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« Cache misses result in large performance and energy losses

« Cache Miss Types:
»Compulsory: Misses in an infinite cache
»Capacity: Misses in a fully-associative cache
»Conflict: Misses due to limited number of ways per set

* To reduce cache misses, we can use:
»High associativity or/and victim caching (conflict misses)
» Prefetching (compulsory and capacity)
» Effective replacement algorithms (conflict and capacity misses)
»Insertion policies (conflict and capacity misses)
»Dead block prediction (conflict and capacity misses)



« Why are cache misses expensive?
» Blocking cache: Severely reduce performance
» Non-blocking cache: Load stalls in ROB, can prevent instruction issue or fetch
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Gache Hit Time Tradeoffs

« Cache hit time is important to reduce average memory access time

« However, reducing hit time comes at the expense of higher miss rates or
higher energy consumption

» Cache Size Tradeoff
» Smaller caches are faster to access
» However, smaller caches have higher capacity misses

« Associativity Tradeoff
» Direct-mapped cache: faster access time, more conflict misses
» Set-associative cache: slower access time, fewer conflict misses

« Tag and Data Access Tradeoff
» Parallel tag and data access reduces hit time but wastes energy due to extra dynamic power

» Seqguential tag then data access is slower but saves energy
O Typically done in L2, L3 etc.



Example: 4KB Direct-Mapped Gache with 16B Lines
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Many Misses Gaused hy Gonflicts

* In direct-mapped caches, 90| Key: ®—® L1 D-cache misses

: . & ~O L1 I<ache misses
conflict misses represent 80

significant percentage

» Average: 39% for D-cache,
29% for I-cache
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Figure 3-1: Conflict misses, 4KB I and D, 16B lines
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 Miss Cache: Small cache
placed between the L1 and L2
caches
» Provides additional associativity

without increasing hit time in
common case

» Fully associative cache
containing 2-5 lines

»0On a miss, data is returned to
both L1 cache and miss cache
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Jouppi 1990 Figure 3-2
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: : Data 1o proces
« Disadvantage of Miss Cache: data y S
Address from
redqndaﬂcy |
» Fill line inserted in both regular cache
and miss cache | a0 dain
» Needs at least two lines to be effective K cache
(i.e., increase the associativity of one
cache set from 1-way to 2-way)
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 More effective for D-cache
than I-cache

* Always outperforms Miss
cache
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Victim Gache Performance vs. Gache & Line Size

Key:

Percentage of all misses removed
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Prefetching



* Bringing lines to the cache before being requested
»Can reduce compulsory and capacity misses

* Requests to next level of memory hierarchy fall into two
categories:
»Demand miss: Fill request due to cache miss
»Prefetch: Fill request in anticipation of data request

 Instruction and data access patterns are different (discuss)
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Prefetching Terminology

 Timeliness: Measures whether the prefetch arrives early enough to avoid a
miss
»Even if miss is not totally avoided, miss latency is reduced

« Prefetch Hit: Prefetched line that was hit in the cache before being replaced
(miss avoided)

* Prefetch Miss: Prefetched line that was replaced before being accessed
* Prefetch rate: Prefetches per instruction (or 1000 inst.)
« Accuracy: Percentage of prefetch hits to all prefetches

 Coverage: Percentage of misses avoided due to prefetching
» 100 x (Prefetch Hits / (Prefetch Hits + Cache Misses))
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» Useful Prefetch
» Prefetch hit before being replaced
» Results in avoiding a cache miss

« Useless Prefetch
» Prefetch is replaced before being accessed (prefetch miss)
»Downside: Increases demand for cache bandwidth

« Harmful Prefetch
» Prefetch is replaced before being accessed AND
» Prefetch replaces a line that is requested later (cache pollution)
»Results in an additional cache miss
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* Prefetch always
» Prefetch after every reference
» Leads to significant demand on resources for next level in memory hierarchy

* Prefetch on miss (Also called one block lookahead)
» On a miss, we prefetch the next sequential line as well
» Cuts number of misses in a sequential stream in half
» We can also implement N-block lookahead

 Tagged Prefetch
» Each block has a tag status bit associated with it
» On a prefetch, tag bit set to zero
» On a hit, tag bit set to 1 (indicating prefetch hit)
» When a block’s status bit changes from 0 to 1, next block is prefetched
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* Tagged prefetch may not
be timely if cache lines are
consumed faster than they
are prefetched

* Need to start prefetching
before a tag status bit
transition takes place
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Jouppi 1990 Figure 4-2
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 On a cache miss
» Stream buffer prefetches successive lines starting at the miss address

» As each prefetch is sent out, we allocate an entry in the stream buffer and set available bit to
false

» When prefetch data returns, it is placed in buffer entry; available bit set to true
» Prefetch lines are stored in the stream buffer not the cache to avoid cache pollution

* On a cache miss and buffer hit
» Data loaded from stream buffer in one cycle
» All buffer entries shift by one, new line prefetched to vacant entry

 On anon-sequential miss
» Stream buffer flushed
» Prefetching starts from new miss address (even if miss is present in another stream buffer entry)
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Memory Access Patterns

« For successful prefetching strategies, we need to understand how programs access

1.

memory

Scalar / Zero Stride
» Example: simple variable references; A[i] in a loop indexed by |; A[i,j] in a loop indexed by k
» Do not require prefetching. References will be in the cache due to temporal locality

Streaming
» Example: Accessing cache lines A, A+1, A+2,...etc. OR A, A-1, A-2,...etc.
» Can be prefetched using Next-Line Prefetcher or Stream Buffers

Constant Stride

» Example: Accessing cache lines A, A+s, A+2s, ...etc.; Accessing array elements A[i] in loop indexed
by i; Accessing AJi,j] or A[j,i] in loop indexed by i or j

Complex Access Patterns

» Any pattern that doesn't fit the above categories

» Example: traversing a linked list, traversing a tree, traversing a graph
21



stride-Based Prefetching (Chen & Baer)

« Goal: Prefetching constant-stride access patterns
» |ldea: Detect prefetching patterns based on load/store instruction PC

« Uses areference prediction table to predict future memory references
» Tagged by PC

» On a hit, compare current address with previous address and match stride

 Lookahead prefetching
» Used to improve timeliness of prefetches
» Uses a “lookahead PC”

comect
g [ s s s | —
F': ' (update stride) |
Chen&Baer 1994 Fig2 | : ;

| " L' - J i‘rans.rEﬂl!' —"—‘—"' no pred

PC R (update strade) ‘-~’J
eifecave {update siride)
(a) reference prediction table

(b) state transition by PC
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« Some simple access patterns are easy to detect in software (e.qg.,
streaming, constant stride)

« Some complex access patterns can also be prefetched by software

»Example: Link list traversal
O Program can access one element and prefetch element->next

« Software prefetching requires inserting “prefetch” instructions in the
program by the compiler
» Advantage: Lower complexity in hardware (no prefetching structures)
» Disadvantage: Larger programs
» Disadvantage: Prefetches may not be timely so they arrive after demand accesses

 Hardware prefetching can be more responsive due to knowledge of
complex dynamic control flows of a program at runtime
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« How can we predict which address to prefetch next?
* Intuition: The program dynamic execution is the best predictor

 Idea: When the head of the ROB is a cache miss, checkpoint
architectural state then continue to execute and “pseudo-retire”
Instructions
» This frees up space in the instruction window for more instructions
» Some of these instructions may be other cache misses, triggering prefetches
»When initial miss returns, restart the pipeline from checkpoint

»\When the next memory access occurs, the request would be already out and the data
could possibly be in the cache.

 Runahead expands effective instruction window size (more misses-
under-miss, higher MLP)
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Runahead Execution: Hardware
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Variable Length Delta Prefetcher (WLDP)

e Targets complex memory access patterns
» Example of repeated strides in real workloads: (-24, +25); (-24, -24, +49); (+2, +3, +4); (-1, +3, -1, +4)
 |ldea: Build delta (i.e., stride) histories between successive cache line misses within a
page, then use history to predict accesses in other pages
» Uses multiple prediction tables that store predictions based on different input history lengths

O First table uses most recent delta to predict next miss
1 Second table uses most recent two deltas to predict next miss,...etc.
U VLDP uses table with longest history that has a matching entry to prefetch (similar to TAGE)

cacre RS PAE Delta.rzﬁ:sidm" — Page | | Last Last 4 Last Num. Times Last Four
Core 1 [y [F===] Delta History |y e # szai’ltc)t;set Num. Add. Deltas Predictor Used Prefetched Offsets
g Buffer Tables
[
! 3 ! : Shevgoor et al. 2015, Figure 2: Delta History Buffer Entry
4
b4 Delta Prediction
o
N — | Cache N Per nge PAE Tables Predicted
Core 8 neceee | Delta History Offeet Prediction - Detta/Offset
Buffer Tables
27
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Cache Replacement and Insertion
Policies



« Cache replacement policy:
»0On a cache line fill, which victim line to replace?

»Only applicable to set-associative caches
O Direct-mapped caches have only one line per set

»Example: LRU

« Cache insertion policy:
»When a cache line is filled, what would be its priority in the replacement stack?
»LRU: fill line is inserted in “Most Recently Used” position
» Other policies: LIP, BIP, DIP

»Dead block prediction helps determine lines that won’t be reused (either
bypassed or inserted in LRU position)
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Optimal Replacement (OPT): Belady’s Algorithm

* Replace the line that will not be needed for the longest time into the future

« Example (4-way cache)
» Accessorder A,B,C,D,E,A, B,D,A B,D A E, B,C

Line C is furthest into the future, so replace C with E

* Requires knowledge of future memory accesses (not practical)

» Other policies that do not require future knowledge (e.g., LRU) are used in real
systems

»Some recent research works attempt to predict future references and use them
to approximate Belady’s algorithm
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Least-Recently Used (LRU] Policy

* Replace the line that was referenced furthest in the past

« Example (4-way cache)
» Accessorder A,B,C,D,E,A, B,D,A B,D A E, B,C

LRU Stack Order 0 (MRU) 3(LRU) 2
Line Ais in LRU position, so replace A with E

* Issues
»Requires tracking order for each line in the cache

»Requires updating order on every access to a cache set (many read-modify-
write operations)

»Poor performance for streaming access patterns that don't fit in the cache
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* FIFO: Replace oldest allocated line

Most Recently Used (MRU)
» Replaces the line that was most recently used

Least Frequently Used (LFU)
» Replaces line that has been used less often than others
» Requires tracking frequency of access via counters (updated on every access)
» Counters need to decay or lines will remain in cache forever

Random Replacement (RR)
» Replace a line in the set at random
» Helps if recency of use is not a factor in predicting future use

Pseudo-LRU (PLRU)
» Replaces “one of the least recently used lines”

» Requires fewer bits to track and update on every access
» Explanation of how it works: https://en.wikipedia.org/wiki/Cache_replacement_policies
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 Insertion policy determines where afill line is inserted in the LRU stack
 Static Insertion Policies use the same policy always for all workloads

1. LRU replacement uses “MRU Insertion Policy”: Insert new line in MRU
position

2. MRU replacement uses “LRU Insertion Policy” (LIP): Insert new line in LRU
position

* Intuition for LIP: For cyclic sequential accesses that exceed number of ways,
new line will be accessed further into the future
» Example (4-way cache): A,B,C,D,E,A,B,C,D,E,.... (Causes thrashing in LRU)

* LIP Adversarial Case:
»AB,CD,EAB,CDEFGHIJFGHIJ, FGH,IJ, FGH,IJ, FGH,IJ,...
» Only 3 hits, all other accesses are misses
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Bimodal Insertion Policy (BIP)

« Similar to LIP except that it occasionally inserts lines into MRU position with

a small probability

 Bimodal throttle parameter (g) controls the probability of inserting lines in

MRU position

» BIP Is the same as LRU when € = 1; same as LIP when €= 0

Table 3: Hit Rate for LRU, OPT, LIP, and BIP

(a1 - - -aT)N

(b1 - - - bp)V

LRU 0 0

OPT (K — 1)/T (K — 1)/T

LIP (K —1)/T 0

BIP | (K—1—¢-[T—K)/T |~(K—-1—¢-[T—K))/T
~ (K —1)/T ~ (K —1)/T

Qureshi et al. 2007, Table 3

 Workloads have different phases with different access patterns, so a more
dynamic policy could be needed
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Dynamic Insertion Policy (DIP)

 Intuition: Some workloads are LRU-friendly while others are BIP-friendly

* DIP: Dynamically determine at runtime which policy is better, then apply the
best policy to the whole cache

* Tracking replacement states used to determine which policy is better
» Use an auxiliary tag array (ATD) that tracks cache replacement stack
» ATD keeps track of extra tags that follow either BIP or LRU

» ATD-BIP keeps track of lines that will be cached using BIP, ATD-LRU keeps track of lines that
will be cached using LRU

» Use saturating counter PSEL to determine which policy is better:
Uincremented on LRU miss, decremented on BIP miss
Most significant bit determines which policy is better

» Better policy used in the main tag array (MTD) for the whole cache
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» Track replacement stacks for both
LRU and BIP

e ISsues:
» Tag array increases by 3x

» Dynamic power increases due to
updating replacement state of all three
tag arrays (MTD, ATD-LRU, ATD-BIP)

* Do we really need to track all sets
to decide which policy is better?

ATD-LRU

Set O
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9
Set 10
Set 11
Set 12
Set 13
Set 14
Set 15

Miss in ATD-LRU

MTD

set 0

Set 1

Set 2

Set 3

Set 4

set 5

Set 6

Set 7

Set 8

Set 9

Set 10

Set 11

Set 12

Set 13

Set 14

Set 15

Decides Policy
for All Sets in MTD

ATD-BIP

Miss in ATD-BIP

Qureshi et al. 2007, Figure 9
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DIP with Set Dueli
with seét bueling Y
Set 1
* Use Dynamic Set Sampling (DSS Set 2
Y Pling (DSS) TN
to select a few sample sets Set 4 ) .
» Some sample sets use BIP, others LRU ﬁ Sets dedicated o LRU
_ _ o ] sets dedicated to BIP
 Best policy determined by set 0 o lower Safe
dueling [seto | Policy decided by PSEL
Set 10
» Only sample sets used to update Set 11
counter | set 12 | | _
. ) Set 13 Decides Policy for
» Remaining cache sets follow best policy ot 12 Follower Sets
determined by counter Set 15
Miss in a Set Miss in a Set
Dedicated to LRU Dedicated to BIP

Qureshi et al. 2007, Figure 10
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Re-Reference Interval Prediction Policy (RRIP)

* Predict when cache lines are going to be re-referenced

» Each cache line has a “re-reference prediction value™ (RRPV) which determines how soon it is
going to be re-referenced

» RRPV values are quantized with n-bits (e.g., use 2-bits to quantize into 4 buckets)
» RRPV=0 indicates near-immediate reuse, RRPV=3 indicates distant reuse

* Ildea: Predict new cache lines will not be re-referenced soon
> Insert new line with RRPV # 0
» On hit, RRPV updated to 0

* Problem: Always using the same prediction for all insertions thrashes cache

 Dynamic Re-Reference Interval Prediction (DRRIP)
» Dynamically inserts new blocks between different RRPV values based on set dueling
» RRPV = 2"-1 could bypass cache (predicted dead on arrival)
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 Reading Assignments

» N. Jouppi, “Improving Direct-Mapped Performance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffer,” ISCA 1990 (Read)

» T.F. Chen and J.L Baer, “Effective Hardware-Based Data Prefetching for High-Performance
Processors,” IEEE Transactions on Computers, 1995 (Skim)

» O. Mutlu et al., "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-
order Processors," HPCA 2003 (Skim)

» M. Shevgoor et al., “Efficiently Prefetching Complex Address Patterns,” MICRO 2015 (Skim)
» M. Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,” ISCA 2007 (Read)

» A. Jaleel et al., “High Performance Cache Replacement Using Re-Reference Interval Prediction
(RRIP),” ISCA 2010 (Skim)

« Assignment 2 (branch prediction) due Oct 14.
« Assignment 3 (prefetching) due Oct 28.
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