: MAC Ops/weight byte (log scale)

0.2

0.4

0.6
0.8

1

2

Figure 7.46 Intel Haswell CPU Roofline with its ridge point at 13 multiply-accumulate operations/byte, which is
much further to the left than in Figure 7.44.

K80 log-log

Te
ra

O
ps

/s
ec

 (
lo

g
sc

al
e)

Roofline

LSTM0

LSTM1

MLP1

MLP0

CNN0

CNN1

0.9

0.70.7

0.5

0.2

1.0

100 10001

0.2

10

Operational intensity: MAC Ops/weight byte (log scale)

0.4

0.6

0.8
1

2

Figure 7.47 NVIDIA K80 GPU die Roofline. The much higher memory bandwidth moves the ridge point to 9
multiply-accumulate operations per weight byte, which is even further to the left than in Figure 7.46.

7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators ■ 599

weighted mean in the last column of Figure 7.49 using the actual mix makes the
GPU up to 1.9 times, and the TPU is 29.2 times as fast as the CPU, so the TPU is
15.3 times as fast as the GPU.

Cost-Performance, TCO, and Performance/Watt

When buying computers by the thousands, cost-performance trumps general per-
formance. The best cost metric in a data center is total cost of ownership (TCO).
The actual price Google pays for thousands of chips depends on negotiations
between the companies involved. For business reasons, Google can’t publish such
price information or data that might let them be deduced. However, power is cor-
related with TCO, and Google can publish watts per server, so we use performance/
watt as our proxy for performance/TCO. In this section, we compare servers
(Figure 7.43) rather than single dies (Figure 7.42).

Figure 7.50 shows the weighted mean performance/watt for the K80 GPU and
TPU relative to the Haswell CPU. We present two different calculations of perfor-
mance/watt. The first (“total”) includes the power consumed by the host CPU
server when calculating performance/watt for the GPU and TPU. The second
(“incremental”) subtracts the host CPU server power from the total for the GPU
and TPU beforehand.

Type Batch 99th% response Inf/s (IPS) % max IPS

CPU 16 7.2 ms 5482 42%

CPU 64 21.3 ms 13,194 100%

GPU 16 6.7 ms 13,461 37%

GPU 64 8.3 ms 36,465 100%

TPU 200 7.0 ms 225,000 80%

TPU 250 10.0 ms 280,000 100%

Figure 7.48 99th% response time and per die throughput (IPS) for MLP0 as batch
size varies. The longest allowable latency is 7 ms. For the GPU and TPU, the maximum
MLP0 throughput is limited by the host server overhead.

Type MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3

Figure 7.49 K80 GPU and TPU performance relative to CPU for the DNNworkload. Themean uses the actual mix of
the six applications in Figure 7.41. Relative performance for the GPU and TPU includes host server overhead.
Figure 7.48 corresponds to the second column of this table (MLP0), showing relative IPS that meet the 7-ms latency
threshold.

600 ■ Chapter Seven Domain-Specific Architectures

For total-performance/watt, the K80 server is 2.1" Haswell. For incremental-
performance/watt, when Haswell power is omitted, the K80 server is 2.9".

The TPU server has 34 times better total-performance/watt than Haswell,
which makes the TPU server 16 times the performance/watt of the K80 server.
The relative incremental-performance/watt—which was Google’s justification
for a custom ASIC—is 83 for the TPU, which lifts the TPU to 29 times the per-
formance/watt of the GPU.

Evaluating Catapult and Pixel Visual Core

Catapult V1 runs CNNs 2.3" as fast as a 2.1 GHz, 16-core, dual-socket server
(Ovtcharov et al., 2015a). Using the next generation of FPGAs (14-nm Arria
10), performance goes up 7", and perhaps even 17" with more careful floorplan-
ning and scaling up of the Processing Elements (Ovtcharov et al., 2015b). In both
cases, Catapult increases power by less than 1.2". Although it’s apples versus
oranges, the TPU runs its CNNs 40" to 70" versus a somewhat faster server
(see Figures 7.42, 7.43, and 7.49).

Because Pixel Visual Core and the TPU are both made by Google, the good
news is that we can directly compare performance for CNN1, which is a common
DNN, although it had to be translated from TensorFlow. It runs with batch size of 1
instead of 32 as in the TPU. The TPU runs CNN1 about 50 times as fast as Pixel
Visual Core, which makes Pixel Visual Core about half as fast as the GPU and a
little faster than Haswell. Incremental performance/watt for CNN1 raises Pixel
Visual Core to about half the TPU, 25 times the GPU, and 100 times the CPU.

P
er

fo
rm

an
ce

/W
at

t
re

la
tiv

e
to

C
P

U
 o

r
G

P
U

Incremental performance/Watt

TPU/GPU

Total performance/Watt
0

25

50

75

100

2.9

83

29

2.1

34

16

TPU/CPUGPU/CPU

Figure 7.50 Relative performance/watt of GPU and TPU servers to CPU or GPU
servers. Total performance/watt includes host server power, but incremental doesn’t.
It is a widely quoted metric, but we use it as a proxy for performance/TCO in the
data center.

7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators ■ 601

Because the Intel Crest is designed for training rather than inference, it wouldn’t be
fair to include it in this section, even if it were available to measure.

7.10 Fallacies and Pitfalls

In these early days of both DSAs and DNNs, fallacies abound.

Fallacy It costs $100 million to design a custom chip.

Figure 7.51 shows a graph from an article that debunks the widely quoted $100-
million myth that it was “only” $50 million, with most of the cost being salaries
(Olofsson, 2011). Note that the author’s estimate is for sophisticated processors
that include features that DSAs by definition omit, so even if there were no
improvement to the development process, you would expect the cost of a DSA
design to be less.

Why are we more optimistic six years later, when, if anything, mask costs are
even higher for the smaller process technologies?

First, software is the largest category, at almost a third of the cost. The avail-
ability of applications written in domain-specific languages allows the compilers to
domost of the work of porting the applications to your DSA, as we saw for the TPU
and Pixel Visual Core. The open RISC-V instruction set will also help reduce the
cost of getting system software as well as cut the large IP costs.

Mask and fabrication costs can be saved byhavingmultiple projects share a single
reticle. As long as you have a small chip, amazingly enough, for $30,000 anyone can
get 100 untested parts in 28-nm TSMC technology (Patterson and Nikoli!c, 2015).

SOFTWARE,
$15,750,000

HARDWARE,
$13,500,000

EDA TOOLS,
$9,000,000

FABRICATION,
$5,000,000

IP,
$5,000,000

Sales+
Management,
$4,500,000

Figure 7.51 The breakdown of the $50 million cost of a custom ASIC that came from
surveying others (Olofsson, 2011). The author wrote that his company spent just $2
million for its ASIC.

602 ■ Chapter Seven Domain-Specific Architectures

Perhaps the biggest change is to hardware engineering, which is more than a
quarter of the cost. Hardware engineers have begun to follow their software col-
leagues to use agile development. The traditional hardware process not only has
separate phases for design requirements, architecture, logical design, layout, ver-
ification, and so on, but also it uses different job titles for the people who perform
each of the phases. This process is heavy on planning, documentation, and sched-
uling in part because of the change in personnel each phase.

Software used to follow this “waterfall”model as well, but projects were so com-
monly late, over budget, and even canceled that it led to a radically different
approach. The Agile Manifesto in 2001 basically said that it was much more likely
that a small team that iterated on an incomplete but working prototype shown reg-
ularly to customers would produce useful software on schedule and on budget more
than the traditional plan-and-document approach of the waterfall process would.

Small hardware teams now do agile iterations (Lee et al., 2016). To ameliorate
the long latency of a chip fabrication, engineers do some iterations using FPGAs
because modern design systems can produce both the EDIF for FPGAs and chip
layout from a single design. FPGA prototypes run 10–20 times slower than chips,
but that is still much faster than simulators. They also do “tape-in” iterations, where
you do all the work of a tape-out for your working but incomplete prototype, but
you don’t pay the costs of fabricating a chip.

In addition to an improved development process, more modern hardware design
languages to support them (Bachrach et al., 2012), and advances in automatic gen-
eration of hardware from high-level domain-specific languages (Canis et al., 2013;
Huang et al., 2016; Prabhakar et al., 2016). Open source cores that you can download
for free and modify should also lower the cost of hardware design.

Pitfall Performance counters added as an afterthought for DSA hardware.

The TPU has 106 performance counters, and the designers wanted even more (see
Figure 7.45). The raison d’être for DSAs is performance, and it is way too early in
their evolution to have a good idea about what is going on.

Fallacy Architects are tackling the right DNN tasks.

The architecture community is paying attention to deep learning: 15% of the papers
at ISCA 2016 were on hardware accelerators for DNNs! Alas, all nine papers
looked at CNNs, and only two mentioned other DNNs. CNNs are more complex
than MLPs and are prominent in DNN competitions (Russakovsky et al., 2015),
which might explain their allure, but they are only about 5% of the Google data
center NNworkload. It seems wise try to accelerate MLPs and LSTMs with at least
as much gusto.

Fallacy For DNN hardware, inferences per second (IPS) is a fair summary performance
metric.

IPS is not appropriate as a single, overall performance summary for DNN hardware
because it’s simply the inverse of the complexity of the typical inference in the
application (e.g., the number, size, and type of NN layers). For example, the

7.10 Fallacies and Pitfalls ■ 603

TPU runs the 4-layer MLP1 at 360,000 IPS but the 89-layer CNN1 at only 4700
IPS; thus TPU IPS varies by 75X! Therefore using IPS as the single-speed sum-
mary is much more misleading for NN accelerators than MIPS or FLOPS is for
traditional processors, so IPS should be even more disparaged. To compare
DNN machines better, we need a benchmark suite written at a high level to port
it to the wide variety of DNN architectures. Fathom is a promising new attempt
at such a benchmark suite (Adolf et al., 2016).

Pitfall Being ignorant of architecture history when designing a DSA.

Ideas that didn’t fly for general-purpose computing may be ideal for DSAs, thus
history-aware architects could have a competitive edge. For the TPU, three impor-
tant architectural features date back to the early 1980s: systolic arrays (Kung and
Leiserson, 1980), decoupled-access/execute (Smith, 1982b), and CISC instruc-
tions (Patterson and Ditzel, 1980). The first reduced the area and power of the large
Matrix Multiply Unit, the second fetched weights concurrently during operation of
the Matrix Multiply Unit, and the third better utilized the limited bandwidth of the
PCIe bus for delivering instructions. We advise mining the historical perspectives
sections at the end of every chapter of this book to discover jewels that could
embellish DSAs that you design.

7.11 Concluding Remarks

In this chapter, we’ve seen several commercial examples of the recent shift from
the traditional goal of improving general-purpose computers so that all programs
benefit to accelerating a subset of programs with DSAs.

Both versions of Catapult preserved data-center homogeneity by designing a
small, low-power FPGA board that could fit inside a server. The hope is that
the flexibility of FPGAs will allow Catapult to be useful to many current applica-
tions and the new ones that appeared after deployment. Catapult runs search rank
and CNNs faster than GPUs, offering a 1.5–1.75 gain in performance/TCO for
ranking over CPUs.

The TPU project actually began with FPGAs but abandoned them when the
designers concluded that the FPGAs of that time were not competitive in perfor-
mance compared to the GPUs. They also believed the TPU would use much less
power than GPUs, while being as fast or faster, potentially making the TPU much
better than FPGAs and GPUs. Finally, the TPU was not the device that broke data
center homogeneity at Google because some servers in its data centers already had
GPUs. The TPU basically followed in the footsteps of the GPU and was just
another type of accelerator.

The nonrecurring engineering costs were likely much higher for the TPU than
for Catapult, but the rewards were also greater: both performance and performance/
watt were much higher for an ASIC than for an FPGA. The risk was that the TPU
was appropriate only for DNN inference, but as we mentioned, DNNs are an attrac-
tive target because they can potentially be used for many applications. In 2013

604 ■ Chapter Seven Domain-Specific Architectures

Google’s management took a leap of faith by trusting that the DNN requirements in
2015 and beyond would justify investment in the TPU.

The deterministic execution model of both Catapult and the TPU is a better
match to the response-time deadline of user-facing applications than are the
time-varying optimizations of CPUs and GPUs (caches, out-of-order execution,
multithreading, multiprocessing, prefetching, etc.) that help average throughput
more than latency. The lack of such features helps explain why, despite having
myriad ALUs and a big memory, the TPU is relatively small and low powered.
This achievement suggests a “Cornucopia Corollary” to Amdahl’s Law: low uti-
lization of a huge, cheap resource can still deliver high, cost-effective
performance.

In summary, the TPU succeeded for DNNs because of the large matrix unit; the
substantial software-controlled on-chip memory; the ability to run whole inference
models to reduce dependence on host CPU; a single-threaded, deterministic exe-
cution model that proved to be a good match to 99th-percentile response-time
limits; enough flexibility to match the DNNs of 2017 as well as of 2013; the omis-
sion of general-purpose features that enabled a small and low-power die despite the
larger datapath and memory; the use of 8-bit integers by the quantized applications;
and the fact that applications were written using TensorFlow, which made it easy to
port them to the DSA at high-performance rather than having to rewrite them in
order for them to run well on the very different hardware.

Pixel Visual Core demonstrated the constraints of designing a DSA for a PMD
in terms of die size and power. Unlike the TPU, it is a separate processor from the
host that fetches its own instructions. Despite being aimed primarily at computer
vision, Pixel Visual Core can run CNNs one to two orders of magnitude better in
performance/watt than the K80 GPU and the Haswell CPU.

It’s too early to render judgment on the Intel Crest, although its enthusiastic
announcement by the Intel CEO signals a shift in the computing landscape.

An Architecture Renaissance

For at least the past decade, architecture researchers have been publishing innova-
tions based on simulations using limited benchmarks claiming improvements for
general-purpose processors of 10% or less while companies are now reporting
gains for DSA hardware products of 10 times or more.

We think that is a sign that the field is undergoing a transformation, andwe expect
to see a renaissance in architecture innovation in the next decade because of

■ the historic end of both Dennard scaling and Moore’s Law, which means
improving cost-energy-performance will require innovation in computer
architecture;

■ the productivity advances in building hardware from both Agile hardware
development and new hardware design languages that leverage advances in
modern programming languages;

7.11 Concluding Remarks ■ 605

■ the reduced cost of hardware development because of free and open instruction
sets, open-source IP blocks, and commercial IP blocks (which so far is where
most DSAs are found);

■ the improvements mentioned above in productivity and cost of development
means researchers can afford to demonstrate their ideas by building them in
FPGAs or even in custom chips, instead of trying to convince skeptics with
simulators; and

■ the potential upside of DSAs and their synergy with domain-specific program-
ming languages.

We believe that many architecture researchers will build DSAs that will raise the
bar still higher than those discussed in this chapter. And we can’t wait to see what
the computer architecture world will look like by the next edition of this book!

7.12 Historical Perspectives and References

Section M.9 (available online) covers the development of DSAs.

Case Studies and Exercises by Cliff Young

Case Study: Google’s Tensor Processing Unit and Acceleration
of Deep Neural Networks

Concepts illustrated by this case study

■ Structure of matrix multiplication operations

■ Capacities of memories and rates of computations (“speeds and feeds”) for a
simple neural network model

■ Construction of a special-purpose ISA

■ Inefficiencies in mapping convolutions to TPU hardware

■ Fixed-point arithmetic

■ Function approximation

7.1 [10/20/10/25/25]<7.3,7.4>Matrix multiplication is a key operation supported in
hardware by the TPU. Before going into details of the TPU hardware, it’s worth
analyzing the matrix multiplication calculation itself. One common way to depict
matrix multiplication is with the following triply nested loop:

float a[M][K], b[K][N], c[M][N];
// M, N, and K are constants.
for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < K; ++k)

c[i][j] += a[i][k] * b[k][j];

606 ■ Chapter Seven Domain-Specific Architectures

a. [10] Suppose that M, N, and K are all equal. What is the asymptotic complexity
in time of this algorithm? What is the asymptotic complexity in space of the
arguments? What does this mean for the operational intensity of matrix multi-
plication as M, N, and K grow large?

b. [20] Suppose that M=3, N=4, and K=5, so that each of the dimensions are
relatively prime. Write out the order of accesses to memory locations in each
of the three matrices A, B, and C (youmight start with two-dimensional indices,
then translate those to memory addresses or offsets from the start of each
matrix). For which matrices are the elements accessed sequentially? Which
are not? Assume row-major (C-language) memory ordering.

c. [10] Suppose that you transpose matrix B, swapping its indices so that they are
B[N][K] instead. So, now the innermost statement of the loop looks like:

c[i][j] += a[i][k] * b[j][k];

Now, for which matrices are the elements accessed sequentially?

d. [25] The innermost (k-indexed) loop of our original routine performs a
dot-product operation. Suppose that you are a given a hardware unit that can
perform an 8-element dot-product more efficiently than the raw C code, behav-
ing effectively like this C function:

void hardware_dot(float *accumulator,
const float *a_slice, const float *b_slice) {

float total = 0.;
for (int k = 0; k < 8; ++k) {

total += a_slice[k] * b_slice[k];
}
*accumulator += total;

}

Howwould you rewrite the routine with the transposed Bmatrix from part (c) to
use this function?

e. [25] Suppose that instead, you are given a hardware unit that performs an
8-element “saxpy” operation, which behaves like this C function:

void hardware_saxpy(float *accumulator,
float a, const float *input) {

for (int k = 0; k < 8; ++k) {
accumulator[k] += a * input[k];

}
}

Write another routine that uses the saxpy primitive to deliver equivalent results to
the original loop, without the transposed memory ordering for the B matrix.

7.2 [15/10/10/20/15/15/20/20] <7.3,7.4>Consider the neural network model MLP0
from Figure 7.5. That model has 20 Mweights in five fully connected layers (neural
network researchers count the input layer as if it were a layer in the stack, but it has no

Case Studies and Exercises by Cliff Young ■ 607

weights associated with it). For simplicity, let’s assume that those layers are each the
same size, so each layer holds 4 Mweights. Then assume that each layer has identical
geometry, so each group of 4 M weights represents a 2 K*2 K matrix. Because the
TPU typically uses 8-bit numerical values, 20 M weights take up 20 MB.

a. [15] For batch sizes of 128, 256, 512, 1024, and 2048, how big are the input
activations for each layer of the model (which, except for the input layer, are
also the output activations of the previous layer)? Now considering the whole
mode (i.e., there’s just the input to the first layer and the output from the last
layer), for each batch size, what is the transfer time for input and output over
PCIe Gen3 x16, which has a transfer speed of about 100 Gibit/s?

b. [10] Given the memory system speed of 30 GiB/s, give a lower bound for the
time the TPU takes to read the weights of MLP0 frommemory. Howmuch time
does it take for the TPU to read a 256"256 “tile” of weights from memory?

c. [10] Show how to calculate the TPU’s 92 T operations/second, given that we
know that the systolic array matrix multiplier has 256"256 elements, each of
which performs an 8-bit multiply-accumulate operation (MAC) each cycle. In
high-performance-computingmarketing terms, aMACcounts as twooperations.

d. [20] Once a weight tile has been loaded into the matrix unit of the TPU, it can be
reused to multiply a 256-element input vector by the 256"256 weight matrix
represented by the tile to produce a 256-element output vector every cycle.
How many cycles pass during the time it takes to load a weight tile? This is
the “break-even” batch size, where compute and memory-load times are equal,
also known as the “ridge” of the roofline.

e. [15] The compute peak for the Intel Haswell x86 server is about 1 T FLOPS,
while the compute peak for the NVIDIA K80 GPU is about 3 T FLOPS. Sup-
posing that they hit these peak numbers, calculate their best-case compute time
for batch size 128. How do these times compare to the time the TPU takes to
load all 20 M weights from memory?

f. [15] Assuming that the TPU program does not overlap computation with I/O
over PCIe, calculate the time elapsed from when the CPU starts to send the first
byte of data to the TPU until the time that the last byte of output is returned.
What fraction of PCIe bandwidth is used?

g. [20] Suppose that we deployed a configuration where one CPU was connected
to five TPUs across a single PCIe Gen3 x16 bus (with appropriate PCIe
switches). Assume that we parallelize by placing one layer of MLP0 on each
TPU, and that the TPUs can communicate directly with each other over PCIe.
At batch=128, what is the best-case latency for calculating a single inference,
and what throughput, in terms of inferences per second, would such a config-
uration deliver? How does this compare to a single TPU?

h. [20] Suppose that each example in a batch of inferences requires 50 core-micro-
seconds of processing time on the CPU. How many cores on the host CPU will
be required to drive a single-TPU configuration at batch=128?

7.3 [20/25/25/25/Discussion] <7.3,7.4>Consider a pseudo-assembly language for
the TPU, and consider the program that handles a batch of size 2048 for a tiny fully

608 ■ Chapter Seven Domain-Specific Architectures

connected layer with a 256"256 weight matrix. If there were no constraints on the
sizes or alignments of computations in each instruction, the entire program for that
layer might look like the following:

read_host u#0, 256*2048
read_weights w#0, 256*256
// matmul weights are implicitly read from the FIFO.
activate u#256*2048, a#0, 256*2048
write_host, u#256*2048, 256*2048

In this pseudo-assembly language, a prefix of “u#” refers to a memory address in
the unified buffer; a prefix of “w#” refers to a memory address in the off-chip
weight DRAM, and a prefix of “a#” refers to an accumulator address. The
last argument of each assembly instruction describes the number of bytes to be
operated upon.

Let’s walk through the program instruction by instruction:

■ The read_host instruction reads 512 KB of data from host memory, storing it at
the very beginning of the unified buffer (u#0).

■ The read_weights instruction tells the weight fetching unit to read 64 KB of
weights, loading them into the on-chip weight FIFO. These 64 KB of weights
represent a single, 256"256 matrix of weights, which we will call a “weight
tile.”

■ The matmul instruction reads the 512 KB of input data from address 0 in the
unified buffer, performs a matrix multiplication with the tile of weights, and
stores the resulting 256*2048=524,288, 32-bit activations at accumulator
address 0 (a#0). We have intentionally glossed over the details of the ordering
of weights; the exercise will expand on these details.

■ The activate instruction takes those 524,288 32-bit accumulators at a#0, applies
an activation function to them, and stores the resulting 524,288, 8-bit output
values at the next free location in the unified buffer, u#524288.

■ The write_host instruction writes the 512 KB of output activations, starting at
u#524288, back to the host CPU.

We will progressively add realistic details to the pseudo-assembly language to
explore some aspects of TPU design.

a. [20] While we have written our pseudo-code in terms of bytes and byte
addresses (or in the case of the accumulators, in terms of addresses to 32-bit
values), the TPU operates on a natural vector length of 256. This means that
the unified buffer is typically addressed at 256-byte boundaries, the accumula-
tors are addressed in groups of 256 32-bit values (or at 1 KB boundaries), and
weights are loaded in groups of 65,536 8-bit values. Rewrite the program’s
addresses and transfer sizes to take these vector and weight-tile lengths into
account. How many 256-element vectors of input activations will be read
by the program? How many bytes of accumulated values will be used while
computing the results? How many 256-element vectors of output activations
will be written back to the host?

Case Studies and Exercises by Cliff Young ■ 609

b. [25] Suppose that the application requirements change, and instead of a
multiplication by a 256"256 weight matrix, the shape of the weight matrix
now becomes 1024"256. Think of the matmul instruction as putting the
weights as the right argument of the matrix multiplication operator, so 1024
corresponds to K, the dimension in which the matrix multiplication adds up
values. Suppose that there are now two variants of the accumulate instruction,
one of which overwrites the accumulators with its results, and the other of
which adds the matrix multiplication results to the specified accumulator.
How would you change the program to handle this 1024"256 matrix? Do
you need more accumulators? The size of the matrix unit remains the same
at 256"256; how many 256"256 weight tiles does your program need?

c. [25] Now write the program to handle a multiplication by a weight matrix of
size 256"512. Does your program need more accumulators? Can you rewrite
your program so that it uses only 2048, 256-entry accumulators? How many
weight tiles does your program need? In what order should they be stored in
the weight DRAM?

d. [25] Next, write the program to handle a multiplication by a weight matrix of
size 1024"768. How many weight tiles does your program need? Write your
program so that it uses only 2048, 256-entry accumulators. In what order
should the weight tiles be stored in the weight DRAM? For this calculation,
how many times did each input activation get read?

e. [Discussion] What would it take to build an architecture that reads each
256-element set of input activations just once? How many accumulators would
that require? If you did it that way, how big would the accumulator memory
have to be? Contrast this approach with the TPU, which uses 4096 accumula-
tors, so that one set of 2048 accumulators can be written by the matrix unit
while another is being used for activations.

7.4 [15/15/15] <7.3,7.4>Consider the first convolutional layer of AlexNet, which
uses a 7"7 convolutional kernel, with an input feature depth of 3 and an output
feature depth of 48. The original image width is 220"220.

a. [15] Ignore the 7"7 convolutional kernel for the moment, and consider just
the center element of that kernel. A 1"1 convolutional kernel is mathemati-
cally equivalent to a matrix multiplication, using a weight matrix that is
input_depth"output_depth in dimensions.With these depths, and using a stan-
dard matrix multiplication, what fraction of the TPU’s 65,536 ALUs can be
used?

b. [15] For convolutional neural networks, the spatial dimensions are also sources
of weight reuse, since the convolutional kernel gets applied to many different
(x,y) coordinate positions. Suppose that the TPU reaches balanced compute and
memory at a batch size of 1400 (as you might have computed in exercise 1d).
What is the smallest square image size that the TPU can process efficiently at a
batch size of 1?

c. [15] The first convolutional layer of AlexNet implements a kernel stride of 4,
which means that rather than moving by one X or Y pixel at each application,

610 ■ Chapter Seven Domain-Specific Architectures

the 7"7 kernel moves by 4 pixels at a time. This striding means that we can
permute the input data from 220"220"3 to be 55"55"48 (dividing the X
and Y dimensions by 4 and multiplying the input depth by 16), and simulta-
neously we can restack the 7"7"3"48 convolutional weights to be
2"2"48"48 (just as the input data gets restacked by 4 in X and Y, we do
the same to the 7"7 elements of the convolutional kernel, ending up with
ceiling(7/4)=2 elements in each of the X and Y dimensions). Because the
kernel is now 2"2, we need to perform only four matrix multiplication oper-
ations, using weight matrices of size 48"48. What is the fraction of the 65,536
ALUs that can be used now?

7.5 [15/10/20/20/20/25]<7.3>The TPU uses fixed-point arithmetic (sometimes also
called quantized arithmetic, with overlapping and conflicting definitions), where
integers are used to represent values on the real number line. There are a number of
different schemes for fixed-point arithmetic, but they share the common theme that
there is an affine projection from the integer used by hardware to the real number
that the integer represents. An affine projection has the form r= i*s+b, where i is
the integer, r is the represented real value, and s and b are a scale and bias. You can
of course write the projection in either direction, from integers to reals or vice versa
(although you need to round when converting from reals to integers).

a. [15] The simplest activation function supported by the TPU is “ReLUX,” which
is a rectified linear unit with a maximum of X. For example, ReLU6 is defined by
Relu6(x)={ 0, when x<0; x, when 0<=x<=6; and 6, when x>6 }. So 0.0 and
6.0 on the real number line are the minimum and maximum values that Relu6
might produce. Assume that you use an 8-bit unsigned integer in hardware,
and that you want to make 0 map to 0.0 and 255 map to 6.0. Solve for s and b.

b. [10] How many values on the real number line are exactly representable by
an 8-bit quantized representation of ReLU6 output? What is the real-number
spacing between them?

c. [20] The difference between representable values is sometimes called a “unit in
the least place,” or ulp, when performing numerical analysis. If you map a real
number to its fixed-point representation, then map back, you only rarely get
back the original real number. The difference between the original number
and its representation is called the quantization error. When mapping a
real number in the range [0.0,6.0] to an 8-bit integer, show that the worst-case
quantization error is one-half of an ulp (make sure you round to the nearest rep-
resentable value). You might consider graphing the errors as a function of the
original real number.

d. [20] Keep the real-number range [0.0,6.0] for an 8-bit integer from the last step.
What 8-bit unsigned integer represents 1.0? What is the quantization error for
1.0? Suppose that you ask the TPU to add 1.0 to 1.0. What answer do you get
back, and what is the error in that result?

e. [20] If you pick a random number uniformly in the range [0.0, 6.0], then
quantize it to an 8-bit unsigned integer, what distribution would you expect
to see for the 256 integer values?

Case Studies and Exercises by Cliff Young ■ 611

f. [25] The hyperbolic tangent function, tanh, is another commonly used
activation function in deep learning: tanh xð Þ ¼ 1# e#2x

1 + e#2x

Tanh also has a bounded range, mapping the entire real number line to the interval
#1:0,1:0ð Þ. Solve for s and b for this range, using an 8-bit unsigned representation.
Then solve for s and b using an 8-bit two’s complement representation. For both
cases, what real number does the integer 0 represent? Which integer represents the
real number 0.0? Can you imagine any issues that might result from the quantiza-
tion error incurred when representing 0.0?

7.6 [20/25/15/15/30/30/30/40/40/25/20/Discussion] <7.3> In addition to tanh,
another s-shaped smooth function, the logistic sigmoid function y=1 / (1+exp(#x)),

logistic_sigmoid xð Þ¼ 1
1 + e#x

is commonly used as an activation function in neural networks. A common way to
implement them in fixed-point arithmetic uses a piecewise quadratic approxima-
tion, where the most significant bits of the input value select which table entry to
use. Then the least significant bits of the input value are sent to a degree-2 polyno-
mial that describes a parabola that is fit to the subrange of the approximated function.

a. [20] Using a graphing tool (we like www.desmos.com/calculator), draw the
graphs for the logistic sigmoid and tanh functions.

b. [25] Now draw the graph of y=tanh(x/2)/2. Compare that graph with the logis-
tic sigmoid function. How much do they differ by? Build an equation that
shows how to transform one into the other. Prove that your equation is correct.

c. [15] Given this algebraic identity, do you need to use two different sets of coef-
ficients to approximate logistic sigmoid and tanh?

d. [15] Tanh is an odd function, meaning that f(#x)=# f(x). Can you exploit this
fact to save table space?

e. [30] Let’s focus our attention on approximating tanh over the interval
x2 0:0, 6:4½ (on the number line. Using floating-point arithmetic, write a pro-
gram that divides the interval into 64 subintervals (each of length 0.1), and then
approximates the value of tanh over each subinterval using a single constant
floating-point value (so you’ll need to pick 64 different floating-point values,
one for each subinterval). If you spot-check 100 different values (randomly
chosen is fine) within each subinterval, what is the worst-case approximation
error you see over all subintervals? Can you choose your constant to minimize
the approximation error for each subinterval?

f. [30] Now consider building a floating-point linear approximation for each sub-
interval. In this case, you want to pick a pair of floating-point values m and b,
for the traditional line equation y¼mx + b, to approximate each of the 64 sub-
intervals. Come up with a strategy that you think is reasonable to build this lin-
ear interpolation over 64 subintervals for tanh. Measure the worst-case
approximation error over the 64 intervals. Is your approximation monotonic
when it reaches a boundary between subintervals?

612 ■ Chapter Seven Domain-Specific Architectures

g. [40] Next, build a quadratic approximation, using the standard formula
y¼ ax2 + bx+ c: Experiment with a number of different ways to fit the formula.
Try fitting the parabola to the endpoints and midpoint of the bucket, or using a
Taylor approximation around a single point in the bucket. What worst-case
error do you get?

h. [40] (extra credit) Let’s combine the numerical approximations of this exercise
with the fixed-point arithmetic of the previous exercise. Suppose that the input
x2 0:0, 6:4½ (is represented by a 15-bit unsigned value, with 0x0000 represent-
ing 0.0 and 0x7FFF representing 6.4. For the output, similarly use a 15-bit
unsigned value, with 0x0000 representing 0.0 and 0x7FFF representing 1.0.
For each of your constant, linear, and quadratic approximations, calculate the
combined effect of approximation and quantization errors. Since there are so
few input values, you can write a program to check them exhaustively.

i. [25] For the quadratic, quantized approximation, is your approximation mono-
tonic within each subinterval?

j. [20] A difference of one ulp in the output scale should correspond to an error of
1.0 / 32767. How many ulps of error are you seeing in each case?

k. [Discussion] By choosing to approximate the interval [0.0, 6.4], we effectively
clipped the “tail” of the hyperbolic tangent function, for values of x> 6:4. It’s
not an unreasonable approximation to set the output value for all of the tail to
1.0. What’s the worst-case error, in terms of both real numbers and ulps, of
treating the tail this way? Is there a better place we might have clipped the tail
to improve our accuracy?

Exercises

7.7 [10/20/10/15] <7.2,7.5>One popular family of FPGAs, the Virtex-7 series, is
built by Xilinx. A Virtex-7 XC7VX690T FPGA contains 3,600 25x18-bit
integer multiply-add “DSP slices.” Consider building a TPU-style design on such
an FPGA.

a. [10] Using one 25"18 integer multiplier per systolic array cell, what’s the larg-
est matrix multiplication unit one could construct? Assume that the matrix mul-
tiplication unit must be square.

b. [20] Suppose that you could build a rectangular, nonsquare matrix multiplica-
tion unit. What implications would such a design have for hardware and soft-
ware? (Hint: think about the vector length that software must handle.)

c. [10] Many FPGA designs are lucky to reach 500 MHz operation. At that speed,
calculate the peak 8-bit operations per second that such a device might achieve.
How does that compare to the 3 T FLOPS of a K80 GPU?

d. [15] Assume that you can make up the difference between 3600 and 4096 DSP
slices using LUTs, but that doing so will reduce your clock rate to 350 MHz. Is
this a worthwhile trade-off to make?

Case Studies and Exercises by Cliff Young ■ 613

7.8 [15/15/15] <7.9>Amazon Web Services (AWS) offers a wide variety of “com-
puting instances,” which are machines configured to target different applications
and scales. AWS prices tell us useful data about the Total Cost of Ownership
(TCO) of various computing devices, particularly as computer equipment is often
depreciated1 on a 3-year schedule. As of July 2017, a dedicated, compute-oriented
“c4” computing instance includes two x86 chips with 20 physical cores in total. It
rents on-demand for $1.75/hour, or $17,962 for 3 years. In contrast, a dedicated
“p2” computing instance also has two x86 chips but with 36 cores in total, and adds
16 NVIDIA K80 GPUs. A p2 rents on-demand for $15.84/hour, or $184,780 for
3 years.

a. [15] The c4 instance uses Intel Xeon E5-2666 v3 (Haswell) processors. The p2
instance uses Intel Xeon E5-2686 v4 (Broadwell) processors. Neither part num-
ber is listed officially on Intel’s product website, which suggests that these parts
are specially built for Amazon by Intel. The E5-2660 v3 part has a similar core
count to the E5-2666 v3 and has a street price of around $1500. The E5-2697 v4
part has a similar core count to the E5-2686 v4 and has a street price of around
$3000. Assume that the non-GPU portion of the p2 instance would have a price
proportional to the ratio of street prices. What is the TCO, over 3 years, for a
single K80 GPU?

b. [15] Suppose that you have a compute- and throughput-dominated workload
that runs at rate 1 on the c4 instance and at rate T on the GPU-accelerated
p2 instance. How large must T be for the GPU-based solution to be more
cost-effective? Suppose that each general-purpose CPU core can compute at
a rate of about 30G single-precision FLOPS. Ignoring the CPUs of the p2
instance, what fraction of peak K80 FLOPs would be required to reach the same
rate of computation as the c4 instance?

c. [15] AWS also offers “f1” instances that include 8 Xilinx Ultrascale+VU9P
FPGAs. They rent at $13.20/hour, or $165,758 for 3 years. Each VU9P device
includes 6840 DSP slices, which can perform 27"18-bit integer multiply-
accumulate operations (recall that one multiply-accumulate counts as two
“operations”). At 500 MHz, what is the peak multiply-accumulate opera-
tions/cycle that an f1-based system might achieve, counting all 8 FPGAs
toward the computation total? Assuming that the integer operations on the
FPGAs can substitute for floating-point operations, how does this compare
to the peak single-precision multiply-accumulate operations/cycle of the GPUs
of the p2 instance? How do they compare in terms of cost-effectiveness?

7.9 [20/20/25] <7.7>As shown in Figure 7.34 (but simplified to fewer PEs), each
Pixel Visual Core includes a 16"16 set of full processing elements, surrounded

1Capital expenses are accounted for over the lifetime of an asset, using a “depreciation schedule.” Rather than taking a
one-time charge at the point where an asset is acquired, standard accounting practice spreads out the capital cost over
the lifetime of the asset. So one might account for a $30,000 device that has a useful life of 3 years by assigning
$10,000 in depreciation to each year.

614 ■ Chapter Seven Domain-Specific Architectures

by an additional two layers of “simplified” processing elements. Simplified
PEs can store and communicate data but omit the computation hardware of
full PEs. Simplified PEs store copies of data that might be the “home data” of a
neighboring core, so there are (16+2+2)2=400 PEs in total, 256 full and 144
simplified.

a. [20] Suppose that you wanted to process a 64"32 grayscale image with a 5"5
stencil using 8 Pixel Visual Cores. For now, assume that the image is laid out in
raster-scan order (pixels that are adjacent in X are adjacent in memory, while
pixels that are adjacent in Y are 64 memory locations apart). For each of the
8 cores, describe the memory region that the core should import to handle
its part of the image. Make sure to include the halo region. Which parts of
the halo region should be zeroed by software to ensure correct operation?
You may find it convenient to refer to subregions of the image using a 2D slice
notation, where for example image[2:5][6:13] refers to the set of pixels whose x
component is 2<=x<5 and whose y component is 6<=y<13 (the slices are
half-open following Python slicing practice).

b. [20] If we change to a 3"3 stencil, how do the regions imported from memory
change? How many halo-simplified PEs go unused?

c. [25] Now consider how to support a 7"7 stencil. In this case, we don’t have as
many hardware-supported simplified PEs as we need to cover the three pixels
worth of halo data that “belong to” neighboring cores. To handle this, we use
the outermost ring of full PEs as if they were simplified PEs. How many pixels
can we handle in a single core using this strategy? How many “tiles” are now
required to handle our 64"32 input image? What is the utilization of our full
PEs over the complete processing time for the 7"7 stencil over the 64"32
image?

7.10 [20/20/20/25/25] <7.7>Consider a case in which each of the eight cores on a
Pixel Visual Core device is connected through a four-port switch to a 2D SRAM,
forming a core+memory unit. The remaining two ports on the switch link these
units in a ring, so that each core is able to access any of the eight SRAMs. However,
this ring-based network-on-chip topology makes some data access patterns more
efficient than others.

Core

Switch

SRAM

Core

Switch

SRAM

Core

Switch

SRAM

Core

Switch

SRAM

···

Case Studies and Exercises by Cliff Young ■ 615

a. [20] Suppose that each link in the NOC has the same bandwidth B, and that
each link is full-duplex, so it can simultaneously transfer bandwidth B in each
direction. Links connect the core to the switch, the switch to SRAM, and pairs
of switches in the ring. Assume that each local memory has at least B band-
width, so it can saturate its link. Consider a memory access pattern where each
of the eight PEs access only the closest memory (the one connected via the
switch of the core+memory unit). What is the maximum memory bandwidth
that the core will be able to achieve?

b. [20] Now consider an off-by-one access pattern, where core i accesses memory
i+1, going through three links to reach that memory (core 7 will access mem-
ory 0, because of the ring topology). What is the maximum memory bandwidth
that the core will be able to achieve in this case? To achieve that bandwidth, do
you need to make any assumptions about the capabilities of the 4-port switch?
What if the switch can only move data at rate B?

c. [20] Consider an off-by-two access pattern, where core i access memory i+2.
Once again, what is the maximum memory bandwidth that the core will be able
to achieve in this case? Where are the bottleneck links in the network-on-chip?

d. [25] Consider a uniform random memory access pattern, where each core uses
each of the SRAMs for⅛ of its memory requests. Assuming this traffic pattern,
how much traffic traverses a switch-to-switch link, compared to the amount of
traffic between a core and its associated switch or between an SRAM and its
associated switch?

e. [25] (advanced) Can you conceive of a case (workload) where this network can
deadlock? From the standpoint of software-only solutions, what should the
compiler do to avoid such a scenario? If you can make changes to hardware,
what changes in routing topology (and routing scheme) would guarantee no
deadlocks?

7.11 <7.2>The first Anton molecular dynamics supercomputer typically simulated a
box of water that was 64 Å on a side. The computer itself might be approximated as
a box with 1 m side length. A single simulation step represented 2.5 fs of simula-
tion time, and took about 10 μs of wall-clock time. The physics models used in
molecular dynamics act as if every particle in the system exerts a force on every
other particle in the system on each (“outer”) time step, requiring what amounts to a
global synchronization across the entire computer.

a. Calculate the spatial expansion factor from simulation space to hardware in real
space.

b. Calculate the temporal slowdown factor from simulated time to wall-clock
time.

c. These two numbers come out surprisingly close. Is this just a coincidence, or is
there some other limit that constrains them in some way? (Hint: the speed of
light applies to both the simulated chemical system and the hardware that does
the simulation.)

616 ■ Chapter Seven Domain-Specific Architectures

d. Given these limits, what would it take to use a warehouse-scale supercomputer
to perform molecular dynamics simulations at Anton rates? That is, what’s the
fastest simulation step time that might be achieved with a machine 102 or 103 m
on a side? What about simulating on a world-spanning Cloud service?

7.12 <7.2>The Anton communication network is a 3D, 8"8"8 torus, where each
node in the system has six links to neighboring nodes. Latency for a packet to tran-
sit single link is about 50 ns. Ignore on-chip switching time between links for this
exercise.

a. What is the diameter (maximum number of hops between a pair of nodes) of the
communication network? Given that diameter, what is the shortest latency
required to broadcast a single value from one node of the machine to all 512
nodes of the machine?

b. Assuming that adding up two values takes zero time, what is the shortest
latency to add up a sum over 512 values to a single node, where each value
starts on a different node of the machine?

c. Once again assume that you want to perform the sum over 512 values, but you
want each of the 512 nodes of the system to end up with a copy of the sum. Of
course you could perform a global reduction followed by a broadcast. Can you
do the combined operation in less time? This pattern is called an all-reduce.
Compare the times of your all-reduce pattern to the time of a broadcast from
a single node or a global sum to a single node. Compare the bandwidth used
by the all-reduce pattern with the other patterns.

Case Studies and Exercises by Cliff Young ■ 617

A.1 Introduction A-2
A.2 Classifying Instruction Set Architectures A-3
A.3 Memory Addressing A-7
A.4 Type and Size of Operands A-13
A.5 Operations in the Instruction Set A-15
A.6 Instructions for Control Flow A-16
A.7 Encoding an Instruction Set A-21
A.8 Cross-Cutting Issues: The Role of Compilers A-24
A.9 Putting It All Together: The RISC-V Architecture A-33
A.10 Fallacies and Pitfalls A-42
A.11 Concluding Remarks A-46
A.12 Historical Perspective and References A-47

Exercises by Gregory D. Peterson A-47

A
Instruction Set Principles

A n Add the number in storage location n into the
accumulator.

E n If the number in the accumulator is greater than or equal
to zero execute next the order which stands in storage
location n; otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick,
Selection from the List of 18 Machine

Instructions for the EDSAC (1949)

A.1 Introduction

In this appendix we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. Most of this material should
be review for readers of this book; we include it here for background. This appendix
introduces the wide variety of design alternatives available to the instruction set
architect. In particular, we focus on four topics. First, we present a taxonomy of
instruction set alternatives and give some qualitative assessment of the advantages
and disadvantages of various approaches. Second, we present and analyze some
instruction set measurements that are largely independent of a specific instruction
set. Third, we address the issue of languages and compilers and their bearing on
instruction set architecture. Finally, the “Putting It All Together” section shows
how these ideas are reflected in the RISC-V instruction set, which is typical of RISC
architectures. We conclude with fallacies and pitfalls of instruction set design.

To illustrate the principles further and to provide a comparison with RISC-V,
Appendix K also gives four examples of other general-purpose RISC architectures
(MIPS, Power ISA, SPARC, and Armv8), four embedded RISC processors (ARM
Thumb2, RISC-V Compressed, microMIPS), and three older architectures (80x86,
IBM 360/370, and VAX). Before we discuss how to classify architectures, we need
to say something about instruction set measurement.

Throughout this appendix, we examine a wide variety of architectural measure-
ments. Clearly, these measurements depend on the programs measured and on the
compilers used in making the measurements. The results should not be interpreted
as absolute, and you might see different data if you did the measurement with a
different compiler or a different set of programs.We believe that the measurements
in this appendix are reasonably indicative of a class of typical applications. Many
of the measurements are presented using a small set of benchmarks, so that the data
can be reasonably displayed and the differences among programs can be seen. An
architect for a new computer would want to analyze a much larger collection of
programs before making architectural decisions. The measurements shown are
usually dynamic—that is, the frequency of a measured event is weighed by the
number of times that event occurs during execution of the measured program.

Before starting with the general principles, let’s review the three application
areas from Chapter 1. Desktop computing emphasizes the performance of pro-
grams with integer and floating-point data types, with little regard for program
size. For example, code size has never been reported in the five generations of
SPEC benchmarks. Servers today are used primarily for database, file server,
andWeb applications, plus some time-sharing applications for many users. Hence,
floating-point performance is much less important for performance than integers
and character strings, yet virtually every server processor still includes floating-
point instructions. Personal mobile devices and embedded applications value cost
and energy, so code size is important because less memory is both cheaper and
lower energy, and some classes of instructions (such as floating point) may be
optional to reduce chip costs, and a compressed version of the instructions set
designed to save memory space may be used.

A-2 ■ Appendix A Instruction Set Principles

Thus, instruction sets for all three applications are very similar. In fact, archi-
tectures similar to RISC-V, which we focus on here, have been used successfully in
desktops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see Appen-
dix K). Surprisingly, its success does not necessarily belie the advantages of a RISC
instruction set. The commercial importance of binary compatibility with PC soft-
ware combined with the abundance of transistors provided by Moore’s Law led
Intel to use a RISC instruction set internally while supporting an 80x86 instruction
set externally. Recent 80x86microprocessors, including all the Intel Coremicropro-
cessors built in the past decade, use hardware to translate from 80x86 instructions to
RISC-like instructions and then execute the translated operations inside the chip.
They maintain the illusion of 80x86 architecture to the programmer while allowing
the computer designer to implement a RISC-style processor for performance. There
remain, however, serious disadvantages for a complex instruction set like the
80x86, and we discuss these further in the conclusions.

Now that the background is set, we begin by exploring how instruction set
architectures can be classified.

A.2 Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in this
section we will focus on the alternatives for this portion of the architecture. The
major choices are a stack, an accumulator, or a set of registers. Operands may be
named explicitly or implicitly: The operands in a stack architecture are implicitly
on the top of the stack, and in an accumulator architecture one operand is implicitly
the accumulator. The general-purpose register architectures have only explicit
operands—either registers or memory locations. Figure A.1 shows a block diagram
of such architectures, and Figure A.2 shows how the code sequence C¼A+Bwould
typically appear in these three classes of instruction sets. The explicit operands may
be accessed directly from memory or may need to be first loaded into temporary
storage, depending on the class of architecture and choice of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store architecture. A third class, not found in computers shipping
today, keeps all operands in memory and is called a memory-memory architecture.
Some instruction set architectures have more registers than a single accumulator
but place restrictions on uses of these special registers. Such an architecture is
sometimes called an extended accumulator or special-purpose register computer.

Although most early computers used stack or accumulator-style architectures,
virtually every new architecture designed after 1980 uses a load-store register archi-
tecture. The major reasons for the emergence of general-purpose register (GPR)
computers are twofold. First, registers—like other forms of storage internal to the
processor—are faster than memory. Second, registers are more efficient for a

A.2 Classifying Instruction Set Architectures ■ A-3

Stack Accumulator Register-memory

TOS

ALU

. . .

. . .

. . .

ALU

. . .

. . .

ALU

. . .

. . .

. . .

. . .

Register-register/
load-store

ALU

. . .

. . .

. . .

. . .

Memory

Processor

(A) (B) (C) (D)

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades
indicate inputs, and the dark shade indicates the result. In (A), a top of stack (TOS) register points to the top input
operand, which is combinedwith the operand below. The first operand is removed from the stack, the result takes the
place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (B), the accu-
mulator is both an implicit input operand and a result. In (C), one input operand is a register, one is in memory,
and the result goes to a register. All operands are registers in (D) and, like the stack architecture, can be transferred
to memory only via separate instructions: push or pop for (A) and load or store for (D).

Stack Accumulator
Register
(register-memory)

Register
(load-store)

Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,R1,B Load R2,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C

Figure A.2 The code sequence for C5A+B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure A.1 shows the
Add operation for each class of architecture.

A-4 ■ Appendix A Instruction Set Principles

compiler to use than other forms of internal storage. For example, on a register com-
puter the expression (A * B)+(B * C) – (A * D)may be evaluated by doing the
multiplications in any order, which may be more efficient because of the location of
the operands or because of pipelining concerns (see Chapter 3). Nevertheless, on a
stack computer the hardwaremust evaluate the expression in only one order, because
operands are hidden on the stack, and it may have to load an operandmultiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (because
registers are faster than memory), and the code density improves (because a reg-
ister can be named with fewer bits than can a memory location).

As explained in Section A.8, compiler writers would prefer that all registers be
equivalent and unreserved. Older computers compromise this desire by dedicating
registers to special uses, effectively decreasing the number of general-purpose reg-
isters. If the number of truly general-purpose registers is too small, trying to allo-
cate variables to registers will not be profitable. Instead, the compiler will reserve
all the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer, of course, depends on the effec-
tiveness of the compiler. Most compilers reserve some registers for expression eval-
uation, use someforparameter passing, andallow the remainder tobeallocated tohold
variables. Modern compiler technology and its ability to effectively use larger num-
bers of registers has led to an increase in register counts in more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical instruc-
tion (ALU instruction). The first concerns whether an ALU instruction has two or
three operands. In the three-operand format, the instruction contains one result
operand and two source operands. In the two-operand format, one of the operands
is both a source and a result for the operation. The second distinction among GPR
architectures concerns how many of the operands may be memory addresses in
ALU instructions. The number of memory operands supported by a typical
ALU instruction may vary from none to three. Figure A.3 shows combinations
of these two attributes with examples of computers. Although there are seven

Number ofmemory
addresses

Maximum number
of operands
allowed Type of architecture Examples

0 3 Load-store ARM, MIPS, PowerPC, SPARC, RISC-V

1 2 Register-memory IBM 360/370, Intel 80x86, Motorola
68000, TI TMS320C54x

2 2 Memory-memory VAX (also has three-operand formats)

3 3 Memory-memory VAX (also has two-operand formats)

Figure A.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or
register-register computers. Instructions with multiple memory operands per typical ALU instruction are called
register-memory or memory-memory, according to whether they have one or more than one memory operand.

A.2 Classifying Instruction Set Architectures ■ A-5

possible combinations, three serve to classify nearly all existing computers. As we
mentioned earlier, these three are load-store (also called register-register), register-
memory, and memory-memory.

Figure A.4 shows the advantages and disadvantages of each of these alter-
natives. Of course, these advantages and disadvantages are not absolutes: they
are qualitative and their actual impact depends on the compiler and implemen-
tation strategy. A GPR computer with memory-memory operations could eas-
ily be ignored by the compiler and used as a load-store computer. One of the
most pervasive architectural impacts is on instruction encoding and the num-
ber of instructions needed to perform a task. We see the impact of these archi-
tectural alternatives on implementation approaches in Appendix C and
Chapter 3.

Summary: Classifying Instruction Set Architectures

Here and at the end of Sections A.3–A.8 we summarize those characteristics we
would expect to find in a new instruction set architecture, building the foundation
for the RISC-V architecture introduced in Section A.9. From this section we should
clearly expect the use of general-purpose registers. Figure A.4, combined with
Appendix C on pipelining, leads to the expectation of a load-store version of a
general-purpose register architecture.

With the class of architecture covered, the next topic is addressing operands.

Type Advantages Disadvantages

Register-register
(0, 3)

Simple, fixed-length instruction encoding.
Simple code generation model. Instructions
take similar numbers of clocks to execute
(see Appendix C)

Higher instruction count than architectures with
memory references in instructions. More instructions
and lower instruction density lead to larger programs,
which may have some instruction cache effects

Register-memory
(1, 2)

Data can be accessed without a separate load
instruction first. Instruction format tends to
be easy to encode and yields good density

Operands are not equivalent because a source
operand in a binary operation is destroyed. Encoding
a register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location

Memory-
memory (2, 2)
or (3, 3)

Most compact. Doesn’t waste registers for
temporaries

Large variation in instruction size, especially for
three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure A.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation (m, n) meansmmemory operands and n total operands. In general, computers with fewer alter-
natives simplify the compiler’s task because there are fewer decisions for the compiler to make (see Section A.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram. The number of registers also affects the instruction size because you need log2 (number of registers) for each
register specifier in an instruction. Thus, doubling the number of registers takes three extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.

A-6 ■ Appendix A Instruction Set Principles

A.3 Memory Addressing

Independent of whether the architecture is load-store or allows any operand to
be a memory reference, it must define how memory addresses are interpreted
and how they are specified. The measurements presented here are largely,
but not completely, computer independent. In some cases the measurements
are significantly affected by the compiler technology. These measurements
have been made using an optimizing compiler, because compiler technology
plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a func-
tion of the address and the length? All the instruction sets discussed in this book
are byte addressed and provide access for bytes (8 bits), half words (16 bits), and
words (32 bits). Most of the computers also provide access for double words
(64 bits).

There are two different conventions for ordering the bytes within a larger
object. Little Endian byte order puts the byte whose address is “x … x000” at
the least-significant position in the double word (the little end). The bytes are
numbered:

7 6 5 4 3 2 1 0

Big Endian byte order puts the byte whose address is “x… x000” at the most-
significant position in the double word (the big end). The bytes are numbered:

0 1 2 3 4 5 6 7

When operating within one computer, the byte order is often unnoticeable—
only programs that access the same locations as both, say, words and bytes, can
notice the difference. Byte order is a problem when exchanging data among com-
puters with different orderings, however. Little Endian ordering also fails to match
the normal ordering of words when strings are compared. Strings appear
“SDRAWKCAB” (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address A
is aligned if A mod s¼0. Figure A.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions?Misalign-
ment causes hardware complications, because the memory is typically aligned on a
multiple of a word or double-word boundary. A misaligned memory access may,
therefore, take multiple aligned memory references. Thus, even in computers that
allow misaligned access, programs with aligned accesses run faster.

A.3 Memory Addressing ■ A-7

Even if data are aligned, supporting byte, half-word, and word accesses requires
an alignment network to align bytes, half words, and words in 64-bit registers. For
example, in Figure A.5, suppose we read a byte from an address with its 3 low-order
bitshaving thevalue4.Wewill need to shift right3bytes toalign thebyte to theproper
place ina64-bit register.Dependingon the instruction, the computermayalsoneed to
sign-extend the quantity. Stores are easy: only the addressedbytes inmemorymaybe
altered.On some computers a byte, half-word, andwordoperation does not affect the
upper portion of a register. Although all the computers discussed in this book permit
byte, half-word, and word accesses to memory, only the IBM 360/370, Intel 80x86,
andVAX support ALUoperations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called addressing
modes.

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address

Value of three low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7

1 byte (byte) Aligned Aligned Aligned Aligned Aligned Aligned Aligned Aligned

2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word) Misaligned Misaligned Misaligned Misaligned

4 bytes (word) Aligned Aligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows thememory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order three bits
of the address.

A-8 ■ Appendix A Instruction Set Principles

of an object they will access. Addressing modes specify constants and registers
in addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the effective address.

Figure A.6 shows all the data addressing modes that have been used in recent
computers. Immediates or literals are usually considered memory addressing
modes (even though the value they access is in the instruction stream), although
registers are often separated because they don’t usually have memory addresses.
We have kept addressing modes that depend on the program counter, called
PC-relative addressing, separate. PC-relative addressing is used primarily for
specifying code addresses in control transfer instructions, discussed in Section A.6.

Addressing
mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] Regs[R4]
+Regs[R3]

When a value is in a register

Immediate Add R4,3 Regs[R4] Regs[R4]+3 For constants

Displacement Add R4,100(R1) Regs[R4] Regs[R4]
+Mem[100+Regs[R1]]

Accessing local variables
(+ simulates register indirect, direct
addressing modes)

Register
indirect

Add R4,(R1) Regs[R4] Regs[R4]
+Mem[Regs[R1]]

Accessing using a pointer or a
computed address

Indexed Add R3,(R1+R2) Regs[R3] Regs[R3]
+Mem[Regs[R1]+Regs
[R2]]

Sometimes useful in array
addressing: R1¼base of array;
R2¼ index amount

Direct or
absolute

Add R1,(1001) Regs[R1] Regs[R1]
+Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large

Memory
indirect

Add R1,@(R3) Regs[R1] Regs[R1]
+Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,
then mode yields *p

Autoincrement Add R1,(R2)+ Regs[R1] Regs[R1]
+ Mem[Regs[R2]]

Regs[R2] Regs[R2]+d

Useful for stepping through arrays
within a loop. R2 points to start of
array; each reference increments R2
by size of an element, d

Autodecrement Add R1, –(R2) Regs[R2] Regs[R2] – d
Regs[R1] Regs[R1]

+Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/-increment can also
act as push/pop to implement a
stack.

Scaled Add R1,100(R2)[R3] Regs[R1] Regs[R1]
+Mem[100+Regs[R2]

+Regs[R3] * d]

Used to index arrays. May be
applied to any indexed addressing
mode in some computers

Figure A.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/-decrement and
scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the instruc-
tion is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being accessed are
adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0 for the address
and to simulate direct addressing using 0 in the base register. In our measurements, we use the first name shown for
each mode. The extensions to C used as hardware descriptions are defined on page A.38.

A.3 Memory Addressing ■ A-9

Figure A.6 shows the most common names for the addressingmodes, though the
names differ among architectures. In this figure and throughout the book, wewill use
an extension of the C programming language as a hardware description notation. In
this figure, only one non-C feature is used: the left arrow () is used for assignment.
We also use the array Mem as the name for main memory and the array Regs for
registers. Thus, Mem[Regs[R1]] refers to the contents of the memory location
whose address is given by the contents of register 1 (R1). Later, we will introduce
extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the aver-
age clock cycles per instruction (CPI) of computers that implement those modes.
Thus, the usage of various addressing modes is quite important in helping the
architect choose what to include.

Figure A.7 shows the results of measuring addressing mode usage patterns
in three programs on the VAX architecture. We use the old VAX architecture
for a few measurements in this appendix because it has the richest set of addressing

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register indirect

Immediate

Displacement

TeX
spice

gcc

TeX
spice

gcc

TeX
spice

gcc

TeX
spice

gcc

1%
6%Memory indirect

TeX
spice

gcc 1%

Frequency of the addressing mode

Figure A.7 Summary of use of memory addressing modes (including immediates).
These major addressing modes account for all but a few percent (0%–3%) of the mem-
ory accesses. Register modes, which are not counted, account for one-half of the oper-
and references, while memory addressing modes (including immediate) account for the
other half. Of course, the compiler affects what addressing modes are used; see
Section A.8. The memory indirect mode on the VAX can use displacement, autoincre-
ment, or autodecrement to form the initial memory address; in these programs, almost
all the memory indirect references use displacement mode as the base. Displacement
mode includes all displacement lengths (8, 16, and 32 bits). The PC-relative addressing
modes, used almost exclusively for branches, are not included. Only the addressing
modes with an average frequency of over 1% are shown.

A-10 ■ Appendix A Instruction Set Principles

modes and the fewest restrictions on memory addressing. For example, Figure A.6
on page A.9 shows all the modes the VAX supports. Most measurements in this
appendix, however, will use the more recent register-register architectures to show
how programs use instruction sets of current computers.

As Figure A.7 shows, displacement and immediate addressing dominate
addressing mode usage. Let’s look at some properties of these two heavily
used modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes, a
decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure A.8

30%

35%

40%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 d

is
pl

ac
em

en
t

Number of bits of displacement

Floating-point average

Integer average

15

Figure A.8 Displacement values are widely distributed. There are both a large num-
ber of small values and a fair number of large values. The wide distribution of displace-
ment values is due tomultiple storage areas for variables and different displacements to
access them (see Section A.8) as well as the overall addressing scheme the compiler
uses. The x-axis is log2 of the displacement, that is, the size of a field needed to represent
the magnitude of the displacement. Zero on the x-axis shows the percentage of dis-
placements of value 0. The graph does not include the sign bit, which is heavily affected
by the storage layout. Most displacements are positive, but a majority of the largest dis-
placements (14+ bits) are negative. Because these data were collected on a computer
with 16-bit displacements, they cannot tell us about longer displacements. These data
were taken on the Alpha architecture with full optimization (see Section A.8) for SPEC
CPU2000, showing the average of integer programs (CINT2000) and the average of
floating-point programs (CFP2000).

A.3 Memory Addressing ■ A-11

shows the measurements taken on the data access on a load-store architecture using
our benchmark programs. We look at branch offsets in Section A.6—data acces-
sing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case
occurs for constants written in the code—which tend to be small—and for address
constants, which tend to be large. For the use of immediates it is important to know
whether they need to be supported for all operations or for only a subset. Figure A.9
shows the frequency of immediates for the general classes of integer and floating-
point operations in an instruction set.

Another important instruction set measurement is the range of values for imme-
diates. Like displacement values, the size of immediate values affects instruction
length. As Figure A.10 shows, small immediate values are most heavily used. Large
immediates are sometimes used, however, most likely in addressing calculations.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support at
least the following addressing modes: displacement, immediate, and register indi-
rect. Figure A.7 shows that they represent 75%–99% of the addressing modes used

0% 5% 10% 15% 20% 25%

Loads

ALU operations

All instructions
21%

16%

25%
19%

23%
22%

30%

Floating-point average
Integer average

Figure A.9 About one-quarter of data transfers and ALU operations have an imme-
diate operand. The bottom bars show that integer programs use immediates in about
one-fifth of the instructions, while floating-point programs use immediates in about
one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits into
either half of a 32-bit register. Load immediates are not loads in a strict sense because
they do not access memory. Occasionally a pair of load immediates is used to load a 32-
bit constant, but this is rare. (For ALU operations, shifts by a constant amount are
included as operations with immediate operands.) The programs and computer used
to collect these statistics are the same as in Figure A.8.

A-12 ■ Appendix A Instruction Set Principles

in our measurements. Second, we would expect the size of the address for displace-
ment mode to be at least 12–16 bits, because the caption in Figure A.8 suggests
these sizes would capture 75%–99% of the displacements. Third, we would expect
the size of the immediate field to be at least 8–16 bits. This claim is not substan-
tiated by the caption of the figure to which it refers.

Having covered instruction set classes and decided on register-register archi-
tectures, plus the previous recommendations on data addressing modes, we next
cover the sizes and meanings of data.

A.4 Type and Size of Operands

How is the type of an operand designated? Usually, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accordingly.
Computers with tagged data, however, can only be found in computer museums.

Let’s start with desktop and server architectures. Usually the type of an oper-
and—integer, single-precision floating point, character, and so on—effectively

30%

35%

40%

45%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 im

m
ed

ia
te

s

Number of bits needed for immediate

Floating-point average

Integer average

15

Figure A.10 The distribution of immediate values. The x-axis shows the number of
bits needed to represent the magnitude of an immediate value—0 means the imme-
diate field value was 0. The majority of the immediate values are positive. About 20%
were negative for CINT2000, and about 30%were negative for CFP2000. Thesemeasure-
ments were taken on an Alpha, where the maximum immediate is 16 bits, for the same
programs as in Figure A.8. A similar measurement on the VAX, which supported 32-bit
immediates, showed that about 20%–25% of immediates were longer than 16 bits.
Thus, 16 bits would capture about 80% and 8 bits about 50%.

A.4 Type and Size of Operands ■ A-13

gives its size. Common operand types include character (8 bits), half word (16
bits), word (32 bits), single-precision floating point (also 1 word), and double-
precision floating point (2 words). Integers are almost universally represented
as two’s complement binary numbers. Characters are usually in ASCII, but the
16-bit Unicode (used in Java) is gaining popularity with the internationalization
of computers. Until the early 1980s, most computer manufacturers chose their
own floating-point representation. Almost all computers since that time follow
the same standard for floating point, the IEEE standard 754, although this level
of accuracy has recently been abandoned in application-specific processors. The
IEEE floating-point standard is discussed in detail in Appendix J.

Some architectures provide operations on character strings, although such oper-
ations are usually quite limited and treat each byte in the string as a single character.
Typical operations supported on character strings are comparisons and moves.

For business applications, some architectures support a decimal format, usually
called packed decimal or binary-coded decimal—4 bits are used to encode the
values 0–9, and 2 decimal digits are packed into each byte. Numeric character
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth between them.

One reason to use decimal operands is to get results that exactly match decimal
numbers, as some decimal fractions do not have an exact representation in binary.
For example, 0.1010 is a simple fraction in decimal, but in binary it requires an
infinite set of repeating digits: 0:0001100110011…2. Thus, calculations that are
exact in decimal can be close but inexact in binary, which can be a problem for
financial transactions. (See Appendix J to learn more about precise arithmetic.)

The SPEC benchmarks use byte or character, half-word (short integer), word
(integer and single precision floating point), double-word (long integer), and
floating-point data types. Figure A.11 shows the dynamic distribution of the sizes
of objects referenced from memory for these programs. The frequency of access to

0% 20% 40% 60% 80%

Byte
(8 bits)

Half word
(16 bits)

Word
(32 bits)

Double word
(64 bits)

10%
1%

5%
0%

26%
29%

59%
70%

Floating-point average

Integer average

Figure A.11 Distribution of data accesses by size for the benchmark programs. The
double-word data type is used for double-precision floating point in floating-point pro-
grams and for addresses, because the computer uses 64-bit addresses. Ona 32-bit address
computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all
double-word accesses in integer programs would become single-word accesses.

A-14 ■ Appendix A Instruction Set Principles

different data types helps in deciding what types are most important to support effi-
ciently. Should the computer have a 64-bit access path, or would taking two cycles
to access a double word be satisfactory? As we saw earlier, byte accesses require an
alignment network: how important is it to support bytes as primitives? Figure A.11
uses memory references to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for
no more than 12% of register references, or roughly 6% of all operand accesses
in these programs.

A.5 Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized as
in Figure A.12. One rule of thumb across all architectures is that the most widely
executed instructions are the simple operations of an instruction set. For example,
Figure A.13 shows 10 simple instructions that account for 96% of instructions exe-
cuted for a collection of integer programs running on the popular Intel 80x86.
Hence, the implementor of these instructions should be sure to make these fast,
as they are the common case.

Operator type Examples

Arithmetic and
logical

Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer Loads-stores (move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression operations

Figure A.12 Categories of instruction operators and examples of each. All computers
generally provide a full set of operations for the first three categories. The support for
system functions in the instruction set varies widely among architectures, but all com-
puters must have some instruction support for basic system functions. The amount of
support in the instruction set for the last four categories may vary from none to an
extensive set of special instructions. Floating-point instructions will be provided in
any computer that is intended for use in an application that makes much use of floating
point. These instructions are sometimes part of an optional instruction set. Decimal and
string instructions are sometimes primitives, as in the VAX or the IBM 360, or may be
synthesized by the compiler from simpler instructions. Graphics instructions typically
operate on many smaller data items in parallel—for example, performing eight 8-bit
additions on two 64-bit operands.

A.5 Operations in the Instruction Set ■ A-15

Asmentioned before, the instructions in FigureA.13 are found in every computer
for every application––desktop, server, embedded––with the variations of operations
in Figure A.12 largely depending on which data types the instruction set includes.

A.6 Instructions for Control Flow

Because the measurements of branch and jump behavior are fairly independent of
othermeasurements andapplications,wenowexamine theuseofcontrol flow instruc-
tions, which have little in common with the operations of the previous sections.

There is no consistent terminology for instructions that change the flow of con-
trol. In the 1950s they were typically called transfers. Beginning in 1960 the name
branch began to be used. Later, computers introduced additional names. Through-
out this book we will use jump when the change in control is unconditional and
branch when the change is conditional.

We can distinguish four different types of control flow change:

■ Conditional branches

■ Jumps

■ Procedure calls

■ Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. Figure A.14
shows the frequencies of these control flow instructions for a load-store computer
running our benchmarks.

Rank 80x86 instruction
Integer average
% total executed)

1 Load 22%

2 Conditional branch 20%

3 Compare 16%

4 Store 12%

5 Add 8%

6 And 6%

7 Sub 5%

8 Move register-register 4%

9 Call 1%

10 Return 1%

Total 96%

Figure A.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the
average of the five SPECint92 programs.

A-16 ■ Appendix A Instruction Set Principles

Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified. This
destination is specified explicitly in the instruction in the vast majority of cases—
procedure return being the major exception, because for return the target is not
known at compile time. Themost commonway to specify the destination is to supply
a displacement that is added to the program counter (PC). Control flow instructions
of this sort are called PC-relative. PC-relative branches or jumps are advantageous
because the target is often near the current instruction, and specifying the position
relative to the current PC requires fewer bits. Using PC-relative addressing also per-
mits the code to run independently of where it is loaded. This property, called posi-
tion independence, can eliminate some work when the program is linked and is also
useful in programs linked dynamically during execution.

To implement returns and indirect jumps when the target is not known at com-
pile time, a method other than PC-relative addressing is required. Here, there must
be a way to specify the target dynamically, so that it can change at runtime. This
dynamic address may be as simple as naming a register that contains the target
address; alternatively, the jumpmay permit any addressing mode to be used to sup-
ply the target address.

These register indirect jumps are also useful for four other important
features:

■ Case or switch statements, found in most programming languages (which
select among one of several alternatives).

■ Virtual functions or methods in object-oriented languages like C++ or Java
(which allow different routines to be called depending on the type of the
argument).

0% 25% 50% 75%

Call/return

Jump

Conditional branch
75%

82%

6%
10%

19%
8%

100%
Frequency of branch instructions

Floating-point average

Integer average

Figure A.14 Breakdown of control flow instructions into three classes: calls or
returns, jumps, and conditional branches. Conditional branches clearly dominate. Each
type is counted in one of three bars. The programs and computer used to collect these
statistics are the same as those in Figure A.8.

A.6 Instructions for Control Flow ■ A-17

■ High-order functions or function pointers in languages like C or C++ (which
allow functions to be passed as arguments, giving some of the flavor of object-
oriented programming).

■ Dynamically shared libraries (which allow a library to be loaded and linked at
runtime only when it is actually invoked by the program rather than loaded and
linked statically before the program is run).

In all four cases the target address is not known at compile time, and hence is usu-
ally loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets to
support, and thus will affect the instruction length and encoding. Figure A.15
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

Conditional Branch Options

Because most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure A.16 shows the three primary techniques in
use today and their advantages and disadvantages.

30%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 d

is
ta

nc
e

Bits of branch displacement

Floating-point average

Integer
average

15 16 17 18 19 20

Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction.
The most frequent branches in the integer programs are to targets that can be encoded in 4–8 bits. This result tells us
that short displacement fields often suffice for branches and that the designer can gain some encoding density by
having a shorter instruction with a smaller branch displacement. These measurements were taken on a load-store
computer (Alpha architecture) with all instructions aligned on word boundaries. An architecture that requires fewer
instructions for the same program, such as a VAX, would have shorter branch distances. However, the number of bits
needed for the displacement may increase if the computer has variable-length instructions to be aligned on any byte
boundary. The programs and computer used to collect these statistics are the same as those in Figure A.8.

A-18 ■ Appendix A Instruction Set Principles

One of the most noticeable properties of branches is that a large number of the
comparisons are simple tests, and a large number are comparisons with zero. Thus,
some architectures choose to treat these comparisons as special cases, especially if
a compare and branch instruction is being used. Figure A.17 shows the frequency
of different comparisons used for conditional branching.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state saving;
at a minimum the return address must be saved somewhere, sometimes in a special
link register or just a GPR. Some older architectures provide a mechanism to save
many registers, while newer architectures require the compiler to generate stores
and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site or
inside the procedure being called. Caller saving means that the calling procedure
must save the registers that it wants preserved for access after the call, and thus the
called procedure need not worry about registers. Callee saving is the opposite: the
called procedure must save the registers it wants to use, leaving the caller unre-
strained. There are times when caller save must be used because of access patterns
to globally visible variables in two different procedures. For example, suppose we
have a procedure P1 that calls procedure P2, and both procedures manipulate the

Name Examples How condition is tested Advantages Disadvantages

Condition
code (CC)

80x86, ARM,
PowerPC,
SPARC, SuperH

Tests special bits set by
ALU operations,
possibly under program
control

Sometimes condition
is set for free.

CC is extra state. Condition
codes constrain the ordering of
instructionsbecause they pass
information from one
instruction to a branch

Condition
register/
limited
comparison

Alpha, MIPS Tests arbitrary register
with the result of a simple
comparison (equality or
zero tests)

Simple Limited compare may affect
critical path or require extra
comparison for general
condition

Compare
and branch

PA-RISC, VAX,
RISC-V

Compare is part of the
branch. Fairly general
compares are allowed
(greater then, less then)

One instruction
rather than two for a
branch

May set critical path for branch
instructions

Figure A.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on pro-
grams show that this rarely happens. The major implementation problems with condition codes arise when the con-
dition code is set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the
instruction. Computers with compare and branch often limit the set of compares and use a separate operation and
register for more complex compares. Often, different techniques are used for branches based on floating-point com-
parison versus those based on integer comparison. This dichotomy is reasonable because the number of branches that
depend on floating-point comparisons is much smaller than the number depending on integer comparisons.

A.6 Instructions for Control Flow ■ A-19

global variable x. If P1 had allocated x to a register, it must be sure to save x to a
location known by P2 before the call to P2. A compiler’s ability to discover when a
called procedure may access register-allocated quantities is complicated by the
possibility of separate compilation. Suppose P2 may not touch x but can call
another procedure, P3, that may access x, yet P2 and P3 are compiled separately.
Because of these complications, most compilers will conservatively caller save any
variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be more
optimal with callee save and some will be more optimal with caller save. As a result,
most real systems today use a combination of the two mechanisms. This convention
is specified in an application binary interface (ABI) that sets down the basic rules as
to which registers should be caller saved and which should be callee saved. Later in
this appendix we will examine the mismatch between sophisticated instructions for
automatically saving registers and the needs of the compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect

Greater than

Greater than or equal

Equal

Not equal

Less than or equal

 Less than
35%

34%

33%
44%

0%
0%

0%
11%

18%
16%

2%
5%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Floating-point average
Integer average

Figure A.17 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture. These
measurements include both the integer and floating-point compares in branches. The
programs and computer used to collect these statistics are the same as those in
Figure A.8.

A-20 ■ Appendix A Instruction Set Principles

branch addressing in a new architecture to be able to jump to hundreds of instruc-
tions either above or below the branch. This requirement suggests a PC-relative
branch displacement of at least 8 bits. We would also expect to see register indirect
and PC-relative addressing for jump instructions to support returns as well as many
other features of current systems.

We have now completed our instruction architecture tour at the level seen by
an assembly language programmer or compiler writer. We are leaning toward a
load-store architecture with displacement, immediate, and register indirect addres-
sing modes. These data are 8-, 16-, 32-, and 64-bit integers and 32- and 64-bit
floating-point data. The instructions include simple operations, PC-relative condi-
tional branches, jump and link instructions for procedure call, and register indirect
jumps for procedure return (plus a few other uses).

Now we need to select how to represent this architecture in a form that makes it
easy for the hardware to execute.

A.7 Encoding an Instruction Set

Clearly, the choices mentioned herein will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program but also the implementation
of the processor, which must decode this representation to quickly find the oper-
ation and its operands. The operation is typically specified in one field, called the
opcode. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of
independence between opcodes and modes. Some older computers have one
to five operands with 10 addressing modes for each operand (see Figure A.6).
For such a large number of combinations, typically a separate address
specifier is needed for each operand: the address specifier tells what addres-
sing mode is used to access the operand. At the other extreme are load-store
computers with only one memory operand and only one or two addressing
modes; obviously, in this case, the addressing mode can be encoded as part
of the opcode.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions, as
the register field and addressing mode field may appear many times in a single
instruction. In fact, for most instructions many more bits are consumed in
encoding addressing modes and register fields than in specifying the opcode.
The architect must balance several competing forces when encoding the
instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the average
instruction size and hence on the average program size.

A.7 Encoding an Instruction Set ■ A-21

3. A desire to have instructions encoded into lengths that will be easy to han-
dle in a pipelined implementation. (The value of easily decoded instructions
is discussed in Appendix C and Chapter 3.) As a minimum, the architect
wants instructions to be in multiples of bytes, rather than an arbitrary bit
length. Many desktop and server architects have chosen to use a fixed-
length instruction to gain implementation benefits while sacrificing average
code size.

Figure A.18 shows three popular choices for encoding the instruction set. The first
we call variable, because it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, because it combines the operation and
the addressing mode into the opcode. Often fixed encoding will have only a single

Operation and
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2

Address
specifier n

Address
field n

(A) Variable (e.g., Intel 80x86, VAX)

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb2)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with
each address specifier determining the addressing mode and the length of the spec-
ifier for that operand. It generally enables the smallest code representation, because
unused fields need not be included. The fixed format always has the same number of
operands, with the addressing modes (if options exist) specified as part of the
opcode. It generally results in the largest code size. Although the fields tend not
to vary in their location, they will be used for different purposes by different instruc-
tions. The hybrid approach has multiple formats specified by the opcode, adding one
or two fields to specify the addressing mode and one or two fields to specify the
operand address.

A-22 ■ Appendix A Instruction Set Principles

size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size
of programs versus ease of decoding in the processor. Variable tries to use as
few bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX,1000(EBX)

The name add means a 32-bit integer add instruction with two operands, and
this opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in
this case) and base register (EBX) for the second operand. This combination takes
1 byte to specify the operands. When in 32-bit mode (see Appendix K), the size of
the address field is either 1 byte or 4 bytes. Because1000 is bigger than 28, the total
length of the instruction is

1 + 1 + 4¼ 6 bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (see
Appendix K).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: reduce the variability in size and work of
the variable architecture but provide multiple instruction lengths to reduce code
size. This hybrid approach is the third encoding alternative, and we’ll see examples
shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit fixed
format became a liability because cost, and hence smaller code, are important. In
response, several manufacturers offered a new hybrid version of their RISC instruc-
tion sets, with both 16-bit and 32-bit instructions. The narrow instructions support
fewer operations, smaller address and immediate fields, fewer registers, and the
two-address format rather than the classic three-address format of RISC computers.
RISC-V offers such an extension, called RV32IC, the C standing for compressed.
Common instruction occurrences, such as intermediates with small values and com-
mon ALU operations with the source and destination register being identical, are
encoded in 16-bit formats. Appendix K gives two other examples, the ARMThumb
and microMIPS, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its stan-
dard instruction set and then adds hardware to decompress instructions as they are
fetched from memory on an instruction cache miss. Thus, the instruction cache
contains full 32-bit instructions, but compressed code is kept in main memory,
ROMs, and the disk. The advantage of a compressed format, such as RV32IC,

A.7 Encoding an Instruction Set ■ A-23

microMIPS and Thumb2 is that instruction caches act as if they are about 25%
larger, while IBM’s CodePack means that compilers need not be changed to handle
different instruction sets and instruction decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram and then loads the resulting compression tables in a 2 KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (see Chapter 2), it caches the most recently used address maps to reduce
the number of memory accesses. IBM claims an overall performance cost of
10%, resulting in a code size reduction of 35%–40%.

Summary: Encoding an Instruction Set

Decisions made in the components of instruction set design discussed in previous
sections determine whether the architect has the choice between variable and fixed
instruction encodings. Given the choice, the architect more interested in code size
than performance will pick variable encoding, and the one more interested in per-
formance than code size will pick fixed encoding. RISC-V, MIPS, and ARM all
have an instruction set extension that uses 16-bit instruction, as well as 32-bit;
applications with serious code size constraints can opt to use the 16-bit variant
to decrease code size. Appendix E gives 13 examples of the results of architects’
choices. In Appendix C and Chapter 3, the impact of variability on performance of
the processor will be discussed further.

We have almost finished laying the groundwork for the RISC-V instruction set
architecture that will be introduced in Section A.9. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on program
properties.

A.8 Cross-Cutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that because most instructions exe-
cuted are the output of a compiler, an instruction set architecture is essentially
a compiler target. In earlier times for these applications, architectural decisions
were often made to ease assembly language programming or for a specific kernel.
Because the compiler will significantly affect the performance of a computer,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation
is essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer and
the complexity of building a good compiler for it, for better or for worse.

A-24 ■ Appendix A Instruction Set Principles

In this section, we discuss the critical goals in the instruction set primarily from
the compiler viewpoint. It starts with a review of the anatomy of current compilers.
Next we discuss how compiler technology affects the decisions of the architect,
and how the architect can make it hard or easy for the compiler to produce good
code. We conclude with a review of compilers and multimedia operations, which
unfortunately is a bad example of cooperation between compiler writers and
architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure A.19 shows
the structure of recent compilers.

A compiler writer’s first goal is correctness—all valid programs must be
compiled correctly. The second goal is usually speed of the compiled code. Typ-
ically, a whole set of other goals follows these two, including fast compilation,
debugging support, and interoperability among languages. Normally, the passes

Language dependent;
machine independent

Dependencies
Transform language to
common intermediate form

Function

Front end per
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language
dependent; largely machine
independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Figure A.19 Compilers typically consist of two to four passes, with more highly opti-
mizing compilers having more passes. This structure maximizes the probability that a
program compiled at various levels of optimization will produce the same output when
given the same input. The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower-quality code is acceptable. A pass
is simply one phase in which the compiler reads and transforms the entire program.
(The term phase is often used interchangeably with pass.) Because the optimizing passes
are separated, multiple languages can use the same optimizing and code generation
passes. Only a new front end is required for a new language.

A.8 Cross-Cutting Issues: The Role of Compilers ■ A-25

in the compiler transform higher-level, more abstract representations into progres-
sively lower-level representations. Eventually it reaches the instruction set. This
structure helps manage the complexity of the transformations and makes writing
a bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order
and perform some transformations before others. In the diagram of the optimizing
compiler in Figure A.19, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such a
transformation is made, the compiler can’t afford to go back and revisit all steps,
possibly undoing transformations. Such iteration would be prohibitive, both in
compilation time and in complexity. Thus, compilers make assumptions about
the ability of later steps to deal with certain problems. For example, compilers usu-
ally have to choose which procedure calls to expand inline before they know the
exact size of the procedure being called. Compiler writers call this problem the
phase-ordering problem.

How does this ordering of transformations interact with the instruction set
architecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a tem-
porary. It then uses the temporary value, eliminating the second computation of the
common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reloading
it may negate the savings gained by not recomputing the expression. There are, in
fact, cases where this optimization actually slows down code when the temporary
is not register allocated. Phase ordering complicates this problem because register
allocation is typically done near the end of the global optimization pass, just before
code generation. Thus, an optimizer that performs this optimization must assume
that the register allocator will allocate the temporary to a register.

Optimizations performed by modern compilers can be classified by the style of
the transformation, as follows:

■ High-level optimizations are often done on the source with output fed to later
optimization passes.

■ Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

■ Global optimizations extend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

■ Register allocation associates registers with operands.

■ Processor-dependent optimizations attempt to take advantage of specific archi-
tectural knowledge.

A-26 ■ Appendix A Instruction Set Principles

Register Allocation

Because of the central role that register allocation plays, both in speeding up the
code and in making other optimizations useful, it is one of the most important—
if not the most important—of the optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates
for allocation to a register and then to use the graph to allocate registers.
Roughly speaking, the problem is how to use a limited set of colors so that
no two adjacent nodes in a dependency graph have the same color. The empha-
sis in the approach is to achieve 100% register allocation of active variables.
The problem of coloring a graph in general can take exponential time as a
function of the size of the graph (NP-complete). There are heuristic algorithms,
however, that work well in practice, yielding close allocations that run in near-
linear time.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables
and additional registers for floating point. Unfortunately, graph coloring does
not work very well when the number of registers is small because the heuristic
algorithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some of the simpler optimizations—local and
processor-dependent optimizations—from transformations done in the code gen-
erator. Examples of typical optimizations are given in Figure A.20. The last col-
umn of Figure A.20 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

Figure A.21 shows the effect of various optimizations on instructions executed
for two programs. In this case, optimized programs executed roughly 25%–90%
fewer instructions than unoptimized programs. The figure illustrates the impor-
tance of looking at optimized code before suggesting new instruction set features,
because a compiler might completely remove the instructions the architect was try-
ing to improve.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
how are variables allocated and addressed? Howmany registers are needed to allo-
cate variables appropriately? To address these questions, we must look at the three
separate areas in which current high-level languages allocate their data:

A.8 Cross-Cutting Issues: The Role of Compilers ■ A-27

■ The stack is used to allocate local variables. The stack is grown or shrunk on
procedure call or return, respectively. Objects on the stack are addressed rel-
ative to the stack pointer and are primarily scalars (single variables) rather
than arrays. The stack is used for activation records, not as a stack for eval-
uating expressions. Hence, values are almost never pushed or popped on
the stack.

Optimization name Explanation
Percentage of the total number
of optimizing transforms

High-level At or near the source level; processor-independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression
elimination

Replace two instances of the same computation by
single copy

18%

Constant propagation Replace all instances of a variable that is assigned a
constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize resources
needed for expression evaluation

N.M.

Global Across a branch

Global common
subexpression elimination

Same as local, but this version crosses branches 13%

Copy propagation Replace all instances of a variable A that has been
assigned X (i.e., A¼X) with X

11%

Code motion Remove code from a loop that computes same
value each iteration of the loop

16%

Induction variable
elimination

Simplify/eliminate array addressing calculations
within loops

2%

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply by a
constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset
optimization

Choose the shortest branch displacement that
reaches target

N.M.

Figure A.20 Major types of optimizations and examples in each class. These data tell us about the relative fre-
quency of occurrence of various optimizations. The third column lists the static frequency with which some of
the common optimizations are applied in a set of 12 small Fortran and Pascal programs. There are nine local and
global optimizations done by the compiler included in the measurement. Six of these optimizations are covered
in the figure, and the remaining three account for 18% of the total static occurrences. The abbreviation N.M. means
that the number of occurrences of that optimization was not measured. Processor-dependent optimizations are usu-
ally done in a code generator, and none of those was measured in this experiment. The percentage is the portion of
the static optimizations that are of the specified type. Data from Chow, F.C., 1983. A Portable Machine-Independent
Global Optimizer—Design and Measurements (Ph.D. thesis). Stanford University, Palo Alto, CA (collected using the
Stanford UCODE compiler).

A-28 ■ Appendix A Instruction Set Principles

■ The global data area is used to allocate statically declared objects, such as
global variables and constants. A large percentage of these objects are arrays
or other aggregate data structures.

■ The heap is used to allocate dynamic objects that do not adhere to a stack disci-
pline. Objects in the heap are accessedwith pointers and are typically not scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because they are aliased—there are multiple
ways to refer to the address of a variable, making it illegal to put it into a register.
(Most heap variables are effectively aliased for today’s compiler technology.)

For example, consider the following code sequence, where & returns the
address of a variable and * dereferences a pointer:

p ¼&a – gets address of a in p
a ¼... – assigns to a directly
*p ¼... – uses p to assign to a
...a... – accesses a

The variable a could not be register allocated across the assignment to *pwith-
out generating incorrect code. Aliasing causes a substantial problem because it is

mcf, level 0P
ro

gr
am

, c
om

pi
le

r
op

tim
iz

at
io

n
le

ve
l

100%0% 20% 40% 60% 80%

Branches/calls

Floating-point ALU ops

Loads-stores

Integer ALU ops

Percentage of unoptimized instructions executed

mcf, level 1

mcf, level 2

mcf, level 3

lucas, level 0

lucas, level 1

lucas, level 2

lucas, level 3 11%

12%

21%

100%

76%

76%

84%

100%

Figure A.21 Change in instruction count for the programs lucas and mcf from the
SPEC2000 as compiler optimization levels vary. Level 0 is the same as unoptimized
code. Level 1 includes local optimizations, code scheduling, and local register allocation.
Level 2 includes global optimizations, loop transformations (software pipelining), and
global register allocation. Level 3 adds procedure integration. These experiments were
performed on Alpha compilers.

A.8 Cross-Cutting Issues: The Role of Compilers ■ A-29

