

CMPT 450/750: Computer Architecture **Fall 2024 Domain-Specific Architecture II** How did we get here? What are they ?

Alaa Alameldeen & Arrvindh Shriraman

Recall: ISA vs. Microarchitecture Level Tradeoff

- A similar tradeoff (control vs. data-driven execution) can be made at the microarchitecture level
- ISA: Specifies how the programmer sees the instructions to be executed
 - Programmer sees a sequential, control-flow execution order vs.
 - Programmer sees a dataflow execution order
- Microarchitecture: How the underlying implementation actually executes instructions
 - Microarchitecture can execute instructions in any order as long as it obeys the semantics specified by the ISA when making the instruction results visible to software
 - Programmer should see the order specified by the ISA

What are Accelerators?

SFU

What are Accelerators?

Time Low ILP Low ILP High ILP Low ILP CPU Accelerator No Fetch Instructions **Branches** No Control Hardware ILP Software ILP

[Intel Harp, IBM CAPI, ARM Big-Little, BERET, DYSER, CCORE]

Accelerator Execution

Hope! Large acceleratable program regions

SFU

Why does it work?

- Applications execute in phases
- Applications follow 90-10 rule
 - 10% of code-region contributes to 90% of run time
- Creating specialization for such code-regions amortizes the overheads
 - Removing instructions from main pipeline
 - Less use of Instruction Queue, ROB, Register File
 - Effectively larger instruction window
 - Decoupled Execution
 - Concurrency between main processor and CGRA
 - Many FUs -> High Potential ILP
 - Benefits of Vectorization
 - Fewer memory access instructions
 - Explicit pipelining of CGRA

SFU

How can software help accelerators?

Challenge 1: Find acceleratable programs regions

Control not supported (need SW help)

Mem. ops not supported (self prophecy?)

Challenge 2: Identifying accelerator types

How can software define accelerators? SEU

• Challenge 3: How to compose accelerators?

SFU

Accelerator Granularity

FPGA Algorithm

GPUs Threads

Onchip-FPGA Extended Basic Blocks

Loop
Accelerators
Program loops

SIMD Instructions

Types of Accelerators?

Control regularity

Achieving ASIC Efficiencies: Getting to 500x

Need basic ops that are extremely low-energy

- Function units have overheads over raw operations
- 8-16 bit operations have energy of sub pJ
 - Function unit energy for RISC was around 5pJ

And then don't mess it up

- "No" communication energy / op
 - This includes register and memory fetch
- Merging of many simple operations into mega ops
 - Eliminate the need to store / communicate intermediate results

Domain Specific Architecture = Compiler-Driven Spatial Hardware

Dataflow Execution

- Implement dynamic scheduling
- Every component communicates via a pair of handshake signals
- The data is propagated from component to component as soon as dependencies are resolved; fire when sources are ready

Recall: Dataflow Graph

We can "easily" reverse-engineer the dataflow graph of the executing code!

Compiler Demo

Dataflow Execution Model

- Dataflow by nature has write-once semantics
- Each arc (token) represents a data value
- An arc (token) gets transformed by a dataflow node into a new arc (token)
 No persistent state...

Eliminates per instruction overheads

No fetch, decode etc.,

No expensive register reads etc.,

High performance itself leads to energy savings

No additional power-hungry structures

SFU

Hierarchical Data & Control

```
parallel_for(i = 0 until n)
  parallel_for(j = 0 until n)
  c[i][j] = a[i][j] + b[i][j];
```

Hierarchical Data + Control Dynamic Graph

Loop Unrolling to Eliminate Branches

```
SFU
```

```
for (int i = 0; i < N; i++) {
   A[i] = A[i] + B[i];
}</pre>
```

```
for (int i = 0; i < N; i+=4) {

A[i] = A[i] + B[i];
A[i+1] = A[i+1] + B[i+1];
A[i+2] = A[i+2] + B[i+2];
A[i+3] = A[i+3] + B[i+3];
}</pre>
```

- Idea: Replicate loop body multiple times within an iteration
- + Reduces loop maintenance overhead
 - Induction variable increment or loop condition test
- + Enlarges basic block (and analysis scope)
 - Enables code optimization and scheduling opportunities
- -- What if iteration count not a multiple of unroll factor? (need extra code to detect this)
- -- Increases code size

Compilation Tasks

- Identify code-regions/loops to specialize
- Construct AEPDG
 - Access PDG
 - Execute PDG
- Perform Vectorization/
 Optimizations
- Schedule
 - Execute PDG to CGRA
 - Access PDG to core

Region Identification

- Identify code-regions to specialize
 - Path Profiling
 - Utilize Loops
- Need Single-Entry / Single Exit Region

Specialization Region

- Build Program Dependence Graph
- Separate memory access from computation.
- Loads/Stores and all dependent computation are access.

- Build Program Dependence Graph
- Separate memory access from computation.
- Loads/Stores and all dependent computation are access.

Address Calc:

Loads:

Store:

- Build Program Dependence Graph
- Separate memory access from computation.
- Loads/Stores and all dependent computation are access.

- Separate memory access from computation.
- Loads/Stores and all dependent computation are access.

Vectorization

- Independent Iterations
- Must be no Store/Load Aliasing
- Memory Access: No gather/scatter
- Perform Loop Control
 - Modify trip count/peel scalar loop

Vectorization

Core

CGRA

- Similar to SIMD Techniques, loops must have:
 - Independent Iterations
 - Must be no Store/Load Aliasing
- Memory Access: No gather/scatter
- Perform Loop Control
 - Modify trip count/peel scalar loop

SFU

CGRA Vector Interface

```
struct vec {
 float x, y, z;
 float q;
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
  dot[i]=A[i].x*B[i].x
        +A[i].y*B[i].y
        +A[i].z*B[i].z;
```


CGRA Vector Interface

struct vec {

float q;

vec A[], B[];

float dot[];

float x, y, z;

- Sort nodes in data flow order
- Greedily place each node to minimize the total routes

SFU

Scheduling

CGRA

Core

- Map Execute Subregion to CGRA
 - Sort nodes in data flow order
 - Greedily place each node to minimize the total routes

- Map Execute Subregion
 - Sort nodes in data flow order
 - Greedily place each node to minimize the total routes

- Map Execute Subregion
 - Sort nodes in data flow order
 - Greedily place each node to minimize the total routes

- Sort nodes in data flow order
- Greedily place each node to minimize the total routes

Outline

1. PE Microarchitecture

- a. Parallelization
- b. Pipelining
- c. Interleaving
- d. Arithmetic

2. On-Chip Memory

- b. Basics
- c. Banking

Processing Element (PE)

Processing Element (PE)

Processing Element (PE)

Parallelization (or Vectorization)

Initiation Interval: How often I can start the computation of a new element of a loop

What is my throughput? 1 op/cycle

Initiation Interval: How often I can start the computation of a new element of a loop

Now, what is my throughput? 1 op/cycle if fully pipelined

Initiation Interval: How often I can start the computation of a new element of a loop

Space to store intermediate

Allows you to start a new op per

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Different because they have a data dependency

What is my throughput? 1 op/cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Different because they have a data dependency

Now, what is my throughput?

Initiation Interval: How often I can start the computation of a new element of a loop

What about accumulators?

Different because they have a data dependency

Now, what is my throughput? **0.5 ops/cycle – data**

0.5 ops/cycle – data dependency stalls my pipeline!

Note: II = 2

Initiation Interval: How often I can start the computation of a new element of a loop

Now, what is my throughput? 1 op/cycle Note: II = 1

Vectorization, Pipelining and Interleaving

PEs in the wild

Hall and Betz: HPIPE

Chung et al. Brainwave

Outline

1. PE Microarchitecture

- a. Parallelization
- b. Pipelining
- c. Interleaving
- d. Arithmetic

2. On-Chip Memory

- b. Basics
- c. Banking

On-Chip Memory (SRAM)

What decides the bit-width of the addresses?

- 1. The width of the data
- 2. The number of data entries
- 3. The address bus size
- 4. The data bus size

What decides the bit-width of the addresses?

- 1. The width of the data
- Has nothing to do with the number of data entries to the number of
- 3. The address bus size
- 4. The data bus size

On-Chip Memory (SRAM)

- Simple dual-port: can either read or write from one port (as in diagram)
- True dual-port: can both read and write from the same port

Use different memories for the two operands

Duplicate number of ports to read 4 elements per cycle

Duplicate number of ports to read 4 elements per cycle

What is wrong with adding many read ports to SRAM?

- 1. SRAM will be slow
- 2. SRAM will be large
- 3. SRAM will be power-hungry
- 4. Nothing is wrong, it's fine

What is wrong with adding many read ports to SRAM?

- 1. SRAM will be slow
- 2. SRAM will be large
- 3. SRAM will be power-hungry
- 4. Nothing is wrong, it's fine

Circuitry to support multiple concurrent reads to the same SRAM cells is expensive

Duplicate number of ports to read 4 elements per cycle

Multiported Memories

ASICs: Adding more ports increases area/power and delay in the SRAM circuitry

FPGAs: You need to duplicate your memories!

Rule of Thumb

"Use small fast memory together large slow memory to provide illusion of large fast memory" - John Wawrzynek and Krste Asanovic

Memory Banking

Explicitly-managed banks are common in on-chip memories

Outline

1. PE Microarchitecture

- a. Parallelization
- b. Pipelining
- c. Interleaving
- d. Arithmetic

2. On-Chip Memory

- b. Basics
- c. Banking