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Shared Memory Multiprocessors

• All processors can access all memory

• Processors share memory resources, but can operate independently

• One processor’s memory changes are seen by all other processors

• Easier to program

➢Communication through shared memory

➢Synchronization through locks stored in shared memory

• Need cache coherence in hardware

• Need interconnection network between all processors and all memory

• Two Types:
➢Uniform Memory Architectures (UMA): e.g., Symmetric Multiprocessors

➢Non-Uniform Memory Architectures (NUMA): Access & latency to memory is different
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Interconnection Networks

• In a shared memory MP, we need to connect different processors and 

memory modules

• Types of interconnect:

➢Shared bus

➢Crossbar: Fully connected

➢Ring

➢Mesh

➢2-D Torus

➢Hypercube

• Number of hops vs. number of links: Compare N processors and M memory 

modules
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Shared Memory Multiprocessors: Memory Hierarchy

• Problem: sharing memory means more than one processor can send 

requests to memory

➢High memory bandwidth required

• To avoid sending lots of memory requests, processors use caches to: 

➢Filter out many memory requests

➢Reduce average memory latency

➢Reduce memory bandwidth requirements

• Typically more than one level of caches is used

➢L1 caches: Usually Split I & D caches, small and fast

➢L2 caches: Usually on die, composed of SRAM cells

➢L3 caches: On-die or off-die, SRAM or eDRAM cells 
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Cache Coherence

• Problem: Using caches means multiple copies of the same memory location 

may exist

➢Updates to the same location may lead to bugs

• Example:

  Processor 1 reads A

  Processor 2 reads A

  Processor 1 writes to A

Now, processor 2’s cache contains stale data

• Cache coherence need to be implemented in hardware using a cache 

coherence protocol
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Conditions for Cache Coherence

• Program Order. A read by processor P to location A that follows a write by P 

to A, with no writes to A by another processor in between, should always 

return the value of A written by P

• Coherent View of Memory. A read by processor P1 to location A that follows a 

write by another processor P2 to location A should return the written value by 

P2 if:

➢The read and write are sufficiently separated in time

➢No other writes to A by another processor occur between the read and the write

• Write Serialization. Writes to the same location are serialized: Two writes to 

the same location by any two processors are seen in the same order by all 

processors
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Cache Coherence Protocol Classification

• Cache coherence defines behavior of reads and writes to the same memory 

location

• Compared to: Memory consistency models define the behavior of reads and 

writes with respect to accesses to other memory locations

• Two main types of cache coherence protocols:

➢Snooping

❑Caches keep track of the sharing status of all blocks

❑No centralized state is kept 

❑Cache controllers snoop shared interconnect (typically shared bus) to track when a 

requested block exists in the cache

➢Directory

❑Sharing status of any block in memory is kept in one location
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Cache Coherence Example

• Without cache coherence, Processor B’s cache has stale data

• How to enforce coherence?
➢ B’s cache line is invalidated (write-invalidate protocols)

➢ B’s cache line is updated by A’s write (write-update protocols)
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Invalidate vs. Update Protocols

• Write-invalidate protocols

➢Guarantees only one writer has a valid copy of a block

➢Read requests issue a “Get Shared” (GetS) request for the block to other 

caches/memory

➢When a processor wants to write to a cache block, it issues a “Get Exclusive” (GetX) 

request to other processors, forcing them to invalidate any copies of the block

➢Subsequent writes from the same processor are done locally in the cache

• Write-update protocols

➢When a processor writes to a block, it sends data to all other processors with valid 

copies

• Pros and cons?
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Very Simple Write-Invalidate Coherence Protocol

• MI protocol

➢Two states: M (Modified) and I (Invalid)

➢Only one cache contains a copy of a certain memory location

➢When another cache requests a block, the cache currently containing the block invalidates it

➢Protocol limits sharing and degrades performance

• Why is sharing necessary? 

• Optimization: MSI protocol allows read sharing
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Example 1: Finite-Buffer Producer/Consumer

• Producer generates an item unless buffer is full

• Consumer removes an item unless buffer is empty

• Read-write sharing for buffer size and buffer elements
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Producer:
If (count <= N) {
        #mutex begin
 buffer [in] = item;
 in = (in +1) % N;
 count ++;
         #mutex end
}   

Consumer:
If (count > 0) {
        #mutex begin
 item = buffer [out]; 
 out = (out +1) % N;
 count --;
         #mutex end
}   



Example 2: Solving a Linear System of Equations
• Solving for x in system A x = b

• Vector x is computed every cycle, is shared “read-write”

• Both array A and vector b are shared “read-only”, can be safely replicated
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diff = 1000;
while(diff > 0.01) {
   parallel for(j=0; j < N; j++) {
 xtemp[j] = b[j];
 for (k=0; k < N; k++)
  xtemp[j] += A[j][k]*x[k];
   }
   # Barrier Synchronization
   // compute diff = max(abs(x[i]-xtemp[i]));
   parallel for (j =0; j < N; j++) 
 x[j] = xtemp[j];
   # Barrier Synchronization
}



Write-Once Invalidate Protocol
• States

➢ Invalid

➢ Valid:  Copy is consistent with memory

➢ Reserved: Data has been written exactly once, and 

copy is consistent with memory (the only other copy)

➢ Dirty: Data modified more than once, only valid copy

• Copy-back memory update policy: Block is 

written back to memory when replaced if the 

block is dirty

• Events:

➢ Processor read (P-Read) and Processor write (P-Write)

➢ Memory read block (Read-Blk) and write block (Write-

Blk)

➢ Write-Inv: Invalidate all other copies of block

➢ Read-Inv: Read a block and invalidate all other copies
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MSI Protocol

• Allows read sharing

• Better performance when tasks 

on different CPUs have shared 

read-only data (e.g., System of 

Linear Equations)

• Exclusive State also called 

“Modified” State, so the protocol 

is referred to as “MSI” 

14ARCH Figure 5.7



Coherence Misses

• Recall the 3 C classification of cache misses: Compulsory, Capacity, Conflict

• Another type of misses: Coherence Misses

➢Misses caused by coherence actions

➢That is, misses that will not occur in a single-processor system

• In the MSI protocol, coherence misses are caused by:

➢Read or Write requests to an invalid block which was invalidated by another processor’s write 

request

➢Write requests to a shared block which was downgraded to S by another processor’s read 

request

• 4 C classification of cache misses: Compulsory, Capacity, Conflict, 

Coherence
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Extensions for MSI Protocol
• MESI

➢Same as MSI but adds an E “Clean-Exclusive” state

➢E state is for read-only blocks that aren’t modified compared to memory

➢Read request by another CPU to an E-block: State changes to S

➢Write request by same CPU to an E-block: State silently upgraded to M

➢Advantage: Saving coherence bandwidth

❑Silent upgrade to M with no coherence requests

❑Evicting a block in E does not require writing data to memory

• MOESI

➢Same as MESI, but adds an O “Own” state

➢O state is for blocks that are different from memory and owned by cache. When another CPU 
requests a block in M, the cache sends it to the other CPU and changes state to O

➢Cache with O block is responsible for sending data to other read requesters, and updating memory 
when the block is evicted

➢Advantages: 
❑ Less memory traffic: Memory only updated on an eviction of the O-block, not on a read request for an M-block

❑ Less coherence traffic: Only the cache with the O-block is responsible for sending shared copy on a read request
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Firefly Write-Update Protocol
• States

➢Valid-exclusive: Only copy, consistent with 
memory copy

➢Shared: One of many valid copies

➢Dirty: Only valid copy, memory is inconsistent

• Protocol uses copy-back update policy for 
private blocks

• Protocol uses write-through for shared blocks

• Used in the Firefly multiprocessor workstation 
from DEC

• Another update protocol: Dragon protocol 
proposed for the Dragon MP workstation from 
Xerox

➢Avoids updating memory until a block is replaced
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Implementation Issues for Snoopy Coherence Protocols
• Lower complexity compared to directory protocols

• Hardware Components:

➢Cache Controller: A finite state machine that implements coherence protocol state transition 

diagram

➢Cache Directory: Stores state for each block

➢Bus Controller: Implements bus snooping.  Monitors every shared bus operation and takes 

action if needed (if the block is cached)

• Implementation Issues

➢Contention for cache directory between local and remote (bus) requests

➢ Impact of block size (next slide)

➢Write-through (WT) vs. write-back (WB) caches

❑WT caches support update protocols while WB caches are more suitable for invalidate protocols

❑Most real systems caches are WB caches

➢Write-allocate vs. write no-allocate policies
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False Sharing
• Occurs when non-shared data are co-located in the same cache line

• Example: Processor 1 writes to Word0 of Cache Block A, Processor 2 writes 

to Word 5 of Cache Block A

• Neither Word0 nor Word5 is shared, but the cache line needs to be in “M” in 

one cache and “I” in another (write-invalidate protocols)

• False sharing leads to increased coherence traffic

• False sharing increases with larger cache lines
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Software Coherence Protocols

• Compiler limits which blocks can be cached

• Types of data accesses

1. Shared read-only

2. One writer, multiple readers

3. One process read/write

4. Shared read-write

• Trivial solution: All shared read-write blocks are marked as uncacheable 

(types 2 and 4 above)

• Optimization: some shared read-write variables can be used by one 

processor for a long time, so may be cached

• Disadvantages vs. hardware protocols?
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Atomic Coherence Transactions
• Previous discussion assumes that a coherence request will hold the shared 

bus until data comes back

➢Example: A GetS “GetShared” request holds the shared bus from the time when the GetS 

request is sent till the requested data is received

➢During the time between the request and the response, no other processors can send any 

requests on the shared bus

➢This implies that all coherence requests are blocking requests, limiting MLP

• Atomic transactions cause significant execution delays especially for long-

latency memory accesses

➢Data could be in none of the caches and need to be read from memory. During this time, no 

other processors can send out requests

• Disadvantage: Atomic transactions limit scaling to larger numbers of 

processors for snooping-based protocols
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Atomic Coherence Transactions: Example
• N processors, each with a private cache, run at a 2GHz frequency and are connected via a 

shared bus. All processors run a multi-threaded parallel program where each thread has an 

MPKI = 10 (7 MPKI from other caches needing 10 ns and 3 MPKI from memory needing 80 ns). 

All tasks have an IPC of 0.5. What is the value of N beyond which processors saturate the 

shared bus?

Cycle Time = 1/frequency = 0.5 ns; Cycles/sec = frequency = 2 x 109

Instructions/Sec (1 Proc.) = IPC x Cycles/sec = 0.5 x (2 x 109) = 109

Memory Requests/Sec (1 Proc.) = IPS x MPKI(mem)/1000 = 109 x 3/1000= 0.003 x 109

Other Cache Requests/Sec (1 Proc.) = IPS x MPKI(cache)/1000 = 109 x 7/1000 = 0.007 x 109

Bus Time Required/Sec (1 Proc.) = Memory Requests/Sec x Time/Mem_Request + Cache 

Requests/Sec x Time/OtherCache_Request

    = 0.003 x 109 x 80 x 10-9 + 0.007 x 109 x 10 x 10-9 =  0.31 sec

Bus Time Required/Sec (N Proc.) = 0.31 x N

Beyond N = 3 processors, Bus will saturate
22



Non-Atomic Coherence Transactions
• To avoid the scaling issues and lower MLP caused by atomic coherence 

transactions, systems use a “Split-Transaction” Bus (or other interconnect)

• Split-Transaction bus is acquired to send a request then released. It needs to 

be re-acquired before the response is sent out

• This implies that each coherence transaction is split into a request and a 

response, and the shared bus is released between the request and the 

response

➢ In previous example, actual time needed to send request and receive response from other 

caches/memory would be much lower, limited by cache or memory bandwidth

• Split-Transaction Bus leads to implementation complexity with coherence 

protocols
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Intermediate States
• Non-atomic transactions require additional (intermediate) states for cache lines that have 

sent out a request and are waiting for response

➢Examples (MSI): 

❑Intermediate state IS follows a GetS request from I while waiting for data

❑Intermediate state SM follows a GetX request from S while waiting for invalidation 

acknowledgments 

• Intermediate states may need to respond to other requests that occur between request and 

response

➢Example (MSI): Block in SM may need to send a negative acknowledgment to a GetS request

• Alternatively, more intermediate states are needed to indicate that another request was 

received while waiting for the original response

➢Example (MSI): Block in IS may need to go to ISI to indicate that a GetX request was received. 

After data is returned, ISI completes the read, sends an invalidation ack then goes back to I 

(instead of S)
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(Incomplete) MSI with Intermediate States

• Which other states/transitions are missing?
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I

M

S

IS

IM
SM

ISI

GetS

GetX

Read
R_GetS/data

R_GetS/Data

Data

Read
Write

R_GetX/Data, Ack

GetX

R_InvAckData

R_GetX/data, Ack

R_GetX

Data/Read, InvAck

Notation:
Labels represent Event/Response
“R_” precede remote requests 



Multi-Level Protocols

• Inclusion/Exclusion policy for multi-level caches:

➢Inclusive caches

➢Exclusive caches

➢Non-inclusive (non-exclusive) caches

• Which caches need to snoop?

• CMP private vs. shared caches

➢Private caches maintain coherence state

➢Shared L2/L3 caches may store coherence state of all lower-level private caches
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Directory Coherence Protocols
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Why Directory Protocols?

• Snooping-based protocols may not scale

➢All requests must be broadcast to all processors

➢Cache tag directory needs to handle both local and remote requests

➢All processors should monitor all requests on the shared interconnect

➢Shared interconnect utilization can be high, leading to very long wait times

• Directory protocols 

➢Coherence state maintained in a directory associated with memory

➢Requests to a memory block do not need broadcasts

❑Served by local nodes if possible

❑Otherwise, sent to owning node

• Note: Some snooping-based protocols do not require broadcast, and therefore are 

more scalable
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Design Issues for Distributed Coherence Protocols

• Correctness

➢Memory consistency model: Performance vs. ease of programming

➢Deadlock avoidance

➢Error handling (fault tolerance)

• Performance

➢Latency

➢Bandwidth

• Distributed Control and Complexity

• Scalability
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The Stanford DASH Prototype

• DASH: Directory Architecture for SHared memory

• Architecture consists of many clusters

➢Each cluster contains 4 processors

➢Processor caches

❑L1I: 64KB, direct mapped

❑L1D: 64KB, direct-mapped, write-through

❑L2: 256KB, direct-mapped, write-back

❑4-word write buffer

➢Snooping implemented within a cluster (Illinois protocol, similar to MSI)
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DASH Architecture
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Lenoski et al 1990, Figure 1

Lenoski et al 1990, Figure 2: 2x2 DASH System



DASH Directories

• Directory controller (DC)

➢Directory memory corresponding to cluster’s main memory portion

➢ Initiates out-bound network requests and replies

• Pseudo-CPU (PCPU)

➢Buffers incoming requests and issues them on cluster bus

➢Mimics a CPU on behalf of remote processors (except for bus replies sent by DC)

• Reply Controller (RC)

➢Remote Access Cache (RAC) tracks outstanding requests by local processors

➢Receives and buffers corresponding replies from remote clusters

➢RAC snoops on bus

• Requests and replies sent on two different networks using wormhole routing
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DASH Directory
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Lenoski et al 1990, Figure 3



DASH Coherence Protocol
• Terminology

➢Local cluster: cluster containing the processor originating a request

➢Home cluster: cluster containing the main memory and directory for a given memory address

➢Remote cluster: Any cluster other than local and home clusters

➢Local memory: main memory associated with the local cluster

➢Remote memory: Any memory whose home is not the local cluster

• Invalidation-based protocol

➢Cache states: invalid, shared, and dirty

• Directory state (for all local memory blocks)

➢Uncached-remote: not cached by any remote cluster

➢ Shared-remote: Cached, unmodified, by one or more remote clusters

➢Dirty-remote: Cached, modified, by one remote cluster

• Owning cluster for a block is the home cluster except if dirty-remote

• Owning cluster responds to requests and updates directory state
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Read Requests

• Initiated by CPU load instruction

• If address is in L1 cache, L1 supplies data – otherwise, fill request sent to L2

• If address is in L2, L2 supplies data – otherwise, read request sent on bus

• If address is in the cache of another processor in the cluster or in the RAC, 

that cache responds 

➢Shared: data transferred over the bus to requester

➢Dirty: data transferred over bus to requester, RAC takes ownership of cache line

• If address not in local cluster, processor retries bus operation, and request is 

sent to home cluster, RAC entry is allocated
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Read Requests to 
Remote Nodes
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Read-Exclusive Requests

• Initiated by CPU store instruction

• Data written through L1 and buffered in a write buffer

• If L2 has ownership permission, write is retired – otherwise, read-exclusive request sent on 

local bus

➢Write buffer is stalled

• If address is in “dirty” in one of the caches in the cluster or in the RAC

➢Owning cache sends data and ownership to requester

➢Owning cache invalidates its copy

• If address not in local cluster

➢ Processor retries bus operation

➢Request is sent to home cluster

➢RAC entry is allocated
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Remote Read-
Exclusive Requests
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Lenoski et al 1990, Figure 5



Other Implementation Details
• Writeback requests: When a dirty block is replaced

➢Home is local cluster: Write data to main memory

➢Home is a remote cluster: Send data to home which 

updates memory and state as “uncached-remote”

• Exception conditions

➢Request to a dirty block of a remote cluster after it gave up 

ownership

➢Ownership bouncing back and forth between two remote 

clusters while a third cluster requests block

➢Multiple paths in the system lead to requests being 

received out of order

• Amount of information stored in directory affects 

scalability

➢ For each memory block, DASH stores state and bit vector 

for other processors

➢ For a more scalable system, overhead needs to be lower
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Latency for Memory Operations:

Lenoski et al 1990, Figure 5



The SGI Origin

• Cache coherent non-uniform memory access

• Up to 512 nodes

• Scalable Cray link network (hypercube) 

• 1 or 2 R10000 MIPS processors per node

• Up to 4G bytes per node

• Node connects to a portion of the IO subsystem

• No snooping within node
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SGI Origin: Key Goals

• Scale to large number of processors

• Provide higher performance per processor

• Maintain cache-coherent globally addressable memory model

➢For ease of programming

• Entry level and incremental cost of the system lower than a high 

performance SMP
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Origin Architecture
• Distributed shared memory (DSM)

• Directory based cache coherence

• Designed to minimize latency difference between

   local and remote memory

• Hardware and software provided to insure most 

   memory references are local

• Cache coherence does not require in-order message delivery

• I/O subsystem is also distributed and globally addressable

• I/O can DMA to and from all memory in the system

• Cluster bus is multiplexed but is not a snoopy bus

➢Reduce local and remote memory latency

❑Fewer processors on the bus

❑Remote request does not need to wait for snoop response

42

Laudon&Lenoski 1997, Figure 1



Origin Architecture (Cont.)
• Non-snoopy node bus tradeoff

➢Disadvantage: remote bandwidth needs to match local bandwidth, unlike in SMP node systems

➢Advantage: easier migration path for existing SMP software

• Page migration and replication insures most references are local

➢Memory reference hardware counters

➢Copy engine to copy at near peak memory bandwidth

• Rich synchronization primitives

• Fetch and op primitives are not cached and performed at memory

➢Useful in highly contended locks

• HUB implements 4-way full crossbar between processors, memory and I/O-network

• RAS features

➢ECC in external cache and memory

➢Faulty packets automatic retries

➢Modular design provides highly available hardware  
43



SGI Origin: Network
• Six ported router chip

• Fat, Bristled hypercube 

• Low latency wormhole routing

• Four virtual channels per physical 
channel

• Congestion control to allow 
messages to adaptively switch 
between two virtual channels

• Support for 256 levels of message 
priority

• Increased priority via packet aging

• Automatic packet retries

• Software programmable routing 
tables

44
Laudon&Lenoski 1997, Figures 3-4
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Cache Coherence Protocol
• Similar to DASH protocol but with significant improvements

➢MESI protocol is fully supported

❑Single fetch from memory for read-modify-writes

❑Permits processor to replace E block in cache without informing directory

❑ Requests from processors that had replaced E blocks can be immediately satisfied from 

memory

➢Support of upgrade requests from S to E without data transfer 

• Coherence protocol supports Read, Read-Exclusive and 

Writeback requests
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Origin Coherence Protocol: Read Requests
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Origin Coherence Protocol: Read-Exclusive Requests

47Laudon&Lenoski 1997



Origin Coherence 
Protocol: Writeback 
Requests

48
Laudon&Lenoski 1997



Configuration and Performance

• CPU Configuration

➢MIPS R10000

➢195 MHz

➢4-way out-of-order

➢4 M byte L2 cache

➢Bus connected to the HUB chip

• Latency variation:
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Laudon&Lenoski 1997, Table 4
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Reading Assignments

• ARCH Chapter 5.2, 5.3, 5.4 (Read)

• P. Stenstrom, “A Survey of Cache Coherence Schemes for 

Multiprocessors,” IEEE Computer 1990 (Skim)

• D. Lenoski et al., "The Directory-based Cache Coherence 

Protocol for the DASH Multiprocessor," ISCA 1990 (Read)

• J. Laudon and D.Lenoski, "The SGI Origin: A ccNUMA Highly 

Scalable Server," ISCA 1997 (Skim)
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