
CMPT 450/750: Computer Architecture

Fall 2024

Memory Ordering

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2024 Alaa Alameldeen and Arrvindh Shriraman

Handling Memory Operations

• Some instructions (loads, stores) have memory operands, and need to
access the memory hierarchy
➢Accesses performed in the “memory” stage of the superscalar processor pipeline

• To maximize ILP, loads/stores may execute out of order

• Memory operations require special handling

➢Recall that Register dependences are identified at decode time

❑Allows early renaming to remove false dependences

❑Maximizes ILP

➢But Memory dependences cannot be determined before execution since memory
addresses need to be computed first

➢False dependences exist in memory execution stream

❑For example, multiple stores to the same bytes (WAW)

❑Frequent due to stack pushes and pops

2

How Processors Execute Memory Operations
• Functions that a processor has to do for memory operations:

➢Enforcing memory dependences among loads and stores

➢Stores/Writes to memory need to be ordered and non-speculative

➢Stores issue to the data cache after retirement

• Loads and stores ordering is enforced using load and store buffers while allowing

out of order execution

• Stores consist of address and data uops. Store addresses are buffered in a queue

• Store addresses remain buffered until:

➢Store data is available AND Store instruction is committed in the reorder buffer

• New load addresses are checked with the waiting store addresses. If there is a

match:

➢The load waits OR Store data is bypassed to the matching load
3

Load and Store Buffers

4
Smith & Sohi 1995, Figure 11

Store Buffer

• Store addresses are buffered in a queue

➢Entries allocated in program order at rename

• Store addresses remain buffered until:

➢Store data is available

➢Store instruction is retired in the reorder buffer

• New load addresses are checked with the waiting older store addresses

➢If there is a match:

❑The load waits OR

❑Store data is bypassed to the matching load

➢If there is no match:

❑Load can execute speculatively OR

❑Load waits till all prior store addresses are computed

5

Store Buffer Operation

• To match loads with store addresses, the store buffer is typically organized

as a fully-associative queue (could also be set-associative)

➢An address comparator in each buffer entry compares each store address to the

address of a load issued to the data cache

➢Multiple stores to same address may be present

➢Load-store address match is qualified with “age” information to match a load to the last

preceding store in program order

❑Age is typically checked by attaching the number of the preceding store entry to each load at

rename

❑Effectively provides a form of “memory renaming”

6

Load Buffer

• Loads can speculatively issue to the data cache out-of-order

• But load issue may stall

➢Unavailable resources/ports in the data cache

➢Unknown store addresses

➢Delayed store data execution

➢Memory mapped I/O

➢Lock operations

➢Misaligned loads

7

Load Buffer Operation

• Load buffer is provided for stalled loads to wait

• Load entries are allocated in program order at rename

• A stalled load simply waits in its buffer entry until stall condition is

removed

➢Scheduling logic checks for awakened loads and re-issues them to the data

cache, typically in program order

8

Load-Store Dependence Speculation

• Load buffers are sometimes used for load-store dependence
speculation
➢When a load issues ahead of a preceding store, it is impossible to perform

address match

➢Option 1: Stall the load until all prior store addresses are computed
❑Significant performance impact in machines with deep, wide pipelines

➢Option 2: Speculate that the load does not depend on the previous unknown
stores
❑Needs misprediction detection and recovery mechanism

• One detection mechanism is to make the load buffer a fully
associative queue
➢Store addresses are checked against all previously issued load addresses

➢Only younger loads need to be checked

9

Memory Consistency

• Load buffer snoops other processors’ stores to maintain memory

consistency on some processors

• Stores from other threads on the same processor need to be snooped in the

load buffer to maintain memory consistency

• Memory consistency models define ordering requirements of loads and

stores to different addresses and from multiple processors

➢Discussed later in the course

• Examples for memory consistency models

➢Sequential Consistency (SC)

➢Total Store Order (TSO)

10

Memory Dependence Prediction

• Memory Order Violation: A load is executed before an older store,

reads the wrong value

• False Dependence: Loads wait unnecessarily for stores to

different addresses

• Goals of Memory Dependence Prediction:

➢Predict the load instructions that would cause a memory-order violation

➢Delay execution of these loads only as long as necessary to avoid violations

11

Memory Dependence Prediction

• Memory misprediction recovery is expensive

➢Requires a pipeline flush if a store address matches a younger issued load

➢Compare to branch mispredictions

• Memory dependence prediction minimizes such mispredictions

➢Issue younger loads if predictor predicts “no dependence”

➢Stall younger loads if predictor predicts “dependence”

➢With a good predictor, this approach minimizes unnecessary stalls (false dependences)

as well as pipeline flushes from mispredictions

12

Alternatives to Memory Dependence Prediction
• No Speculation

➢Issue for any load waits till prior stores

have issued

• Naïve Speculation

➢Always issue and execute loads when

their register dependences are satisfied,

regardless of memory dependences

• Statistics for some benchmarks:

13
Chrysos&Emer, 1998, Table 3.1

Perfect Memory Dependence Prediction

• Does not cause memory order violations

• Avoids all false dependences

14

Chrysos&Emer, 1998, Figure 3.1

Store Sets
• Based on the assumption that future dependences can be

predicted from past behavior

• Each load has a store set consisting of all stores upon which it
has ever depended
➢Store is identified by its PC

• When program starts, all loads have empty store sets

• When a memory order violation happens, store is added to load’s
store set

15

Store Set Example
PC Inst

0 Store C

4 Store A

8 Store B

12 Store C

…

28 Load B SS = {PC 8}

32 Load D SS = { }

36 Load C SS = {PC 0, PC 12}

40 Load A SS = {PC 4}

16

Store Set Performance
• Infinite SS configuration (#sets, #elements/set are not limited)

• Each dynamic load is classified as:
➢Not predicted (loads with empty store sets)
➢Correctly predicted
➢False dependence (unnecessary wait)
➢Memory order violation (dependence not predicted)

17

Chrysos&Emer, 1998, Figure 5.2

More Practical Store Set Performance
• Hardware resources are not infinite, so we cannot allow infinitely

large store sets per load

• Results when limiting store sets:
➢At most one load can depend on any store

➢Each load depends on at most one store

18

Chrysos&Emer, 1998, Figure 5.1

Reducing False Dependences
• With infinite SS, a store dependence remains in a load’s store set forever, even if some

dynamic instances of the load are independent

• To reduce false dependences, we can use 2-bit saturating counters

➢ Set to max value (3) on a memory order violation

➢ Decremented if real dependence doesn’t exist, incremented if real dependence exists

➢ Counter values of 2 or 3 cause load to wait; otherwise no dependence is assumed

19

Chrysos&Emer, 1998, Figure 5.3

Store Set Comparison to Perfect Prediction

• Infinite SS with 2-bit saturating counters are very close to perfect
memory dependence prediction

20

Chrysos&Emer, 1998, Figure 5.4

Practical Store Set Implementation
• Store Set Identifier Table (SSIT): PC-indexed, maintains store sets

• Last Fetched Store Table (LFST) maintains dynamic inst. count about most recently fetched

store for each store set

• Limitations:

➢ Store PCs exist in one store set at a time

➢ Two loads depending on the same store can share a store set

➢ All stores in a store set are executed in order
21

Chrysos&Emer, 1998, Figure 6.1

Implementation Details
• Recently fetched loads

➢Access SSIT based on their PC, get their SSID

➢If SSID is valid, LFST is accessed to get most recent store in the load’s store set

• Recently fetched stores

➢Access SSIT based on their PC

➢If SSID is valid, then store belongs to a valid store set

❑Access LFST to get most recently fetched store information in its store set

❑Update LFST inserting its own dynamic inst. count since it is now the last fetched store in
that store set

❑After store is issued, it invalidates the LFST entry if it refers to itself to ensure loads & stores
are only dependent on stores that haven’t been issued

22

Store Set Interference

• Destructive interference happens because stores can belong to only one
store set

Example:

 Load PC 1 → Store Set 1 { Store PC X, Store PC Y, Store PC Z }

 Load PC 2 → Store Set 2 { Store PC J, Store PC K }

• Assume that Load PC 1 has a memory order violation with Store PC J
➢Each store can exist in one SS, so we need to remove Store PC J from SS 2 and add it to SS 1

➢But this causes future memory order violation between Load PC 2 and Store PC J

• Store set merging avoids the problem

23

Store Set Merging
• When a store-load pair causes a memory order violation:

➢ If neither has been assigned a store set, a store set is allocated and assigned to both
instructions

➢ If load has been assigned a store set but the store hasn’t, the store is assigned the load’s store
set

➢ If store has been assigned a store set but the load hasn’t, the load is assigned the store’s load
set

➢ If both have store sets, one of them is declared the winner, and the instruction belonging to the
loser’s store set is assigned the winner’s store set

24

Chrysos&Emer, 1998, Figure 6.2

Store Set Performance

• For the practical SS implementation, cyclic clearing of valid bits (every ~1M
cycles) is almost the same as 2-bit saturating counters

• With sufficiently large structures, performance very close to perfect
prediction

25

Chrysos&Emer, 1998, Figure 6.3

26

Announcements

• Reading Assignment

➢G.Z. Chrysos and J.S. Emer, “Memory Dependence Prediction using Store Sets,”

ISCA 1998 (Read).

• Assignment 1 due Friday Sep 27 @11:59 PM

• Exam Logistics

➢Exam 1 is on Tuesday Oct 1 during class time (1:30-2:20 PM)

➢Open book, notes, calculator

➢Exam will be available on the course canvas page. Link active during class time

➢You need to join the zoom link and turn your camera on

❑Zoom link will be sent on Piazza the day of the exam

➢Attendance will be taken on exam days. You need to be on zoom for your exam to

count.

	Slide 1
	Slide 2: Handling Memory Operations
	Slide 3: How Processors Execute Memory Operations
	Slide 4: Load and Store Buffers
	Slide 5: Store Buffer
	Slide 6: Store Buffer Operation
	Slide 7: Load Buffer
	Slide 8: Load Buffer Operation
	Slide 9: Load-Store Dependence Speculation
	Slide 10: Memory Consistency
	Slide 11: Memory Dependence Prediction
	Slide 12: Memory Dependence Prediction
	Slide 13: Alternatives to Memory Dependence Prediction
	Slide 14: Perfect Memory Dependence Prediction
	Slide 15: Store Sets
	Slide 16: Store Set Example
	Slide 17: Store Set Performance
	Slide 18: More Practical Store Set Performance
	Slide 19: Reducing False Dependences
	Slide 20: Store Set Comparison to Perfect Prediction
	Slide 21: Practical Store Set Implementation
	Slide 22: Implementation Details
	Slide 23: Store Set Interference
	Slide 24: Store Set Merging
	Slide 25: Store Set Performance
	Slide 26: Announcements

