
CMPT 450/750: Computer Architecture
Fall 2024

Domain-Specific Architecture I
How did we get here ?

What are they ?

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2023 Alaa Alameldeen and Arrvindh Shriraman

Hardware Types

Lecture 2 - 2

SpecializedGeneral-Purpose

Adapted from Song Han “Efficient Methods and Hardware for Deep Learning” Stanford 2017

CPU GPU FPGA ASIC

Programmable
Logic

Fixed
Logic

Low-latency
Control flow

High throughput
Data flow

Lecture 2 - 3

TPU

GPU

FPGA
NPU

FSD

XAVIER

Specialized Hardware

Learning Objectives
By the end of this lecture, you should be able to:

1. Calculate important performance metrics for hardware

2. Optimize the compute and memory efficiency of hardware

3. Analyze emerging hardware architectures

Hardware Metrics & Roofline

5

Compute Performance Metrics

Lecture 2 - 6

FLOPs/s

Floating-Point Operations per second

● MACs/s: Multiply-accumulate Ops/s
○ Half FLOPs/s

● OPs/s: for non floating-point operations
● Chips are often labeled with “peak FLOPs/s”

○ Not achievable under normal workloads
○ Very rough indication of performance

Frequency e.g 1 GHz

PE

Memory Performance Metrics

Lecture 2 - 7

Accelerator Chip (Frequency e.g 1 GHz)

PE

Memory Chip

Memory Bandwidth
e.g. 20 GB/s

Memory Capacity
e.g. 8 GB

● Memory capacity [GB]
● Memory bandwidth [GB/s]

○ Transfer speed from memory chip to compute
chip

● More complicated because there is a
memory hierarchy

○ Showing “external”/”main” memory
○ Can have caches, local memory, registers with

much higher bandwidth

Roofline Plot

Lecture 2 - 8Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Characterize the performance of a given hardware device across different workloads

Workload

Hardware

Roofline Plot

Lecture 2 - 9Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Peak Performance

Slope = memory b
andwidth

BW-
Limited

Compute-Limited

Characterize the performance of a given hardware device across different workloads

Roofline Plot

Lecture 2 - 10Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Characterize the performance of a given hardware device across different workloads

Example
Workload

Accelerator

DDR3 Mem

Memory
Bound!

What is OPs/Byte of a DNN?

● Operational intensity [OPs/Byte] quantifies the ratio of
computations to memory footprint of a DNN

● Total number of operations = multiplications + additions
● Total memory footprint = size of parameters + size of

activations

Lecture 2 - 11

Operational Intensity =
Total number of operations

Total memory footprint

QUESTION

?
How can you speed up a memory-bound application?

1. Use a larger memory chip
2. Use a faster memory chip
3. Add more multipliers
4. Use lower numerical precision

QUESTION

?
How can you speed up a memory-bound application?

1. Use a larger memory chip
2. Use a faster memory chip
3. Add more multipliers
4. Use lower numerical precision

Gets data on chip faster

Data becomes smaller,
so transport is faster

Roofline Plot

Lecture 2 - 14Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Compressed data format e.g. reduced precision

Reduce data size,
increase op intensity

Accelerator

DDR3 Mem

Memory
Bound!

Roofline Plot

Lecture 2 - 15Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Faster memory chip increases slope of roofline

Example
Workload

Accelerator

DDR4 Mem

Compute
Bound!

DDR3DD
R4

Roofline Plot

Lecture 2 - 16

Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Raise the roofline by increasing the speed/throughput of compute

Example
Workload

Accelerator
(overclock!)

DDR4 Mem

Perfect! Overclocked

Normal

DDR3DD
R4

10s – 1000s layers

Primer on Deep Neural
Networks

11

“Car”DNN
Layer

DNN
Layer

DNN
Layer

…

CONV/FC

…

[1]

many layer types to choose from

ACT POOL NORM

[1] Tesla

Roofline Example

Lecture 2 - 18Pe
rf

or
m

an
ce

 [O
Ps

/s
]

Operation Intensity [OPs/Byte]

Measured performance is (by definition) below the roofline.

Achieved Performance can be limited by:
● Memory access efficiency

○ E.g.: uncoalesced reads - most
DRAM chips require successive
reads, each of a specific width to
use maximum bandwidth.

● Compute utilization
○ E.g.: In DNN, MAC array

hardcoded to 16 channels per tile
but first layer has 3 channels

○ Overhead of control logic
● Complexity

○ Control flow and data hazards may
stall execution even if the
hardware is available

Alexnet
Inception

ResNet

MobileNet
SqueezeNet

note: points are not plotted in their correct place and are just for illustrative purposes

Lecture 2 - 19

G
oo

gl
e

TP
U

 R
oo

fli
ne

TPU

GPU

CPU

MLP0

Source: Google

QUESTION

?
How can the same DNN have a different operational intensity on different
hardware?

1. Different supported numerical
precisions on each device

2. Different memory bandwidths on each
device

3. Different number of PEs on each
device

4. Different on-chip memory hierarchy
on each device

QUESTION

?
How can the same DNN have a different operational intensity on different
hardware?

1. Different supported numerical
precisions on each device

2. Different memory bandwidths on each
device

3. Different number of PEs on each
device

4. Different on-chip memory hierarchy
on each device

Size of data affects ops/byte

Metrics Summary (so far)

Lecture 2 - 22

Metric Hardware

Peak Performance [OPs/s]

Memory Bandwidth [GB/s]

Operational Intensity [OP/B]

HW Utilization

Throughput [OPs/s]

Latency [seconds]

Throughput and Latency

Lecture 2 - 23

inference inference inference inference

Latency = 0.25 s

Time

Se
qu

en
tia

l

Throughput = 4 inf/s

inference

inference

Ba
tc

hi
ng

Throughput = 6 inf/sLatency = 0.33 s

inference

inference

inference

inference

● Latency: Number of seconds per inference (unit = seconds)
● Throughput: Number of inferences per second (unit = inference/second)

2. Hardware Efficiency

24

25

np.add(arr1, arr2)
PYTHON C/C++

for(i = 0;i < n;i++)
 res[i] = arr1[i] + arr2[i]

ISA
.Loop:
 lw a5, 0(a2) # *(arr1+i)
 lw a6, 0(a3) # *(arr2+i)
 add a0, a5, a6
 sw a0, 0(a4)
Bump pointers.
 addi a2, a2, 4
 addi a3, a3, 4
 addi a4, a4, 4
 addi a1, a1, 1
 bne a1, a3, loop

Information lost necessitating more complex hardware

26

np.add(arr1, arr2)
PYTHON C/C++

for(i = 0;i < n;i++)
 res[i] = arr1[i] + arr2[i]

ISA
.Loop:
 lw a5, 0(a2) # *(arr1+i)
 lw a6, 0(a3) # *(arr2+i)
 add a0, a5, a6
 sw a0, 0(a4)
Bump pointers.
 addi a2, a2, 4
 addi a3, a3, 4
 addi a4, a4, 4
 addi a1, a1, 1
 bne a1, a3, loop

Information lost necessitating more complex hardware

Branch
Predictor to
find loop paralleism

Global regLoad/Store
Queues

Why ISAs suck ?

27

#pragma clang unroll_count(10)
for(int i = 0;i < 10;i++)
res[i] = arr1[i] + arr2[i];
}

res[0] = arr1[0] + arr2[0];
res[1] = arr1[1] + arr2[1];
…..
res[9] = arr1[9] + arr2[9];

lw a6, 0(a0)
lw a4, 0(a1)
lw a5, 4(a0)
lw a3, 4(a1)
add a4, a4, a6
sw a4, 0(a2)
add a6, a3, a5
lw a7, 8(a0)
lw a5, 8(a1)
lw a3, 12(a0)
lw a4, 12(a1)
sw a6, 4(a2)
add a5, a5, a7
sw a5, 8(a2)
add a6, a4, a3
lw a7, 16(a0)
lw a5, 16(a1)
lw a3, 20(a0)
lw a4, 20(a1)

Register naming introduced dependencies

Need register
renaming hardware

Wasted instructions

28https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext

29

ISA

Why ISAs suck ?

Is technology scaling dead/dying ?

Why OOOs suck.

Are DSAs/Accelerators The Solution?

mul $2,$3,$4

add $6,$5,$2

What’s great about superscalar microprocessors? à
 Fast low-latency tightly-coupled networks
 (0-1 cycles of latency, no occupancy)

Control
Wide
Fetch

(16 inst)

Unified
Load/Store

Queue

PC

RF

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

Bypass Net

32

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

Bypass Net

RF

~N3 ~N2
N ALUs

Without
modification, freq decreases linearly or worse.

Area and Frequency Scalability

33

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

Bypass Net

RF
>>

+

Global Operand Routing

34

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

Bypass Net

RF

Idea 1 : Make operand routing local

35

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

RF

Idea 1 : Make operand routing local

36

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

RF
>>

+

37

Time for operand to travel between instructions mapped to
different ALUs.

Non-local
Placement

~ N ~ N½

Locality-
Driven
Placement

~ N ~ 1

Un-pipelined
crossbar

Point-to-Point
Routed Mesh
Network

Latency bonus if we map communicating instructions
nearby so communication is local.

Operand Latency

38

Distribute the Register File

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

RF

RFRF RFRF

RFRF RFRF

RFRF RFRF

RFRF RFRF

39

More Scalability Problems

ControlWide
Fetch

(16 inst)

Unified
Load/Store

Queue

PC

40

Tiles (precursor to multicore)

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

RFRF RFRF

RFRF RFRF

RFRF RFRF

RFRF RFRF

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

41

Multicore (what was practical)

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

RFRF RFRF

RFRF RFRF

RFRF RFRF

RFRF RFRF

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

I$
PC

D$
I$
PC

D$
I$
PC

D$
I$
PC

D$

42

Widespread Assumption: Microarchitecture was the
cause of the power problem

43

44

But actually,
that’s not what’s happening

4 cores
1.8 GHz

8 cores
>= 1.8 GHz

65 nm 45 nm

1.4x cores per generation,
flat or slightly growing frequency

32 nm

Dark or Dim
Silicon (“uncore”)

45

Is technology scaling dead/dying ?

Why OOOs suck.

Are DSAs/Accelerators The Solution?

Scaling 101: Moore’s Law

90 65 45 32 22 16 11 8 nm

S =
22

16
= ~1.4x

47

180 nm

16 cores
90 nm

64 cores
S = 2x
Transistors = 4x

Scaling 101:
Transistors scale as S2

48

Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

S3

S2

S

1

Design of Ion-Implanted MOSFETs with Very Small Dimensions
Dennard et al, 1974

If S=1.4x …

49

S

1

S3

S2
S2 = 2x
More Transistors

If S=1.4x …

Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

50

S

1

S2

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

If S=1.4x …

Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

51

S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

But wait: switching 2.8x times
as many transistors
per unit time –
what about power??

If S=1.4x …

Advanced Scaling:

Scale by S3 = 2.8x”

“We can keep power consumption constant”
52

Dennard:

S2

S

1

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

“We can keep power consumption constant”
53

Dennard:

“We can keep power consumption constant”

S

1

S2

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

Scale Vdd by S=1.4x
S2 = 2x

54

Fast forward to 2005:

Leakage Prevents Us From Scaling Voltage

S

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S3
S = 1.4x
Lower Capacitance

S2
Scale Vdd by S=1.4x
S2 = 2x

55

Utilization Wall

56

We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of a chip that can actively
switch drops exponentially due to power constraints.

Transistors vs Power

https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext

Multicore has hit the Utilization Wall

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
m)

,

65 nm 32 nm

.…

.…Spectrum of tradeoffs
between # of cores and
frequency

Exa
65

(8 cores dark, 8 di
mple:

nm à 32 nm (S = 2) (Industry’s Choice
next slide)

.…

The utilization wall will change the way
everyone builds chips.

59

Hardware Efficiency

60

1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format

Where does the Energy go?
● Energy breakdown of an add instruction in a 45nm CPU
● How can we optimize this?

Lecture 2 - 61

Source: Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014

Amortize Overhead

Lecture 2 - 62

Source: Bill Dally “Hardware for Deep Learning” SysML 2018

Increase Computation
with same overhead

Half-precision
Fused Multiply-Add

4-way dot-product

16x16 matrix
multiplication

Complex instruction

Amortize Overhead

Lecture 2 - 63

Source: Bill Dally “Hardware for Deep Learning” SysML 2018

Increase Computation
with same overhead

Half-precision
Fused Multiply-Add

4-way dot-product

16x16 matrix
multiplication

Complex instruction

“Special” Instruction Examples

Lecture 2 - 64

Source: Nvidia

GPU ASIC (TPUv1)

16x16 = 256* MAC/cycle
256x256 = 64 kMAC/cycle*~ 500 tensor cores per GPU

Source: Google

Multicore vs. ASIC
Huge efficiency gap
• 4-proc CMP 250x slower
• 500x extra energy

Manycore doesn’t help
• Energy/frame remains same
• Performance improves

65

Opt 1: SIMD, VLIW and
Horizontal Fusion

SIMD
• Up to 18-way SIMD in reduced precision

VLIW
• Up to 3-slot VLIW

Load
Add oad

dd

Load
Add

L
A

16x8 bit

12 bit

16x12 bit
accumulator

66

SIMD and ILP - Results

Order of magnitude improvement in performance, energy
• For data parallel algorithms

• But ASIC still better by roughly 2 orders of magnitude
67

Opt 2: Op Fusion

Add(30)

ICmp(31) Store(34)

Add(37)

Add(91)

Store(27)

Add(50)

Mul(51)
Add(73)

Load(6)

Add(52)

Mul(65)

Add(66)

Load(18)

ZExt(19)

Add(82)

Add(83)

Store(23)

Mul(81)

Add(86)

Mul(85)

Store(25)

ICmp(20)

Mul(48)

Add(49)

Mul(45)

Mul(42)

Add(79)

Mul(43)

Mul(40)

Add(41)

And(15)

SExt(4)

ZExt(2)

Mul(90)

Mul(93)

Mul(38)

Add(9)
Mul(56)

Mul(36) Mul(77)

Mul(72)

ZExt(16)

SExt(10)

Add(78)

Add(58)

Add(39)

Add(57)

ICmp(7)

G(8)
ICmp(13)

Load(12)

Store(29)

Chainsaw: Von-Neumann Accelerators, Amirali et al., MICRO 2016 68

Lecture 2 - 69

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Adapted from Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014

Relative Energy Cost (Log-scale)

4x

16x 18x
Large Energy
Savings from INT8
quantization

C
os

t o
f A

rit
hm

et
ic

 O
pe

ra
tio

ns

QUESTION

?
Why is floating-point add so expensive compared to integer add?

Operation Precision Energy (pJ)

Addition

INT8 0.03
INT16 0.05
INT32 0.1
FP16 0.4
FP32 0.9

Multiplication

INT8 0.2
INT32 3.1
FP16 1.1
FP32 3.7

9x

1.2x

Floating-Point Addition

Lecture 2 - 71

Integer addition

Numerical Format and Precision

Lecture 3 - 72

Floating Point Integer

● IEEE standard includes FP32 and FP16
● Many exotic FP numbers in DNN

○ E.g. bfloat, minifloat

● Whole numbers only
● (typically) much cheaper circuit area and

power

8-bit

16-bit

Source: Google

73

Block Floating Point

Lecture 3 - 74

75

1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format

Lecture 2 - 76

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Adapted from Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014

Relative Energy Cost (Log-scale)

Memory is
the issue!

C
os

t o
f A

rit
hm

et
ic

 O
pe

ra
tio

ns

Memory Hierarchy Optimizations
1. Get data close to the computation. (LOCALITY)
2. Once data is close - perform all computations with this data.

(REUSE)

Lecture 2 - 77

Operation Energy (pJ)

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Relative Energy Cost (Log-scale)

Opt 2: Op Fusion

Add(30)

ICmp(31) Store(34)

Add(37)

Add(91)

Store(27)

Add(50)

Mul(51)
Add(73)

Load(6)

Add(52)

Mul(65)

Add(66)

Load(18)

ZExt(19)

Add(82)

Add(83)

Store(23)

Mul(81)

Add(86)

Mul(85)

Store(25)

ICmp(20)

Mul(48)

Add(49)

Mul(45)

Mul(42)

Add(79)

Mul(43)

Mul(40)

Add(41)

And(15)

SExt(4)

ZExt(2)

Mul(90)

Mul(93)

Mul(38)

Add(9)
Mul(56)

Mul(36) Mul(77)

Mul(72)

ZExt(16)

SExt(10)

Add(78)

Add(58)

Add(39)

Add(57)

ICmp(7)

G(8)
ICmp(13)

Load(12)

Store(29)

Chainsaw: Von-Neumann Accelerators, Amirali et al., MICRO 2016 78

Opt 2: Op Fusion

Reduces 40% of data movement energy
79

“Magic” Instructions

Create specialized data storage structures
• Require modest memory bandwidth to keep full
• Internal data motion is hard wired
• Use all the local data for computation

Arbitrary new low-power compute operations Large effect on energy

efficiency and performance

>>

+

80

Memory Hierarchy

Lecture 2 - 81

Accelerator Chip

PE

External Memory
Main Memory
Global Memory
Off-Chip Memory
DRAM

Shared Memory
Cache
On-Chip Buffer
On-Chip Memory
SRAM

Register File
Private memory

GB

MBKB

Local Memory

Why do we have a memory hierarchy?

● The closer you get to compute, the
more $$ and scarce the memory
resource becomes

● In most cases, the DNN parameters live
off chip and are fetched layer-by-layer
or tile-by-tile

● Data locality: how to get data close to
the PEs (to keep them fully utilized)

Lecture 2 - 82

Source: Nvidia

M
em

or
y

H
ie

ra
rc

hy
 E

xa
m

pl
es

83

84

http://matrixmultiplication.xyz

85

function GEMM(alpha, A, B, beta, C)
for i = 0 to m - 1 # Loop over rows of A and C
 for j = 0 to n - 1 # Loop over columns of B and C
 for k = 0 to k - 1 # Loop over columns of A and rows of B
 temp = temp + A[i][k] * B[k][j]
 end for
 temp = C[i][j]
 end for
end for

Systolic Array: Matrix Multiply Example

Lecture 2 - 86

Lecture 2 - 87

Systolic Array: Matrix Multiply Example

Lecture 2 - 88

Systolic Array: Matrix Multiply Example

Lecture 2 - 89

Systolic Array: Matrix Multiply Example

Lecture 2 - 90

Systolic Array: Matrix Multiply Example

Lecture 2 - 91

Systolic Array: Matrix Multiply Example

Lecture 2 - 92

Systolic Array: Matrix Multiply Example

Lecture 2 - 93

Systolic Array: Matrix Multiply Example

______ stationary?

Hardware Efficiency

94

1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format

Kinds of Sparsity

Lecture 2 - 95

5 1 2

3 1 1

8 4 4

9

0

0

0

0 0 1

2 1 2

-4 -1 3

3 2

0

0

0 0

0 0 -5 7

X

Activation Weight

0

0

0

0 0

Activation Sparsity

0

0

0 0

0 0

Weight Sparsity

Block Sparsity

Sparse activation functions (e.g. ReLU) Pruning (covered in later lectures)

Coarse-grained “Block” Sparsity

Lecture 2 - 96

Source: Open AI

64 MACs/cycle

1 2

3 4

6 7 8 1
0

1
1

9

1
2

1
3

1
9

2
0

2
1

1
8

1
7

1
6

1
5

1
4

2
5

2
4

2
3

2
2

5

2
6

● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation
that can be skipped is a large
block (recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to skip

blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X faster

Coarse-grained “Block” Sparsity

Lecture 2 - 97

Source: Open AI

1 2

3 4

6 7 8 1
0

1
1

9

1
2

1
3

1
9

2
0

2
1

1
8

1
7

1
6

1
5

1
4

2
5

2
4

2
3

2
2

5

2
6

Simplest way to leverage sparsity with low overhead
⇨ Single bit per 8x8 block (1/64 = 1.6% overhead)
⇨ Simple control logic because entire block is skipped

● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation
that can be skipped is a large
block (recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to skip

blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X faster

Fine-grained Sparsity in Ampere GPUs

Lecture 2 - 98

Source: Nvidia

● Very recently, fine-grained sparsity
was added to Tensor Cores on Nvidia
GPUs

● 2 elements for every block of 4
elements can be zero

● Requires retraining to regain
accuracy

● Overhead?
○ 2 bits per 8-bit element
○ 12.5% memory overhead
○ Control logic? Performance improvement?

Power savings?

Nvidia sparsity support

99

QUESTION

?
What is the performance improvement of 50% fine-grained sparsity on Nvidia
GPUs?

1. 2.0 X
2. 1.5 X
3. 1.2 X
4. 0.5 X

Even though we skip half the
computations, there is
overhead to support sparsity,
like figuring out where all the
zeroes are to be able to skip

