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Hardware Types

Lecture 2 - 2

SpecializedGeneral-Purpose

Adapted from Song Han “Efficient Methods and Hardware for Deep Learning” Stanford 2017

CPU GPU FPGA ASIC

Programmable 
Logic

Fixed 
Logic

Low-latency
Control flow

High throughput
Data flow



Lecture 2 - 3

TPU

GPU

FPGA
NPU

FSD

XAVIER

Specialized Hardware



Learning Objectives
By the end of this lecture, you should be able to: 

1.   Calculate important performance metrics for hardware 

2.   Optimize the compute and memory efficiency of hardware

3.   Analyze emerging hardware architectures 



Hardware Metrics & Roofline
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Compute Performance Metrics

Lecture 2 - 6

FLOPs/s

Floating-Point Operations per second

● MACs/s: Multiply-accumulate Ops/s
○ Half FLOPs/s

● OPs/s: for non floating-point operations
● Chips are often labeled with “peak FLOPs/s”

○ Not achievable under normal workloads
○ Very rough indication of performance 

Frequency e.g 1 GHz

PE



Memory Performance Metrics

Lecture 2 - 7

Accelerator Chip (Frequency e.g 1 GHz)

PE

Memory Chip

Memory Bandwidth 
e.g. 20 GB/s

Memory Capacity 
e.g. 8 GB

● Memory capacity [GB]
● Memory bandwidth [GB/s]

○ Transfer speed from memory chip to compute 
chip

● More complicated because there is a 
memory hierarchy

○ Showing “external”/”main” memory
○ Can have caches, local memory, registers with 

much higher bandwidth



Roofline Plot
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Operation Intensity [OPs/Byte]

Characterize the performance of a given hardware device across different workloads

Workload 

Hardware



Roofline Plot
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Operation Intensity [OPs/Byte]

Peak Performance 

Slope = memory b
andwidth

BW-
Limited

Compute-Limited

Characterize the performance of a given hardware device across different workloads



Roofline Plot

Lecture 2 - 10Pe
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Operation Intensity [OPs/Byte]

Characterize the performance of a given hardware device across different workloads

Example 
Workload

Accelerator

DDR3 Mem

Memory 
Bound!



What is OPs/Byte of a DNN?

● Operational intensity [OPs/Byte] quantifies the ratio of 
computations to memory footprint of a DNN

● Total number of operations = multiplications + additions
● Total memory footprint = size of parameters + size of 

activations

Lecture 2 - 11

Operational Intensity =
Total number of operations

Total memory footprint



QUESTION

?
How can you speed up a memory-bound application?

1. Use a larger memory chip
2. Use a faster memory chip
3. Add more multipliers
4. Use lower numerical precision



QUESTION

?
How can you speed up a memory-bound application?

1. Use a larger memory chip
2. Use a faster memory chip
3. Add more multipliers
4. Use lower numerical precision

Gets data on chip faster

Data becomes smaller, 
so transport is faster



Roofline Plot
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Operation Intensity [OPs/Byte]

Compressed data format e.g. reduced precision

Reduce data size, 
increase op intensity

Accelerator

DDR3 Mem

Memory 
Bound!



Roofline Plot
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Operation Intensity [OPs/Byte]

Faster memory chip increases slope of roofline

Example 
Workload

Accelerator

DDR4 Mem

Compute 
Bound!

DDR3DD
R4



Roofline Plot

Lecture 2 - 16
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Operation Intensity [OPs/Byte]

Raise the roofline by increasing the speed/throughput of compute

Example 
Workload

Accelerator
(overclock!)

DDR4 Mem

Perfect! Overclocked

Normal

DDR3DD
R4



10s – 1000s layers

Primer on Deep Neural
Networks

11

“Car”DNN
Layer

DNN
Layer

DNN
Layer

…

CONV/FC

…

[1]

many layer types to choose from

ACT POOL NORM

[1] Tesla



Roofline Example

Lecture 2 - 18Pe
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Operation Intensity [OPs/Byte]

Measured performance is (by definition) below the roofline.

Achieved Performance can be limited by:
● Memory access efficiency

○ E.g.: uncoalesced reads - most 
DRAM chips require successive 
reads, each of a specific width to 
use maximum bandwidth.

● Compute utilization
○ E.g.: In DNN, MAC array 

hardcoded to 16 channels per tile 
but first layer has 3 channels

○ Overhead of control logic
● Complexity

○ Control flow and data hazards may 
stall execution even if the 
hardware is available

Alexnet
Inception

ResNet

MobileNet
SqueezeNet

note: points are not plotted in their correct place and are just for illustrative purposes



Lecture 2 - 19
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TPU

GPU

CPU

MLP0

Source: Google



QUESTION

?
How can the same DNN have a different operational intensity on different 
hardware?

1. Different supported numerical 
precisions on each device

2. Different memory bandwidths on each 
device

3. Different number of PEs on each 
device

4. Different on-chip memory hierarchy 
on each device



QUESTION

?
How can the same DNN have a different operational intensity on different 
hardware?

1. Different supported numerical 
precisions on each device

2. Different memory bandwidths on each 
device

3. Different number of PEs on each 
device

4. Different on-chip memory hierarchy 
on each device

Size of data affects ops/byte



Metrics Summary (so far)

Lecture 2 - 22

Metric Hardware

Peak Performance [OPs/s]

Memory Bandwidth [GB/s]

Operational Intensity [OP/B]

HW Utilization

Throughput [OPs/s]

Latency [seconds]



Throughput and Latency

Lecture 2 - 23

inference inference inference inference

Latency = 0.25 s

Time

Se
qu

en
tia

l

Throughput = 4 inf/s

inference

inference

Ba
tc

hi
ng

Throughput = 6 inf/sLatency = 0.33 s

inference

inference

inference

inference

● Latency: Number of seconds per inference (unit = seconds)
● Throughput: Number of inferences per second (unit = inference/second)



2. Hardware Efficiency
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np.add(arr1, arr2) 
PYTHON C/C++

for(i = 0;i < n;i++)
  res[i] = arr1[i] + arr2[i]

ISA
.Loop:
 lw      a5, 0(a2)          # *(arr1+i)
 lw      a6, 0(a3)          # *(arr2+i)
 add     a0, a5, a6
 sw     a0, 0(a4)
# Bump pointers.
    addi    a2, a2, 4
    addi    a3, a3, 4
    addi    a4, a4, 4
    addi    a1, a1, 1
    bne     a1, a3, loop

Information lost necessitating more complex hardware



26

np.add(arr1, arr2) 
PYTHON C/C++

for(i = 0;i < n;i++)
  res[i] = arr1[i] + arr2[i]

ISA
.Loop:
 lw      a5, 0(a2)          # *(arr1+i)
 lw      a6, 0(a3)          # *(arr2+i)
 add     a0, a5, a6
 sw     a0, 0(a4)
# Bump pointers.
    addi    a2, a2, 4
    addi    a3, a3, 4
    addi    a4, a4, 4
    addi    a1, a1, 1
    bne     a1, a3, loop

Information lost necessitating more complex hardware

Branch
Predictor to 
find loop paralleism

Global regLoad/Store 
Queues



Why ISAs suck ? 
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#pragma clang unroll_count(10)
for(int i = 0;i < 10;i++)
res[i] = arr1[i] + arr2[i];
}

res[0] = arr1[0] + arr2[0];
res[1] = arr1[1] + arr2[1];
…..
res[9] = arr1[9] + arr2[9];

lw  a6, 0(a0)
lw  a4, 0(a1)
lw  a5, 4(a0)
lw  a3, 4(a1)
add a4, a4, a6
sw  a4, 0(a2)
add a6, a3, a5
lw  a7, 8(a0)
lw  a5, 8(a1)
lw  a3, 12(a0)
lw  a4, 12(a1)
sw  a6, 4(a2)
add a5, a5, a7
sw  a5, 8(a2)
add a6, a4, a3
lw  a7, 16(a0)
lw  a5, 16(a1)
lw  a3, 20(a0)
lw  a4, 20(a1)

Register naming introduced dependencies

Need register 
renaming hardware



Wasted instructions

28https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext
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ISA

Why ISAs suck ? 



Is technology scaling dead/dying ?

Why OOOs suck. 

Are DSAs/Accelerators The Solution?



mul $2,$3,$4

add $6,$5,$2

What’s great about superscalar microprocessors? à 
                   Fast low-latency tightly-coupled networks 
                  (0-1 cycles of latency, no occupancy)



Control
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(16 inst)
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Load/Store

Queue
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A
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A
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A
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A
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RF

~N3 ~N2
N ALUs

Without 
modification, freq decreases linearly or worse. 

Area and Frequency Scalability 
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Global Operand Routing
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RF

Idea 1 : Make operand routing local
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Idea 1 : Make operand routing local
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Time for operand to travel between instructions mapped to
different ALUs. 

Non-local 
Placement

~ N ~ N½

Locality- 
Driven 
Placement 

~ N ~ 1

Un-pipelined
crossbar

Point-to-Point
Routed Mesh
Network

Latency bonus if we map communicating instructions 
nearby so communication is local. 

Operand Latency

38



Distribute the Register File

A
LU

A
LU

A
LU
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LU
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LU

A
LU

A
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A
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A
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A
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A
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A
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A
LU

A
LU

RF

RFRF RFRF

RFRF RFRF

RFRF RFRF

RFRF RFRF
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More Scalability Problems

ControlWide
Fetch

(16 inst)

Unified
Load/Store

Queue

PC

40



Tiles (precursor to multicore) 
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Multicore (what was practical)
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Widespread Assumption: Microarchitecture was the
cause of the power problem

43



44



But actually,
that’s not what’s happening

4 cores
1.8 GHz

8 cores
>= 1.8 GHz

65 nm 45 nm

1.4x cores per generation,
flat or slightly growing frequency

32 nm

Dark or Dim 
Silicon (“uncore”)

45



Is technology scaling dead/dying ?

Why OOOs suck. 

Are DSAs/Accelerators The Solution?



Scaling 101: Moore’s Law

90 65 45 32 22 16 11 8 nm

S =
22

16
= ~1.4x

47



180 nm

16 cores
90 nm

64 cores
S = 2x
Transistors = 4x

Scaling 101:
Transistors scale as S2

48



Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

S3

S2

S  

1

Design of Ion-Implanted MOSFETs with Very Small Dimensions 
Dennard et al, 1974

If S=1.4x …

49



S

1

S3

S2
S2 = 2x
More Transistors

If S=1.4x …

Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

50



S

1

S2

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

If S=1.4x …

Advanced Scaling:

Dennard: “Computing Capabilities

Scale by S3 = 2.8x”

51



S

S2

S3

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

But wait: switching 2.8x times 
as many transistors
per unit time –
what about power??

If S=1.4x …

Advanced Scaling:

Scale by S3 = 2.8x”

“We can keep power consumption constant”
52



Dennard:

S2

S  

1

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

“We can keep power consumption constant”
53



Dennard:

“We can keep power consumption constant”

S

1

S2

S3

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S = 1.4x
Lower Capacitance

Scale Vdd by S=1.4x 
S2 = 2x

54



Fast forward to 2005:

Leakage Prevents Us From Scaling Voltage

S

1

S2 = 2x
More Transistors

S = 1.4x
Faster Transistors

S3
S = 1.4x
Lower Capacitance

S2
Scale Vdd by S=1.4x 
S2 = 2x

55



Utilization Wall

56



We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of a chip that can actively 
switch drops exponentially due to power constraints.



Transistors vs Power

https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext



Multicore has hit the Utilization Wall

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz 
(12 cores dark)

2x4 cores @ 1.8 GHz
m)

,

65 nm 32 nm

.…

.…Spectrum of tradeoffs 
between # of cores and 
frequency

Exa
65

(8 cores dark, 8 di
mple:

nm à 32 nm (S = 2) (Industry’s Choice 
next slide)

.…

The utilization wall will change the way 
everyone builds chips.

59



Hardware Efficiency

60

1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format



Where does the Energy go?
● Energy breakdown of an add instruction in a 45nm CPU
● How can we optimize this?

Lecture 2 - 61

Source: Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014



Amortize Overhead

Lecture 2 - 62

Source: Bill Dally “Hardware for Deep Learning” SysML 2018

Increase Computation 
with same overhead

Half-precision 
Fused Multiply-Add

4-way dot-product

16x16 matrix 
multiplication

Complex instruction



Amortize Overhead

Lecture 2 - 63

Source: Bill Dally “Hardware for Deep Learning” SysML 2018

Increase Computation 
with same overhead

Half-precision 
Fused Multiply-Add

4-way dot-product

16x16 matrix 
multiplication

Complex instruction



“Special” Instruction Examples

Lecture 2 - 64

Source: Nvidia

GPU ASIC (TPUv1)

16x16 = 256* MAC/cycle
256x256 = 64 kMAC/cycle*~ 500 tensor cores per GPU

Source: Google



Multicore vs. ASIC
Huge efficiency gap
• 4-proc CMP 250x slower
• 500x extra energy

Manycore doesn’t help
• Energy/frame remains same
• Performance improves

65



Opt 1: SIMD, VLIW and 
Horizontal Fusion

SIMD
• Up to 18-way SIMD in reduced precision

VLIW
• Up to 3-slot VLIW

Load  
Add oad

dd

Load  
Add

L
A

16x8 bit

12 bit

16x12 bit 
accumulator

66



SIMD and ILP - Results

Order of magnitude improvement in performance, energy
• For data parallel algorithms

• But ASIC still better by roughly 2 orders of magnitude
67



Opt 2: Op Fusion

Add(30)

ICmp(31) Store(34)

Add(37)

Add(91)

Store(27)

Add(50)

Mul(51)
Add(73)

Load(6)

Add(52)

Mul(65)

Add(66)

Load(18)

ZExt(19)

Add(82)

Add(83)

Store(23)

Mul(81)

Add(86)

Mul(85)

Store(25)

ICmp(20)

Mul(48)

Add(49)

Mul(45)

Mul(42)

Add(79)

Mul(43)

Mul(40)

Add(41)

And(15)

SExt(4)

ZExt(2)

Mul(90)

Mul(93)

Mul(38)

Add(9)
Mul(56)

Mul(36) Mul(77)

Mul(72)

ZExt(16)

SExt(10)

Add(78)

Add(58)

Add(39)

Add(57)

ICmp(7)

G(8)
ICmp(13)

Load(12)

Store(29)

Chainsaw: Von-Neumann Accelerators, Amirali et al., MICRO 2016 68



Lecture 2 - 69

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Adapted from Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014

Relative Energy Cost (Log-scale)

4x

16x 18x
Large Energy 
Savings from INT8 
quantization
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QUESTION

?
Why is floating-point add so expensive compared to integer add?

Operation Precision Energy (pJ)

Addition

INT8 0.03
INT16 0.05
INT32 0.1
FP16 0.4
FP32 0.9

Multiplication

INT8 0.2
INT32 3.1
FP16 1.1
FP32 3.7

9x

1.2x



Floating-Point Addition

Lecture 2 - 71

Integer addition



Numerical Format and Precision

Lecture 3 - 72

Floating Point Integer

● IEEE standard includes FP32 and FP16
● Many exotic FP numbers in DNN

○ E.g. bfloat, minifloat

● Whole numbers only
● (typically) much cheaper circuit area and 

power

8-bit

16-bit

Source: Google
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Block Floating Point

Lecture 3 - 74



75

1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format



Lecture 2 - 76

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Adapted from Mark Horowitz “Computing’s Energy Problem (and What we can do about it)” ISSCC 2014

Relative Energy Cost (Log-scale)

Memory is 
the issue!
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Memory Hierarchy Optimizations
1. Get data close to the computation. (LOCALITY)
2. Once data is close - perform all computations with this data. 

(REUSE)

Lecture 2 - 77

Operation Energy (pJ)

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10

32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Relative Energy Cost (Log-scale)



Opt 2: Op Fusion

Add(30)

ICmp(31) Store(34)

Add(37)

Add(91)

Store(27)

Add(50)

Mul(51)
Add(73)

Load(6)

Add(52)

Mul(65)

Add(66)

Load(18)

ZExt(19)

Add(82)

Add(83)

Store(23)

Mul(81)

Add(86)

Mul(85)

Store(25)

ICmp(20)

Mul(48)

Add(49)

Mul(45)

Mul(42)

Add(79)

Mul(43)

Mul(40)

Add(41)

And(15)

SExt(4)

ZExt(2)

Mul(90)

Mul(93)

Mul(38)

Add(9)
Mul(56)

Mul(36) Mul(77)

Mul(72)

ZExt(16)

SExt(10)

Add(78)

Add(58)

Add(39)

Add(57)

ICmp(7)

G(8)
ICmp(13)

Load(12)

Store(29)

Chainsaw: Von-Neumann Accelerators, Amirali et al., MICRO 2016 78



Opt 2: Op Fusion

Reduces 40% of data movement energy
79



“Magic” Instructions

Create specialized data storage structures
• Require modest memory bandwidth to keep full
• Internal data motion is hard wired
• Use all the local data for computation

Arbitrary new low-power compute operations Large effect on energy

efficiency and performance

>>

+

80



Memory Hierarchy

Lecture 2 - 81

Accelerator Chip

PE

External Memory
Main Memory
Global Memory
Off-Chip Memory
DRAM

Shared Memory
Cache
On-Chip Buffer
On-Chip Memory
SRAM

Register File
Private memory

GB

MBKB

Local Memory

Why do we have a memory hierarchy?

● The closer you get to compute, the 
more $$ and scarce the memory 
resource becomes

● In most cases, the DNN parameters live 
off chip and are fetched layer-by-layer 
or tile-by-tile

● Data locality: how to get data close to 
the PEs (to keep them fully utilized)



Lecture 2 - 82

Source: Nvidia
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http://matrixmultiplication.xyz
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function GEMM(alpha, A, B, beta, C)
for i = 0 to m - 1 # Loop over rows of A and C
  for j = 0 to n - 1 # Loop over columns of B and C
    for k = 0 to k - 1 # Loop over columns of A and rows of B
       temp = temp + A[i][k] * B[k][j]   
    end for
    temp = C[i][j]
   end for
end for



Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example
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Systolic Array: Matrix Multiply Example

______ stationary?



Hardware Efficiency
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1. Arithmetic
○ Specialized Instructions: To amortize overhead.
○ Lower precision (Quantization)

2. Memory
○ Locality: Move data to inexpensive on-chip memory.
○ Reuse: To avoid expensive memory fetches.

3. Ineffectual Operations
○ Sparsity: Skip useless operations
○ Compressed Sparse Column (CSC) Format



Kinds of Sparsity
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Sparse activation functions (e.g. ReLU) Pruning (covered in later lectures)



Coarse-grained “Block” Sparsity
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Source: Open AI

64 MACs/cycle
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● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation 
that can be skipped is a large 
block (recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to skip 

blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X faster



Coarse-grained “Block” Sparsity
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Source: Open AI
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Simplest way to leverage sparsity with low overhead
⇨ Single bit per 8x8 block (1/64 = 1.6% overhead)
⇨ Simple control logic because entire block is skipped
 

● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation 
that can be skipped is a large 
block (recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to skip 

blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X faster



Fine-grained Sparsity in Ampere GPUs
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Source: Nvidia

● Very recently, fine-grained sparsity 
was added to Tensor Cores on Nvidia 
GPUs

● 2 elements for every block of 4 
elements can be zero

● Requires retraining to regain 
accuracy

● Overhead?
○ 2 bits per 8-bit element
○ 12.5% memory overhead
○ Control logic? Performance improvement? 

Power savings?



Nvidia sparsity support
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QUESTION

?
What is the performance improvement of 50% fine-grained sparsity on Nvidia 
GPUs?

1. 2.0 X
2. 1.5 X 
3. 1.2 X
4. 0.5 X

Even though we skip half the 
computations, there is 
overhead to support sparsity, 
like figuring out where all the 
zeroes are to be able to skip


