
CMPT 450/750: Computer Architecture
Fall 2024

Domain-Specific Architecture II
How did we get here ?

What are they ?

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2023 Alaa Alameldeen and Arrvindh Shriraman

Recall: ISA vs. Microarchitecture Level Tradeoff

• A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

• ISA: Specifies how the programmer sees the instructions to be
executed

• Programmer sees a sequential, control-flow execution order vs.
• Programmer sees a dataflow execution order

• Microarchitecture: How the underlying implementation actually
executes instructions

• Microarchitecture can execute instructions in any order as long as it obeys the
semantics specified by the ISA when making the instruction results visible to software
• Programmer should see the order specified by the ISA

What are Accelerators?

3

What are Accelerators?

CPU Accelerator

Branches

Instructions

Hardware ILP Software ILP

No Fetch

No Control

[Intel Harp, IBM CAPI, ARM Big-Little, BERET, DYSER, CCORE] 4

Accelerator Execution
• Hope! Large acceleratable program regions

CPU SIMD or Vector
Custom Logic

5

Why does it work?
• Applications execute in phases
• Applications follow 90-10 rule

• 10% of code-region contributes to 90% of run time
• Creating specialization for such code-regions amortizes the overheads
• Removing instructions from main pipeline

• Less use of Instruction Queue, ROB, Register File
• Effectively larger instruction window

• Decoupled Execution
• Concurrency between main processor and CGRA
• Many FUs -> High Potential ILP

• Benefits of Vectorization
• Fewer memory access instructions
• Explicit pipelining of CGRA

6

How can software help accelerators?
•Challenge 1: Find acceleratable programs regions

Control not supported (need SW help)

Mem. ops not supported (self prophecy?)

SIMD

• Challenge 2: Identifying accelerator types

7

How can software define accelerators?

• Challenge 3: How to compose accelerators?

8

Accelerator Granularity
FPGA Algorithm

GPUs Threads

Onchip-FPGA Extended Basic Blocks

Loop
Accelerators Program loops

SIMD Instructions
9

Types of Accelerators?
Control regularity

M
em

or
y

re
gu

la
rit

y Data Parallel region

Dynamic ILP regionIrregular

SIMD

OOO CPU

Manycore

10

Achieving ASIC Efficiencies:
Getting to 500x
Need basic ops that are extremely low-energy
• Function units have overheads over raw operations
• 8-16 bit operations have energy of sub pJ

• Function unit energy for RISC was around 5pJ

And then don’t mess it up
• “No” communication energy / op

• This includes register and memory fetch
• Merging of many simple operations into mega ops

• Eliminate the need to store / communicate intermediate results
Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA 2010

11

Domain Specific Architecture =
Compiler-Driven Spatial Hardware

12

Component 1 Component
2

data

valid

ready

Dataflow Execution
• Implement dynamic scheduling
• Every component communicates via a pair of handshake signals
• The data is propagated from component to component as soon as

dependencies are resolved; fire when sources are ready

Recall: Dataflow Graph

We can “easily” reverse-engineer the dataflow graph of the executing code!

Compiler Demo

15

Dataflow Execution Model
- Dataflow by nature has write-once semantics
- Each arc (token) represents a data value
- An arc (token) gets transformed by a dataflow node into a new arc (token)

No persistent state…
Eliminates per instruction overheads

No fetch, decode etc.,
No expensive register reads etc.,

High performance itself leads to energy savings
No additional power-hungry structures

16

Hierarchical Data & Control
parallel_for(i = 0 until n)

parallel_for(j = 0 until n)
c[i][j] = a[i][j] + b[i][j];

for_i

for_j

SyncSpawn

body

GEP A[i][j] GEP B[i][j]

Store
C[i][j]

Load A[i][j] Load B[i][j]

+

Hierarchical Data + Control Dynamic Graph

17

Loop Unrolling to Eliminate Branches

• Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
• Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
• Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect this)
-- Increases code size

18

for (int i = 0; i < N; i++){

 A[i] = A[i] + B[i];

}

for (int i = 0; i < N;){

}

for (int i = 0; i < N;){

 A[i] = A[i] + B[i];
 A[i+1] = A[i+1] + B[i+1];
 A[i+2] = A[i+2] + B[i+2];
 A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

 A[i] = A[i] + B[i];
 A[i+1] = A[i+1] + B[i+1];
 A[i+2] = A[i+2] + B[i+2];
 A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

 A[i] = A[i] + B[i];
 A[i+1] = A[i+1] + B[i+1];
 A[i+2] = A[i+2] + B[i+2];
 A[i+3] = A[i+3] + B[i+3];

}

Compilation Tasks
• Identify code-regions/loops

to specialize
• Construct AEPDG

• Access PDG
• Execute PDG

• Perform Vectorization/
Optimizations
• Schedule

• Execute PDG to CGRA
• Access PDG to core

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Identification &
Construct AEPDG

Application

19

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

Region Identification
• Identify code-regions to

specialize
• Path Profiling
• Utilize Loops

• Need Single-Entry / Single
Exit Region

Specialization
Region

20

Construct AEPDG
• Build Program Dependence Graph
• Separate memory access from

computation.
• Loads/Stores and all dependent

computation are access.

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

21

Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

a+i b+i c+i

×

+2

§ Build Program Dependence Graph
§ Separate memory access from computation.
§ Loads/Stores and all dependent computation

are access.

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

22

Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

a+i b+i c+i

×

+2

a+i b+i c+i

§ Build Program Dependence Graph
§ Separate memory access from

computation.
§ Loads/Stores and all dependent

computation are access.

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

23

Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

Execute
Subregion

§ Build Program Dependence Graph
§ Separate memory access from

computation.
§ Loads/Stores and all dependent

computation are access.

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

24

Vectorization
• Similar to SIMD Techniques, loops

must have:
– Independent Iterations
– Must be no Store/Load Aliasing

• Memory Access: No gather/scatter
• Perform Loop Control

– Modify trip count/peel scalar loop

a[i]

×

b[i]

+2

c[i]Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

25

Vectorization
• Similar to SIMD Techniques, loops

must have:
– Independent Iterations
– Must be no Store/Load Aliasing

• Memory Access: No gather/scatter
• Perform Loop Control

– Modify trip count/peel scalar loop

a[i:i+3]

×

b[i:i+3]

+2

c[i:i+3]

Data is
pipelined
through CGRA

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

26

MEM MEM

MEM MEM

MEM

MEM

+

+

+

Resource Activity
Idealistic DDDG

Acc Design Parameters:
ü Memory BW <= 2
ü 1 Adder

0. i=0 5.i++ 10. i++

11. ld a 12. ld b

13. +

14. st c

6. ld a 7. ld b

8. +

9. st c

1. ld a 2. ld b

3. +

4. st c

15. i++

16. ld a 17. ld b

18. +

19. st c

Cycle

0. i=0

5.i++

6. ld a 7. ld b

8. +

9. st c

1. ld a 2. ld b

3. +

4. st c

Scheduling 101

27

Scheduling 101

MEM MEM MEM MEM

MEM MEM MEM MEM

MEM MEM

MEM MEM

+ +

+ +

+ +

+
Resource Activity

Cycle

0. i=0 5.i++

10. i++

11. ld a 12. ld b

13. +

14. st c

7. ld b

8. +

9. st c

1. ld a 2. ld b

3. +

4. st c

15. i++

16. ld a 17. ld b

18. +

19. st c

6. ld a

Acc Design Parameters:
ü Memory BW <= 4
ü 2 Adders

Spatio-Temporal Dataflow
0. i=0 5.i++ 10. i++

11. ld a 12. ld b

13. +

14. st c

6. ld a 7. ld b

8. +

9. st c

1. ld a 2. ld b

3. +

4. st c

15. i++

16. ld a 17. ld b

18. +

19. st c

28

Scheduling 101

29

b[i+1]b[i+0]
struct vec {
 float x, y, z;
 float q;
}
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
 dot[i]=A[i].x*B[i].x
 +A[i].y*B[i].y
 +A[i].z*B[i].z;
}

× × ×

+

+

a[i] a[i+1] a[i+2]

dot[i]

b[i+2]

CGRA Vector Interface

30

S S

S

S S

S

S S

S S

S

S

S

S

S

S

CGRA Vector Interface

× × ×

a[0]
a[4]

a[1]
a[5]

a[2]
a[6]

++

How do we
get this access pattern?

Iteration 2
Iteration 1

struct vec {
 float x, y, z;
 float q;
}
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
 dot[i]=A[i].x*B[i].x
 +A[i].y*B[i].y
 +A[i].z*B[i].z;
}

Ports shown only for a[] 31

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

• Map Execute Subregion
– Sort nodes in data flow

order
– Greedily place each node to

minimize the total routes

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

32

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

• Map Execute Subregion to
CGRA
– Sort nodes in data flow order
– Greedily place each node to

minimize the total routes

Core aaaCGRA

Scheduling

Vectorization
Optimization

Execute
PDG

Access
PDG

Region Identification

Application

33

Core aaaCGRA

Scheduling

Vectorization

Execute
Code

Access
Code

Region Identification

Application

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

• Map Execute Subregion
– Sort nodes in data flow order
– Greedily place each node to

minimize the total routes

34

Core aaaCGRA

Scheduling

Vectorization

Execute
Code

Access
Code

Region Identification

Application

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

out

+2

• Map Execute Subregion
– Sort nodes in data flow order
– Greedily place each node to

minimize the total routes

35

Core aaaCGRA

Scheduling

Vectorization

Execute
Code

Access
Code

Region Identification

Application

Scheduling
• Map Execute Subregion to

CGRA
– Sort nodes in data flow order
– Greedily place each node to

minimize the total routes

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

+2

out
36

Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking

Lecture 3 - 37

Processing Element (PE)

Lecture 3 - 38

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
…

x0

w0

x0w0

0

x0w0

Processing Element (PE)

Lecture 3 - 39

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
… x0w0

x1

w1

x1w1

x0w0
+x1w1

Processing Element (PE)

Lecture 3 - 40

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
…

x0w0
+x1w1

x2

w2

x2w2

x0w0
+x1w1
+x2w2

Parallelization (or Vectorization)

Lecture 3 - 41

y = x . w = x0w0 + x1w1 + … + xnwn

w
1

x
1

w
0

x
0

w
3

x
3

w
2

x
2

?

Parallelization (or Vectorization)

Lecture 3 - 42

y = x . w = x0w0 + x1w1 + … + xnwn

w
1

x
1

w
0

x
0

w
3

x
3

w
2

x
2

Adder Tree

Parallelization (or Vectorization)

Lecture 3 - 43

y = x . w = x0w0 + x1w1 + … + xnwn

0

w
1

x
1

w
0

x
0

w
3

x
3

w
2

x
2

x0w0

x1w1

x2w2

x3w3

x0w0+x1w1+x2w2+x3w3

Parallelization (or Vectorization)

Lecture 3 - 44

y = x . w = x0w0 + x1w1 + … + xnwn

x0w0
+x1w1
+x2w2
+x3w3

w
5

x
5

w
4

x
4

w
7

x
7

w
6

x
6

x4w4

x5w5

x6w6

x7w7

x4w4+x5w5+x6w6+x7w7

Parallelization (or Vectorization)

Lecture 3 - 45
Adder Tree

Multipliers Accumulator

Pipelining

Lecture 3 - 46

Adder Tree

Multipliers Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop

Pipelining

Lecture 3 - 47

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

d

c

f

e

h

g

1 cycle

Pipelining

Lecture 3 - 48

d

c

Initiation Interval: How often I can start the computation of a new element of a loop

a
bf

e

h

g

1 cycle

Pipelining

Lecture 3 - 49

f

e

Initiation Interval: How often I can start the computation of a new element of a loop

c
dh

g
a
b

1 cycle

Pipelining

Lecture 3 - 50

h

g

Initiation Interval: How often I can start the computation of a new element of a loop

e
f

c
d

a
b

1 cycle

Pipelining

Lecture 3 - 51

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 1 cycle

What is my throughput? 1 op/cycle

Pipelining

Lecture 3 - 52

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 5 cycles

Now, what is my throughput? 1 op/cycle
 if fully pipelined

Pipelining

Lecture 3 - 53

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 5 cycles

Now, what is my throughput?
1 op/cycle
 if fully pipelined

y

x

Space to store
intermediate
results

Allows you to
start a new op per
cycle II=1

Pipelining

Lecture 3 - 54Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

Pipelining and Interleaving

Lecture 3 - 55

0

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

abcd

Pipelining and Interleaving

Lecture 3 - 56

a

a

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

bcd

Pipelining and Interleaving

Lecture 3 - 57

a+b

a+b

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

cd

Pipelining and Interleaving

Lecture 3 - 58

a+b+c

a+b+c

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

d

Pipelining and Interleaving

Lecture 3 - 59

a+b+c+d

a+b+c+d

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

What is my throughput? 1 op/cycle

Pipelining and Interleaving

Lecture 3 - 60

0

Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

bcd

Now, what is my throughput?

cycle = 1stall!

a

Pipelining and Interleaving

Lecture 3 - 61

a

Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about
accumulators?

Different because
they have a data
dependency

bcd

Now, what is my throughput?

cycle = 2

0.5 ops/cycle – data
dependency stalls my
pipeline!

Note: II = 2

Interleaving

Lecture 3 - 62
Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

Interleave operands

abc

Duplicate registers

xyz

Interleaving

Lecture 3 - 63

0

Initiation Interval: How often I can start the computation of a new element of a loop

abc

0

xyz

cycle = 1

Interleaving

Lecture 3 - 64

0

Initiation Interval: How often I can start the computation of a new element of a loop

bc

a

xyz

cycle = 2

Interleaving

Lecture 3 - 65

a

Initiation Interval: How often I can start the computation of a new element of a loop

bc

x

yz

cycle = 3

Interleaving

Lecture 3 - 66

x

Initiation Interval: How often I can start the computation of a new element of a loop

c

a+b

yz

cycle = 4

Interleaving

Lecture 3 - 67

a+b

Initiation Interval: How often I can start the computation of a new element of a loop

c

x+y

z

cycle = 5

Interleaving

Lecture 3 - 68

x+y

a+b+c

Initiation Interval: How often I can start the computation of a new element of a loop

a+b+c

z

cycle = 6

Interleaving

Lecture 3 - 69

a+b+c

x+y+z

Initiation Interval: How often I can start the computation of a new element of a loop

x+y+z

a+b+c

cycle = 7

Latency = 2 cycle

Now, what is my throughput? 1 op/cycle Note: II = 1

Vectorization, Pipelining and Interleaving

Lecture 3 - 70

Adder Tree

Multipliers Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop

Pipelining

Interleaving

PEs in the wild

Lecture 3 - 71

Hall and Betz: HPIPE

Chung et al. Brainwave

Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking

Lecture 3 - 72

On-Chip Memory (SRAM)

Lecture 3 - 73

Write Port Read Port

Address Data

0 234

1 543

2 434

3 766

… …

QUESTION

?
What decides the bit-width of the addresses?

1. The width of the data
2. The number of data entries
3. The address bus size
4. The data bus size

QUESTION

?
What decides the bit-width of the addresses?

1. The width of the data
2. The number of data entries
3. The address bus size
4. The data bus size

Has nothing to do with
data. Need b bits to
represent 2^b entries

On-Chip Memory (SRAM)

Lecture 3 - 76

Write Port Read Port

Address Data

0 234

1 543

2 434

3 766

… …

● Simple dual-port: can either
read or write from one port
(as in diagram)

● True dual-port: can both read
and write from the same port

Connect RAM to MAC

Lecture 3 - 77
Adder Tree

Multipliers Accumulator

Connect RAM to MAC

Lecture 3 - 78
Adder Tree

Multipliers

RAM

Write Read ?

Connect RAM to MAC

Lecture 3 - 79
Adder Tree

Multipliers

RAM
(Activations)

Write Read

?

RAM
(Parameters)

Write Read

Use different memories for
the two operands

Connect RAM to MAC

Lecture 3 - 80
Adder Tree

Multipliers

RAM
(Activations)

Write

?

RAM
(Parameters)

Write

Read

Duplicate number of ports to
read 4 elements per cycle

Read

Read
Read

Read
Read

Read
Read

Connect RAM to MAC

Lecture 3 - 81
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Read

Duplicate number of ports to
read 4 elements per cycle

Read

Read
Read

Read
Read

Read

Read

This is enough read bandwidth to
keep my multipliers busy

QUESTION

?
What is wrong with adding many read ports to SRAM?

1. SRAM will be slow
2. SRAM will be large
3. SRAM will be power-hungry
4. Nothing is wrong, it’s fine

QUESTION

?
What is wrong with adding many read ports to SRAM?

1. SRAM will be slow
2. SRAM will be large
3. SRAM will be power-hungry
4. Nothing is wrong, it’s fine

Circuitry to support multiple
concurrent reads to the
same SRAM cells is
expensive

Connect RAM to MAC

Lecture 3 - 84
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Read

Duplicate number of ports to
read 4 elements per cycle

Read

Read
Read

Read
Read

Read

Read

This is enough read bandwidth to
keep my multipliers busy

Connect RAM to MAC

Lecture 3 - 85
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Spatial Reuse!

Read

Read
Read

Read

Read

This is enough read bandwidth to
keep my multipliers busy

Multiported Memories

Lecture 3 - 86

RAM

Write
Read

Read

ASICs: Adding more ports increases
area/power and delay in the SRAM circuitry FPGAs: You need to duplicate your memories!

RAM

Write Read

RAM

Write Read

Write

Write

Write

NOTE: Multiple write ports are even more complicated!
Need to decide what to do when two ports access same address.

Rule of Thumb
“Use small fast memory together large slow memory to provide
illusion of large fast memory” – John Wawrzynek and Krste
Asanovic

Lecture 3 - 87

RAM RAM

Bank 1

Memory Banking

Bank 0Write

Read

Read

WriteBank 1

Bank 0

ReadWrite

Arbitration and Crossbar
Explicitly-managed banks are
common in on-chip memories

Adding more
ports will now
connect to the
crossbar

Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking

Lecture 3 - 89

