
CMPT 450/750: Computer Architecture

Fall 2024

Cache Coherence

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2024 Alaa Alameldeen and Arrvindh Shriraman

Shared Memory Multiprocessors

• All processors can access all memory

• Processors share memory resources, but can operate independently

• One processor’s memory changes are seen by all other processors

• Easier to program

➢Communication through shared memory

➢Synchronization through locks stored in shared memory

• Need cache coherence in hardware

• Need interconnection network between all processors and all memory

• Two Types:
➢Uniform Memory Architectures (UMA): e.g., Symmetric Multiprocessors

➢Non-Uniform Memory Architectures (NUMA): Access & latency to memory is different

2

Interconnection Networks

• In a shared memory MP, we need to connect different processors and

memory modules

• Types of interconnect:

➢Shared bus

➢Crossbar: Fully connected

➢Ring

➢Mesh

➢2-D Torus

➢Hypercube

• Number of hops vs. number of links: Compare N processors and M memory

modules

3

Shared Memory Multiprocessors: Memory Hierarchy

• Problem: sharing memory means more than one processor can send

requests to memory

➢High memory bandwidth required

• To avoid sending lots of memory requests, processors use caches to:

➢Filter out many memory requests

➢Reduce average memory latency

➢Reduce memory bandwidth requirements

• Typically more than one level of caches is used

➢L1 caches: Usually Split I & D caches, small and fast

➢L2 caches: Usually on die, composed of SRAM cells

➢L3 caches: On-die or off-die, SRAM or eDRAM cells

4

Cache Coherence

• Problem: Using caches means multiple copies of the same memory location

may exist

➢Updates to the same location may lead to bugs

• Example:

 Processor 1 reads A

 Processor 2 reads A

 Processor 1 writes to A

Now, processor 2’s cache contains stale data

• Cache coherence need to be implemented in hardware using a cache

coherence protocol

5

Conditions for Cache Coherence

• Program Order. A read by processor P to location A that follows a write by P

to A, with no writes to A by another processor in between, should always

return the value of A written by P

• Coherent View of Memory. A read by processor P1 to location A that follows a

write by another processor P2 to location A should return the written value by

P2 if:

➢The read and write are sufficiently separated in time

➢No other writes to A by another processor occur between the read and the write

• Write Serialization. Writes to the same location are serialized: Two writes to

the same location by any two processors are seen in the same order by all

processors

6

Cache Coherence Protocol Classification

• Cache coherence defines behavior of reads and writes to the same memory

location

• Compared to: Memory consistency models define the behavior of reads and

writes with respect to accesses to other memory locations

• Two main types of cache coherence protocols:

➢Snooping

❑Caches keep track of the sharing status of all blocks

❑No centralized state is kept

❑Cache controllers snoop shared interconnect (typically shared bus) to track when a

requested block exists in the cache

➢Directory

❑Sharing status of any block in memory is kept in one location

7

Cache Coherence Example

• Without cache coherence, Processor B’s cache has stale data

• How to enforce coherence?
➢ B’s cache line is invalidated (write-invalidate protocols)

➢ B’s cache line is updated by A’s write (write-update protocols)

8

ARCH Figure 5.3

Invalidate vs. Update Protocols

• Write-invalidate protocols

➢Guarantees only one writer has a valid copy of a block

➢Read requests issue a “Get Shared” (GetS) request for the block to other

caches/memory

➢When a processor wants to write to a cache block, it issues a “Get Exclusive” (GetX)

request to other processors, forcing them to invalidate any copies of the block

➢Subsequent writes from the same processor are done locally in the cache

• Write-update protocols

➢When a processor writes to a block, it sends data to all other processors with valid

copies

• Pros and cons?

9

Very Simple Write-Invalidate Coherence Protocol

• MI protocol

➢Two states: M (Modified) and I (Invalid)

➢Only one cache contains a copy of a certain memory location

➢When another cache requests a block, the cache currently containing the block invalidates it

➢Protocol limits sharing and degrades performance

• Why is sharing necessary?

• Optimization: MSI protocol allows read sharing

10

M I

Cache Request

Bus Request

Example 1: Finite-Buffer Producer/Consumer

• Producer generates an item unless buffer is full

• Consumer removes an item unless buffer is empty

• Read-write sharing for buffer size and buffer elements

11

Producer:
If (count <= N) {
 #mutex begin
 buffer [in] = item;
 in = (in +1) % N;
 count ++;
 #mutex end
}

Consumer:
If (count > 0) {
 #mutex begin
 item = buffer [out];
 out = (out +1) % N;
 count --;
 #mutex end
}

Example 2: Solving a Linear System of Equations
• Solving for x in system A x = b

• Vector x is computed every cycle, is shared “read-write”

• Both array A and vector b are shared “read-only”, can be safely replicated

12

diff = 1000;
while(diff > 0.01) {
 parallel for(j=0; j < N; j++) {
 xtemp[j] = b[j];
 for (k=0; k < N; k++)
 xtemp[j] += A[j][k]*x[k];
 }
 # Barrier Synchronization
 // compute diff = max(abs(x[i]-xtemp[i]));
 parallel for (j =0; j < N; j++)
 x[j] = xtemp[j];
 # Barrier Synchronization
}

Write-Once Invalidate Protocol
• States

➢ Invalid

➢ Valid: Copy is consistent with memory

➢ Reserved: Data has been written exactly once, and

copy is consistent with memory (the only other copy)

➢ Dirty: Data modified more than once, only valid copy

• Copy-back memory update policy: Block is

written back to memory when replaced if the

block is dirty

• Events:

➢ Processor read (P-Read) and Processor write (P-Write)

➢ Memory read block (Read-Blk) and write block (Write-

Blk)

➢ Write-Inv: Invalidate all other copies of block

➢ Read-Inv: Read a block and invalidate all other copies

13Stenstrom 1990, Figure 6

MSI Protocol

• Allows read sharing

• Better performance when tasks

on different CPUs have shared

read-only data (e.g., System of

Linear Equations)

• Exclusive State also called

“Modified” State, so the protocol

is referred to as “MSI”

14ARCH Figure 5.7

Coherence Misses

• Recall the 3 C classification of cache misses: Compulsory, Capacity, Conflict

• Another type of misses: Coherence Misses

➢Misses caused by coherence actions

➢That is, misses that will not occur in a single-processor system

• In the MSI protocol, coherence misses are caused by:

➢Read or Write requests to an invalid block which was invalidated by another processor’s write

request

➢Write requests to a shared block which was downgraded to S by another processor’s read

request

• 4 C classification of cache misses: Compulsory, Capacity, Conflict,

Coherence

15

Extensions for MSI Protocol
• MESI

➢Same as MSI but adds an E “Clean-Exclusive” state

➢E state is for read-only blocks that aren’t modified compared to memory

➢Read request by another CPU to an E-block: State changes to S

➢Write request by same CPU to an E-block: State silently upgraded to M

➢Advantage: Saving coherence bandwidth

❑Silent upgrade to M with no coherence requests

❑Evicting a block in E does not require writing data to memory

• MOESI

➢Same as MESI, but adds an O “Own” state

➢O state is for blocks that are different from memory and owned by cache. When another CPU
requests a block in M, the cache sends it to the other CPU and changes state to O

➢Cache with O block is responsible for sending data to other read requesters, and updating memory
when the block is evicted

➢Advantages:
❑ Less memory traffic: Memory only updated on an eviction of the O-block, not on a read request for an M-block

❑ Less coherence traffic: Only the cache with the O-block is responsible for sending shared copy on a read request

16

Firefly Write-Update Protocol
• States

➢Valid-exclusive: Only copy, consistent with
memory copy

➢Shared: One of many valid copies

➢Dirty: Only valid copy, memory is inconsistent

• Protocol uses copy-back update policy for
private blocks

• Protocol uses write-through for shared blocks

• Used in the Firefly multiprocessor workstation
from DEC

• Another update protocol: Dragon protocol
proposed for the Dragon MP workstation from
Xerox

➢Avoids updating memory until a block is replaced

17

Stenstrom 1990, Figure 7

Implementation Issues for Snoopy Coherence Protocols
• Lower complexity compared to directory protocols

• Hardware Components:

➢Cache Controller: A finite state machine that implements coherence protocol state transition

diagram

➢Cache Directory: Stores state for each block

➢Bus Controller: Implements bus snooping. Monitors every shared bus operation and takes

action if needed (if the block is cached)

• Implementation Issues

➢Contention for cache directory between local and remote (bus) requests

➢ Impact of block size (next slide)

➢Write-through (WT) vs. write-back (WB) caches

❑WT caches support update protocols while WB caches are more suitable for invalidate protocols

❑Most real systems caches are WB caches

➢Write-allocate vs. write no-allocate policies

18

False Sharing
• Occurs when non-shared data are co-located in the same cache line

• Example: Processor 1 writes to Word0 of Cache Block A, Processor 2 writes

to Word 5 of Cache Block A

• Neither Word0 nor Word5 is shared, but the cache line needs to be in “M” in

one cache and “I” in another (write-invalidate protocols)

• False sharing leads to increased coherence traffic

• False sharing increases with larger cache lines

19

Word0 Word1 Word2 Word3 Word4 Word5 Word6 Word7

P1 Write P2 Write

Software Coherence Protocols

• Compiler limits which blocks can be cached

• Types of data accesses

1. Shared read-only

2. One writer, multiple readers

3. One process read/write

4. Shared read-write

• Trivial solution: All shared read-write blocks are marked as uncacheable

(types 2 and 4 above)

• Optimization: some shared read-write variables can be used by one

processor for a long time, so may be cached

• Disadvantages vs. hardware protocols?

20

Atomic Coherence Transactions
• Previous discussion assumes that a coherence request will hold the shared

bus until data comes back

➢Example: A GetS “GetShared” request holds the shared bus from the time when the GetS

request is sent till the requested data is received

➢During the time between the request and the response, no other processors can send any

requests on the shared bus

➢This implies that all coherence requests are blocking requests, limiting MLP

• Atomic transactions cause significant execution delays especially for long-

latency memory accesses

➢Data could be in none of the caches and need to be read from memory. During this time, no

other processors can send out requests

• Disadvantage: Atomic transactions limit scaling to larger numbers of

processors for snooping-based protocols

21

Atomic Coherence Transactions: Example
• N processors, each with a private cache, run at a 2GHz frequency and are connected via a

shared bus. All processors run a multi-threaded parallel program where each thread has an

MPKI = 10 (7 MPKI from other caches needing 10 ns and 3 MPKI from memory needing 80 ns).

All tasks have an IPC of 0.5. What is the value of N beyond which processors saturate the

shared bus?

Cycle Time = 1/frequency = 0.5 ns; Cycles/sec = frequency = 2 x 109

Instructions/Sec (1 Proc.) = IPC x Cycles/sec = 0.5 x (2 x 109) = 109

Memory Requests/Sec (1 Proc.) = IPS x MPKI(mem)/1000 = 109 x 3/1000= 0.003 x 109

Other Cache Requests/Sec (1 Proc.) = IPS x MPKI(cache)/1000 = 109 x 7/1000 = 0.007 x 109

Bus Time Required/Sec (1 Proc.) = Memory Requests/Sec x Time/Mem_Request + Cache

Requests/Sec x Time/OtherCache_Request

 = 0.003 x 109 x 80 x 10-9 + 0.007 x 109 x 10 x 10-9 = 0.31 sec

Bus Time Required/Sec (N Proc.) = 0.31 x N

Beyond N = 3 processors, Bus will saturate
22

Non-Atomic Coherence Transactions
• To avoid the scaling issues and lower MLP caused by atomic coherence

transactions, systems use a “Split-Transaction” Bus (or other interconnect)

• Split-Transaction bus is acquired to send a request then released. It needs to

be re-acquired before the response is sent out

• This implies that each coherence transaction is split into a request and a

response, and the shared bus is released between the request and the

response

➢ In previous example, actual time needed to send request and receive response from other

caches/memory would be much lower, limited by cache or memory bandwidth

• Split-Transaction Bus leads to implementation complexity with coherence

protocols

23

Intermediate States
• Non-atomic transactions require additional (intermediate) states for cache lines that have

sent out a request and are waiting for response

➢Examples (MSI):

❑Intermediate state IS follows a GetS request from I while waiting for data

❑Intermediate state SM follows a GetX request from S while waiting for invalidation

acknowledgments

• Intermediate states may need to respond to other requests that occur between request and

response

➢Example (MSI): Block in SM may need to send a negative acknowledgment to a GetS request

• Alternatively, more intermediate states are needed to indicate that another request was

received while waiting for the original response

➢Example (MSI): Block in IS may need to go to ISI to indicate that a GetX request was received.

After data is returned, ISI completes the read, sends an invalidation ack then goes back to I

(instead of S)

24

(Incomplete) MSI with Intermediate States

• Which other states/transitions are missing?

25

I

M

S

IS

IM
SM

ISI

GetS

GetX

Read
R_GetS/data

R_GetS/Data

Data

Read
Write

R_GetX/Data, Ack

GetX

R_InvAckData

R_GetX/data, Ack

R_GetX

Data/Read, InvAck

Notation:
Labels represent Event/Response
“R_” precede remote requests

Multi-Level Protocols

• Inclusion/Exclusion policy for multi-level caches:

➢Inclusive caches

➢Exclusive caches

➢Non-inclusive (non-exclusive) caches

• Which caches need to snoop?

• CMP private vs. shared caches

➢Private caches maintain coherence state

➢Shared L2/L3 caches may store coherence state of all lower-level private caches

26

Directory Coherence Protocols

27

Why Directory Protocols?

• Snooping-based protocols may not scale

➢All requests must be broadcast to all processors

➢Cache tag directory needs to handle both local and remote requests

➢All processors should monitor all requests on the shared interconnect

➢Shared interconnect utilization can be high, leading to very long wait times

• Directory protocols

➢Coherence state maintained in a directory associated with memory

➢Requests to a memory block do not need broadcasts

❑Served by local nodes if possible

❑Otherwise, sent to owning node

• Note: Some snooping-based protocols do not require broadcast, and therefore are

more scalable

28

Design Issues for Distributed Coherence Protocols

• Correctness

➢Memory consistency model: Performance vs. ease of programming

➢Deadlock avoidance

➢Error handling (fault tolerance)

• Performance

➢Latency

➢Bandwidth

• Distributed Control and Complexity

• Scalability

29

The Stanford DASH Prototype

• DASH: Directory Architecture for SHared memory

• Architecture consists of many clusters

➢Each cluster contains 4 processors

➢Processor caches

❑L1I: 64KB, direct mapped

❑L1D: 64KB, direct-mapped, write-through

❑L2: 256KB, direct-mapped, write-back

❑4-word write buffer

➢Snooping implemented within a cluster (Illinois protocol, similar to MSI)

30

DASH Architecture

31
Lenoski et al 1990, Figure 1

Lenoski et al 1990, Figure 2: 2x2 DASH System

DASH Directories

• Directory controller (DC)

➢Directory memory corresponding to cluster’s main memory portion

➢ Initiates out-bound network requests and replies

• Pseudo-CPU (PCPU)

➢Buffers incoming requests and issues them on cluster bus

➢Mimics a CPU on behalf of remote processors (except for bus replies sent by DC)

• Reply Controller (RC)

➢Remote Access Cache (RAC) tracks outstanding requests by local processors

➢Receives and buffers corresponding replies from remote clusters

➢RAC snoops on bus

• Requests and replies sent on two different networks using wormhole routing

32

DASH Directory

33

Lenoski et al 1990, Figure 3

DASH Coherence Protocol
• Terminology

➢Local cluster: cluster containing the processor originating a request

➢Home cluster: cluster containing the main memory and directory for a given memory address

➢Remote cluster: Any cluster other than local and home clusters

➢Local memory: main memory associated with the local cluster

➢Remote memory: Any memory whose home is not the local cluster

• Invalidation-based protocol

➢Cache states: invalid, shared, and dirty

• Directory state (for all local memory blocks)

➢Uncached-remote: not cached by any remote cluster

➢ Shared-remote: Cached, unmodified, by one or more remote clusters

➢Dirty-remote: Cached, modified, by one remote cluster

• Owning cluster for a block is the home cluster except if dirty-remote

• Owning cluster responds to requests and updates directory state

34

Read Requests

• Initiated by CPU load instruction

• If address is in L1 cache, L1 supplies data – otherwise, fill request sent to L2

• If address is in L2, L2 supplies data – otherwise, read request sent on bus

• If address is in the cache of another processor in the cluster or in the RAC,

that cache responds

➢Shared: data transferred over the bus to requester

➢Dirty: data transferred over bus to requester, RAC takes ownership of cache line

• If address not in local cluster, processor retries bus operation, and request is

sent to home cluster, RAC entry is allocated

35

Read Requests to
Remote Nodes

36

Lenoski et al 1990, Figure 4

Read-Exclusive Requests

• Initiated by CPU store instruction

• Data written through L1 and buffered in a write buffer

• If L2 has ownership permission, write is retired – otherwise, read-exclusive request sent on

local bus

➢Write buffer is stalled

• If address is in “dirty” in one of the caches in the cluster or in the RAC

➢Owning cache sends data and ownership to requester

➢Owning cache invalidates its copy

• If address not in local cluster

➢ Processor retries bus operation

➢Request is sent to home cluster

➢RAC entry is allocated

37

Remote Read-
Exclusive Requests

38

Lenoski et al 1990, Figure 5

Other Implementation Details
• Writeback requests: When a dirty block is replaced

➢Home is local cluster: Write data to main memory

➢Home is a remote cluster: Send data to home which

updates memory and state as “uncached-remote”

• Exception conditions

➢Request to a dirty block of a remote cluster after it gave up

ownership

➢Ownership bouncing back and forth between two remote

clusters while a third cluster requests block

➢Multiple paths in the system lead to requests being

received out of order

• Amount of information stored in directory affects

scalability

➢ For each memory block, DASH stores state and bit vector

for other processors

➢ For a more scalable system, overhead needs to be lower

39

Latency for Memory Operations:

Lenoski et al 1990, Figure 5

The SGI Origin

• Cache coherent non-uniform memory access

• Up to 512 nodes

• Scalable Cray link network (hypercube)

• 1 or 2 R10000 MIPS processors per node

• Up to 4G bytes per node

• Node connects to a portion of the IO subsystem

• No snooping within node

40

SGI Origin: Key Goals

• Scale to large number of processors

• Provide higher performance per processor

• Maintain cache-coherent globally addressable memory model

➢For ease of programming

• Entry level and incremental cost of the system lower than a high

performance SMP

41

Origin Architecture
• Distributed shared memory (DSM)

• Directory based cache coherence

• Designed to minimize latency difference between

 local and remote memory

• Hardware and software provided to insure most

 memory references are local

• Cache coherence does not require in-order message delivery

• I/O subsystem is also distributed and globally addressable

• I/O can DMA to and from all memory in the system

• Cluster bus is multiplexed but is not a snoopy bus

➢Reduce local and remote memory latency

❑Fewer processors on the bus

❑Remote request does not need to wait for snoop response

42

Laudon&Lenoski 1997, Figure 1

Origin Architecture (Cont.)
• Non-snoopy node bus tradeoff

➢Disadvantage: remote bandwidth needs to match local bandwidth, unlike in SMP node systems

➢Advantage: easier migration path for existing SMP software

• Page migration and replication insures most references are local

➢Memory reference hardware counters

➢Copy engine to copy at near peak memory bandwidth

• Rich synchronization primitives

• Fetch and op primitives are not cached and performed at memory

➢Useful in highly contended locks

• HUB implements 4-way full crossbar between processors, memory and I/O-network

• RAS features

➢ECC in external cache and memory

➢Faulty packets automatic retries

➢Modular design provides highly available hardware
43

SGI Origin: Network
• Six ported router chip

• Fat, Bristled hypercube

• Low latency wormhole routing

• Four virtual channels per physical
channel

• Congestion control to allow
messages to adaptively switch
between two virtual channels

• Support for 256 levels of message
priority

• Increased priority via packet aging

• Automatic packet retries

• Software programmable routing
tables

44
Laudon&Lenoski 1997, Figures 3-4

32 P 64 P

128 P

Cache Coherence Protocol
• Similar to DASH protocol but with significant improvements

➢MESI protocol is fully supported

❑Single fetch from memory for read-modify-writes

❑Permits processor to replace E block in cache without informing directory

❑ Requests from processors that had replaced E blocks can be immediately satisfied from

memory

➢Support of upgrade requests from S to E without data transfer

• Coherence protocol supports Read, Read-Exclusive and

Writeback requests

45

Origin Coherence Protocol: Read Requests

46

Laudon&Lenoski 1997

Origin Coherence Protocol: Read-Exclusive Requests

47Laudon&Lenoski 1997

Origin Coherence
Protocol: Writeback
Requests

48
Laudon&Lenoski 1997

Configuration and Performance

• CPU Configuration

➢MIPS R10000

➢195 MHz

➢4-way out-of-order

➢4 M byte L2 cache

➢Bus connected to the HUB chip

• Latency variation:

49

Laudon&Lenoski 1997, Table 4

50

Reading Assignments

• ARCH Chapter 5.2, 5.3, 5.4 (Read)

• P. Stenstrom, “A Survey of Cache Coherence Schemes for

Multiprocessors,” IEEE Computer 1990 (Skim)

• D. Lenoski et al., "The Directory-based Cache Coherence

Protocol for the DASH Multiprocessor," ISCA 1990 (Read)

• J. Laudon and D.Lenoski, "The SGI Origin: A ccNUMA Highly

Scalable Server," ISCA 1997 (Skim)

	Slide 1
	Slide 2: Shared Memory Multiprocessors
	Slide 3: Interconnection Networks
	Slide 4: Shared Memory Multiprocessors: Memory Hierarchy
	Slide 5: Cache Coherence
	Slide 6: Conditions for Cache Coherence
	Slide 7: Cache Coherence Protocol Classification
	Slide 8: Cache Coherence Example
	Slide 9: Invalidate vs. Update Protocols
	Slide 10: Very Simple Write-Invalidate Coherence Protocol
	Slide 11: Example 1: Finite-Buffer Producer/Consumer
	Slide 12: Example 2: Solving a Linear System of Equations
	Slide 13: Write-Once Invalidate Protocol
	Slide 14: MSI Protocol
	Slide 15: Coherence Misses
	Slide 16: Extensions for MSI Protocol
	Slide 17: Firefly Write-Update Protocol
	Slide 18: Implementation Issues for Snoopy Coherence Protocols
	Slide 19: False Sharing
	Slide 20: Software Coherence Protocols
	Slide 21: Atomic Coherence Transactions
	Slide 22: Atomic Coherence Transactions: Example
	Slide 23: Non-Atomic Coherence Transactions
	Slide 24: Intermediate States
	Slide 25: (Incomplete) MSI with Intermediate States
	Slide 26: Multi-Level Protocols
	Slide 27: Directory Coherence Protocols
	Slide 28: Why Directory Protocols?
	Slide 29: Design Issues for Distributed Coherence Protocols
	Slide 30: The Stanford DASH Prototype
	Slide 31: DASH Architecture
	Slide 32: DASH Directories
	Slide 33: DASH Directory
	Slide 34: DASH Coherence Protocol
	Slide 35: Read Requests
	Slide 36: Read Requests to Remote Nodes
	Slide 37: Read-Exclusive Requests
	Slide 38: Remote Read-Exclusive Requests
	Slide 39: Other Implementation Details
	Slide 40: The SGI Origin
	Slide 41: SGI Origin: Key Goals
	Slide 42: Origin Architecture
	Slide 43: Origin Architecture (Cont.)
	Slide 44: SGI Origin: Network
	Slide 45: Cache Coherence Protocol
	Slide 46: Origin Coherence Protocol: Read Requests
	Slide 47: Origin Coherence Protocol: Read-Exclusive Requests
	Slide 48: Origin Coherence Protocol: Writeback Requests
	Slide 49: Configuration and Performance
	Slide 50: Reading Assignments

