SFU

CMPT 490/790: Computer Architecture
Fall 2024

Memory Ordering

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2024 Alaa Alameldeen and Arrvindh Shriraman

Handling Memory Operations

« Some instructions (loads, stores) have memory operands, and need to
access the memory hierarchy
» Accesses performed in the “memory” stage of the superscalar processor pipeline

« To maximize ILP, loads/stores may execute out of order

« Memory operations require special handling

» Recall that Register dependences are identified at decode time
UAllows early renaming to remove false dependences
OdMaximizes ILP

»But Memory dependences cannot be determined before execution since memory
addresses need to be computed first

» False dependences exist in memory execution stream
UFor example, multiple stores to the same bytes (WAW)
UFrequent due to stack pushes and pops

How Processors Execute Memory Operations

* Functions that a processor has to do for memory operations:
» Enforcing memory dependences among loads and stores
» Stores/Writes to memory need to be ordered and non-speculative
» Stores issue to the data cache after retirement

Loads and stores ordering is enforced using load and store buffers while allowing
out of order execution

Stores consist of address and data uops. Store addresses are buffered in a queue

Store addresses remain buffered until:
» Store data Is available AND Store instruction is committed in the reorder buffer

New load addresses are checked with the waiting store addresses. If there is a
match:

» The load waits OR Store data is bypassed to the matching load

Load and Store Buifers

load address
butters
mstruction loads
1ssue to memeory
address address I
add . .
.: compate hazard control

& translation

T\

sfores

store address

butfers

Smith & Sohi 1995, Figure 11

« Store addresses are buffered in a queue
» Entries allocated in program order at rename

 Store addresses remain buffered until:
» Store data is available
> Store instruction is retired in the reorder buffer

 New load addresses are checked with the waiting older store addresses
> If there Is a match:
UThe load waits OR
U Store data is bypassed to the matching load
» If there Is no match:
ULoad can execute speculatively OR
ULoad waits till all prior store addresses are computed

 To match loads with store addresses, the store buffer is typically organized
as a fully-associative queue (could also be set-associative)

»An address comparator in each buffer entry compares each store address to the
address of a load issued to the data cache

» Multiple stores to same address may be present

» Load-store address match is qualified with “age” information to match a load to the last
preceding store in program order

LAge is typically checked by attaching the number of the preceding store entry to each load at
rename

L Effectively provides a form of “memory renaming”

Load Bufier

* Loads can speculatively issue to the data cache out-of-order

* But load iIssue may stall
»Unavallable resources/ports in the data cache
»Unknown store addresses
»Delayed store data execution
»Memory mapped I/O
»Lock operations
»Misaligned loads

* Load buffer is provided for stalled loads to wait
* Load entries are allocated in program order at rename

« A stalled load simply waits in its buffer entry until stall condition is
removed

» Scheduling logic checks for awakened loads and re-issues them to the data
cache, typically in program order

* Load buffers are sometimes used for load-store dependence
speculation

»When a load issues ahead of a preceding store, it is impossible to perform
address match

»Option 1: Stall the load until all prior store addresses are computed
L Significant performance impact in machines with deep, wide pipelines

»QOption 2: Speculate that the load does not depend on the previous unknown
stores

LNeeds misprediction detection and recovery mechanism

* One detection mechanism is to make the load buffer a fully
associative queue
» Store addresses are checked against all previously issued load addresses
»Only younger loads need to be checked

Memory Consistency

» Load buffer snoops other processors’ stores to maintain memory
consistency on some processors

» Stores from other threads on the same processor need to be snooped in the
load buffer to maintain memory consistency

« Memory consistency models define ordering requirements of loads and
stores to different addresses and from multiple processors

»Discussed later in the course

« Examples for memory consistency models
»Sequential Consistency (SC)
» Total Store Order (TSO)

10

Memory Dependence Prediction

« Memory Order Violation: A load is executed before an older store,
reads the wrong value

* False Dependence: Loads wait unnecessarily for stores to
different addresses

* Goals of Memory Dependence Prediction:
»Predict the load instructions that would cause a memory-order violation
»Delay execution of these loads only as long as necessary to avoid violations

11

Memory Dependence Prediction

« Memory misprediction recovery Is expensive
»Requires a pipeline flush if a store address matches a younger issued load
» Compare to branch mispredictions

« Memory dependence prediction minimizes such mispredictions
»Issue younger loads if predictor predicts “no dependence”
» Stall younger loads if predictor predicts “dependence”

»With a good predictor, this approach minimizes unnecessary stalls (false dependences)
as well as pipeline flushes from mispredictions

12

Alternatives to Memory Dependence Prediction

* No Speculation
»Issue for any load waits till prior stores
have issued
* Nalve Speculation

»Always issue and execute loads when
their register dependences are satisfied,
regardless of memory dependences

e Statistics for some benchmarks:

Naive No
Speculation Speculation
Spec93 Memory | Memory ~ False
| Program Order Trap Dep.
Viols Per Penalty Per 1K
1K Instrs (Cycles) Instrs

 go 6 13 157
m38ksim 20 12 168
gCC 5 15 187
compress 11 15 129
xlisp 11 14 179
| ijpeg 23 15 150
perl prim 20 15 215
perl scrab 10 15 185
vortex 7 19 215
tomcaty 4 22 264
swim 2 36 224
mgrid 0 18 262
_applu 18 22 212
_apsi 7 35 247
_fpppp 10 17 275
waves 24 21 188
|_turb3d 6 16 213

Chrysos&Emer, 1998, Table 3.1

13

Perfect Memory Dependence Prediction

 Does not cause memory order violations
* Avoids all false dependences

7

IPC
= - I~

2z
L (as]
m

compress EEEEE

fpppp

gce

go
ijpeg
swim

mgrid
perl prim (SR
- perl scr B

mB88ksim

‘Ono speculai':i_d'r"lm =] naive shéc ulation l ﬁerfect

Chrysos&Emer, 1998, Figure 3.1

tomcatv §

turb3d

15y

vortex

wave

=3
B
=

14

« Based on the assumption that future dependences can be
predicted from past behavior

 Each load has a store set consisting of all stores upon which it
has ever depended

» Store Is identified by its PC
 When program starts, all loads have empty store sets

* When a memory order violation happens, store is added to load’s
store set

15

PC
0

4

8
12
28
32

36
40

Inst

Store C
Store A
Store B
Store C

_oad B
_oad D
_oad C
_oad A

SS = {PC 8}
SS={}

SS ={PC 0, PC 12}
SS = {PC 4}

16

 Infinite SS configuration (#sets, #elements/set are not limited)

 Each dynamic load is classified as:
» Not predicted (loads with empty store sets)
» Correctly predicted
» False dependence (unnecessary wait)

» Memory order violation (dependence not predicted)
Chrysos&Emer, 1998, Figure 5.2

Figure 5.2: Infinite Store Sets Predictor - Dynamic Load Breakdown
350 SR - e . ;

300 B
=

250

200

e

150

100

Loads per 1K Instrs

o
(=)

applu | =
apsi
fPppp | -
gce
peg
swim
tomcatv
turb3d |
vortex
wave
xlisp |

m88ksim
Mgrid oot i £
perl prim
periser [T G

&
2
a
£
8 _
1 Not Predicted B Correct Predictions [False dependencies Wl Memory Order Violations 17

» At most one load can depend on any store

»Each load depends on at most one store

Normalized Run Time

1.6
1.5
1.4
13
1.2
1.1

1
0.9
0.8

 Hardware resources are not infinite, so we cannot allow infinitely
arge store sets per load

* Results when limiting store sets:

Chrysos&Emer, 1998, Figure 5.1

Figure 5.1: Effect on Run Time When Not Allowing Multiple Dependence Flexibility

TRt e

B

applu »
apsi

compress

o
on

fpppp ¢
gce

'O Only one load depends on any store B Loads depend on at most one store

lipeg

m88ksim ¢

mgrid

perl prim

swim

perl scr

tomcatv

turb3d
vortex
wave

« With infinite SS, a store dependence remains in a load’s store set forever, even if some
dynamic instances of the load are independent

« To reduce false dependences, we can use 2-bit saturating counters
» Set to max value (3) on a memory order violation
» Decremented if real dependence doesn’t exist, incremented if real dependence exists
» Counter values of 2 or 3 cause load to wait; otherwise no dependence is assumed

Figure 5.3: Infinite Store Sets Predictor with 2 Bit Counters - Dynamic Load Breakdown
350 — J— RV e b i i i i e o it i s et e e e =

|
1 .
300 Chrysos&Emer,|1998, Figure 5.3
o |
[7;]
£
x
™ S
a
@
E San
o
— o
z 9 =& 8y g © E =T E s g 2 B 5 o &
s ¢ & % ° & ¢ 5 ®w @ 3 § 8§ & 3 %
g = g &£ 5 % @ § 2 g =
g E g & S
0 Not Predicted B Correct Predictions [False Dependenc_ies B Memory Otc_l_er V_io_lalions? 19

Chrysos&Emer, 1998, Figure 5.4

Figure 5.4: Performance of Store Set Memory Dependence Prediction

IPC
O =~ N W s OO N

gce
go [
jpeg
mgrid
per! prim §
perl scr
swim
tomcatv §
turb3d §
vortex
wave
xlisp E

compress §
fpppp
m88ksim ¢

O Infinte Store Sets @ Wfinite Store Sets & 2bit Ctrs m Perfect

 Infinite SS with 2-bit saturating counters are very close to perfect
memory dependence prediction

20

« Store Set Identifier Table (SSIT): PC-indexed, maintains store sets

« Last Fetched Store Table (LFST) maintains dynamic inst. count about most recently fetched

store for each store set Figure 6.1: Implementation of Store Sets Memory Dependence Prediction

Load/Store PC Store Set ID Table Last Fetched Store Table
(SSIT) (LFST)
Index
Chrysos&Emer, 1998, Figure 6.1 — Store Inum
P SSID

Loads and stores index into the SSIT to get their store set identifiers, which are used to access and update
the LFST. The store inums that are found in the LFST indicate the memory dependence prediction.

« Limitations:
» Store PCs exist in one store set at a time
» Two loads depending on the same store can share a store set

> All stores in a store set are executed in order ’1

* Recently fetched loads
»Access SSIT based on their PC, get their SSID
»If SSID is valid, LFST is accessed to get most recent store in the load’s store set

* Recently fetched stores
»Access SSIT based on their PC
»If SSID is valid, then store belongs to a valid store set

UAccess LFST to get most recently fetched store information in its store set

UdUpdate LFST inserting its own dynamic inst. count since it is now the last fetched store in
that store set

U After store is issued, it invalidates the LFST entry if it refers to itself to ensure loads & stores
are only dependent on stores that haven't been issued

22

» Destructive interference happens because stores can belong to only one
store set

Example:
Load PC 1 — Store Set 1 { Store PC X, Store PC Y, Store PC Z}
Load PC 2 — Store Set 2 { Store PC J, Store PC K}

« Assume that Load PC 1 has a memory order violation with Store PC J
» Each store can exist in one SS, so we need to remove Store PC JfromSS 2 andadd itto SS 1
» But this causes future memory order violation between Load PC 2 and Store PC J

e Store set merging avoids the problem

23

« When a store-load pair causes a memory order violation:

> If neither has been assigned a store set, a store set is allocated and assigned to both
Instructions

» If load has been assigned a store set but the store hasn't, the store is assigned the load’s store
set

> If store has been assigned a store set but the load hasn't, the load is assigned the store’s load
set

» If both have store sets, one of them is declared the winner, and the instruction belonging to the
loser’s store set is assigned the winner’s store set

Chrysos&Emer, 1998, Figure 6.2

Figure 6.2: Performance Improvement Due to Store Set Merging

IPC
C =N Whs OO

applu rrmrmm
apsi

COMPress e
m88ksim
perl ptim ==
perl scr
tomcatv
turb3d
vortex

0INo Merge @ Store Set Merging 24

* For the practical SS implementation, cyclic clearing of valid bits (every ~1M
cycles) is almost the same as 2-bit saturating counters

* With sufficiently large structures, performance very close to perfect

IPC
O = NWHAO O

prediction

Figure 6.3: Implementation of Store Sets vs. Perfect

Chrysos&Emer, 1998, Figure 6.3

applu .
apsi
fpppp B

Cﬂmprgss T

mB88ksim
mgrid e e
perl prim

| |:| cycllc c'lééﬁng n 2 bit ctrs W perfect

 perl scr [EEETEETEEER
swim e

tomecaty B

turb3d B

vortex EEEE

wave [eomREESSn

xI ESD R e

25

 Reading Assignment

»G.Z. Chrysos and J.S. Emer, “"Memory Dependence Prediction using Store Sets,”
ISCA 1998 (Read).

 Assignment 1 due Friday Sep 27 @11:59 PM

« Exam Logistics
»Exam 1 is on Tuesday Oct 1 during class time (1:30-2:20 PM)
»Open book, notes, calculator
» Exam will be available on the course canvas page. Link active during class time

»You need to join the zoom link and turn your camera on
UZoom link will be sent on Piazza the day of the exam

» Attendance will be taken on exam days. You need to be on zoom for your exam to
count.

26

	Slide 1
	Slide 2: Handling Memory Operations
	Slide 3: How Processors Execute Memory Operations
	Slide 4: Load and Store Buffers
	Slide 5: Store Buffer
	Slide 6: Store Buffer Operation
	Slide 7: Load Buffer
	Slide 8: Load Buffer Operation
	Slide 9: Load-Store Dependence Speculation
	Slide 10: Memory Consistency
	Slide 11: Memory Dependence Prediction
	Slide 12: Memory Dependence Prediction
	Slide 13: Alternatives to Memory Dependence Prediction
	Slide 14: Perfect Memory Dependence Prediction
	Slide 15: Store Sets
	Slide 16: Store Set Example
	Slide 17: Store Set Performance
	Slide 18: More Practical Store Set Performance
	Slide 19: Reducing False Dependences
	Slide 20: Store Set Comparison to Perfect Prediction
	Slide 21: Practical Store Set Implementation
	Slide 22: Implementation Details
	Slide 23: Store Set Interference
	Slide 24: Store Set Merging
	Slide 25: Store Set Performance
	Slide 26: Announcements

