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Recall: ISA vs. Microarchitecture Level Tradeoff

• A similar tradeoff (control vs. data-driven execution) can be 
made at the microarchitecture level

• ISA: Specifies how the programmer sees the instructions to be 
executed

• Programmer sees a sequential, control-flow execution order vs.
• Programmer sees a dataflow execution order

• Microarchitecture: How the underlying implementation actually 
executes instructions 

• Microarchitecture can execute instructions in any order as long as it obeys the 
semantics specified by the ISA when making the instruction results visible to software
• Programmer should see the order specified by the ISA



What are Accelerators?
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What are Accelerators?

CPU Accelerator

Branches

Instructions

Hardware ILP Software ILP

No Fetch

No Control

[Intel Harp, IBM CAPI, ARM Big-Little, BERET, DYSER, CCORE] 4



Accelerator Execution
• Hope! Large acceleratable program regions

CPU SIMD or Vector
Custom Logic
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Why does it work?
• Applications execute in phases
• Applications follow 90-10 rule

• 10% of code-region contributes to 90% of run time
• Creating specialization for such code-regions amortizes the overheads
• Removing instructions from main pipeline

• Less use of Instruction Queue, ROB, Register File
• Effectively larger instruction window

• Decoupled Execution
• Concurrency between main processor and CGRA
• Many FUs -> High Potential ILP

• Benefits of Vectorization
• Fewer memory access instructions
• Explicit pipelining of CGRA
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How can software help accelerators?
•Challenge 1: Find acceleratable programs regions

Control not supported (need SW help)

Mem. ops not supported (self prophecy?)

SIMD

• Challenge 2: Identifying accelerator types
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How can software define accelerators?

• Challenge 3: How to compose accelerators?
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Accelerator Granularity
FPGA Algorithm

GPUs Threads

Onchip-FPGA Extended Basic Blocks

Loop 
Accelerators Program loops

SIMD Instructions
9



Types of Accelerators?
Control regularity

M
em

or
y 

re
gu

la
rit

y Data Parallel region

Dynamic ILP regionIrregular

SIMD

OOO CPU

Manycore

10



Achieving ASIC Efficiencies:
Getting to 500x
Need basic ops that are extremely low-energy
• Function units have overheads over raw operations
• 8-16 bit operations have energy of sub pJ

• Function unit energy for RISC was around 5pJ

And then don’t mess it up
• “No” communication energy / op

• This includes register and memory fetch
• Merging of many simple operations into mega ops

• Eliminate the need to store / communicate intermediate results
Understanding Sources of Inefficiency in General-Purpose Chips, Hameed et al., ISCA 2010
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Domain Specific Architecture =
Compiler-Driven Spatial Hardware
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Component 1 Component 
2

data

valid

ready

Dataflow Execution
• Implement dynamic scheduling
• Every component communicates via a pair of handshake signals
• The data is propagated from component to component as soon as 

dependencies are resolved; fire when sources are ready



Recall: Dataflow Graph 

We can “easily” reverse-engineer the dataflow graph of the executing code!



Compiler Demo
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Dataflow Execution Model
- Dataflow by nature has write-once semantics
- Each arc (token) represents a data value
- An arc (token) gets transformed by a dataflow node into a new arc (token) 

No persistent state…
Eliminates per instruction overheads

No fetch, decode etc.,
No expensive register reads etc.,

High performance itself leads to energy savings
No additional power-hungry structures 
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Hierarchical Data & Control
parallel_for(i = 0 until n)       

parallel_for(j = 0 until n)                
c[i][j] = a[i][j] + b[i][j];

for_i

for_j

SyncSpawn 

body

GEP A[i][j] GEP B[i][j]

Store
C[i][j]

Load A[i][j] Load B[i][j]

+

Hierarchical Data + Control Dynamic Graph
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Loop Unrolling to Eliminate Branches

• Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead
• Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
• Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect this)
-- Increases code size

18

for (int i = 0; i < N; i++){

  A[i] = A[i] + B[i];

}

for (int i = 0; i < N;     ){

}

for (int i = 0; i < N; ){

  A[i]   = A[i]   + B[i];
  A[i+1] = A[i+1] + B[i+1];
  A[i+2] = A[i+2] + B[i+2];
  A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

  A[i]   = A[i]   + B[i];
  A[i+1] = A[i+1] + B[i+1];
  A[i+2] = A[i+2] + B[i+2];
  A[i+3] = A[i+3] + B[i+3];

}

for (int i = 0; i < N; i+=4){

  A[i]   = A[i]   + B[i];
  A[i+1] = A[i+1] + B[i+1];
  A[i+2] = A[i+2] + B[i+2];
  A[i+3] = A[i+3] + B[i+3];

}



Compilation Tasks
• Identify code-regions/loops  

to specialize
• Construct AEPDG

• Access PDG
• Execute PDG

• Perform Vectorization/ 
Optimizations
• Schedule

• Execute PDG to CGRA
• Access PDG to core

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Identification & 
Construct AEPDG

Application
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Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application

Region Identification
• Identify code-regions to 

specialize
• Path Profiling
• Utilize Loops

• Need Single-Entry / Single 
Exit Region

Specialization
Region

20



Construct AEPDG
• Build Program Dependence Graph
• Separate memory access from 

computation.
• Loads/Stores and all dependent 

computation are access.

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

a+i b+i c+i

×

+2

§ Build Program Dependence Graph
§ Separate memory access from computation.
§ Loads/Stores and all dependent computation 

are access.

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

a+i b+i c+i

×

+2

a+i b+i c+i

§ Build Program Dependence Graph
§ Separate memory access from 

computation.
§ Loads/Stores and all dependent 

computation are access.

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Construct AEPDG

a[i]

×

b[i]

+2

c[i]

a+i b+i c+iAddress Calc:

Loads:

Store:

Execute
Subregion

§ Build Program Dependence Graph
§ Separate memory access from 

computation.
§ Loads/Stores and all dependent 

computation are access.

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Vectorization
• Similar to SIMD Techniques, loops 

must have:
– Independent Iterations
– Must be no Store/Load Aliasing

• Memory Access: No gather/scatter
• Perform Loop Control

– Modify trip count/peel scalar loop

a[i]

×

b[i]

+2

c[i]Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Vectorization
• Similar to SIMD Techniques, loops 

must have:
– Independent Iterations
– Must be no Store/Load Aliasing

• Memory Access: No gather/scatter
• Perform Loop Control

– Modify trip count/peel scalar loop

a[i:i+3]

×

b[i:i+3]

+2

c[i:i+3]

Data is 
pipelined
through CGRA

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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MEM MEM

MEM MEM

MEM

MEM

+

+

+

Resource Activity 
Idealistic DDDG

Acc Design Parameters:
ü  Memory BW <= 2
ü 1 Adder

0. i=0 5.i++ 10. i++

11. ld a 12. ld b

13.  +

14. st c

6. ld a 7. ld b

8.  +

9. st c

1. ld a 2. ld b

3.  +

4. st c

15. i++

16. ld a 17. ld b

18.  +

19. st c

Cycle

0. i=0

5.i++

6. ld a 7. ld b

8.  +

9. st c

1. ld a 2. ld b

3.  +

4. st c

Scheduling 101
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Scheduling 101

MEM MEM MEM MEM

MEM MEM MEM MEM

MEM MEM

MEM MEM

+ +

+ +

+ +

+
Resource Activity 

Cycle

0. i=0 5.i++

10. i++

11. ld a 12. ld b

13.  +

14. st c

7. ld b

8.  +

9. st c

1. ld a 2. ld b

3.  +

4. st c

15. i++

16. ld a 17. ld b

18.  +

19. st c

6. ld a

Acc Design Parameters:
ü  Memory BW <= 4
ü 2 Adders

Spatio-Temporal Dataflow
0. i=0 5.i++ 10. i++

11. ld a 12. ld b

13.  +

14. st c

6. ld a 7. ld b

8.  +

9. st c

1. ld a 2. ld b

3.  +

4. st c

15. i++

16. ld a 17. ld b

18.  +

19. st c
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Scheduling 101

29



b[i+1]b[i+0]
struct vec {
  float x, y, z;
  float q;
}
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
  dot[i]=A[i].x*B[i].x
        +A[i].y*B[i].y
        +A[i].z*B[i].z;
}

× × ×

+

+

a[i] a[i+1] a[i+2]

dot[i]

b[i+2]

CGRA Vector Interface

30



S S

S

S S

S

S S

S S

S

S

S

S

S

S

CGRA Vector Interface

× × ×

a[0]
a[4]

a[1]
a[5]

a[2]
a[6]

++

How do we
get this access pattern?

Iteration 2
Iteration 1

struct vec {
  float x, y, z;
  float q;
}
vec A[], B[];
float *a = A, *b = B;
float dot[];
for(int i =0; i < LEN; i+=1) {
  dot[i]=A[i].x*B[i].x
        +A[i].y*B[i].y
        +A[i].z*B[i].z;
}

Ports shown only for a[] 31



Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

• Map Execute Subregion 
– Sort nodes in data flow 

order
– Greedily place each node to 

minimize the total routes

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

• Map Execute Subregion to 
CGRA
– Sort nodes in data flow order
– Greedily place each node to 

minimize the total routes

Core                 aaaCGRA

Scheduling

Vectorization
Optimization

Execute 
PDG

Access 
PDG

Region Identification

Application
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Core                 aaaCGRA

Scheduling

Vectorization

Execute 
Code

Access 
Code

Region Identification

Application

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

• Map Execute Subregion
– Sort nodes in data flow order
– Greedily place each node to 

minimize the total routes
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Core                 aaaCGRA

Scheduling

Vectorization

Execute 
Code

Access 
Code

Region Identification

Application

Scheduling

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

out

+2

• Map Execute Subregion
– Sort nodes in data flow order
– Greedily place each node to 

minimize the total routes
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Core                 aaaCGRA

Scheduling

Vectorization

Execute 
Code

Access 
Code

Region Identification

Application

Scheduling
• Map Execute Subregion to 

CGRA
– Sort nodes in data flow order
– Greedily place each node to 

minimize the total routes

in1

×

in2

+2

out

×
S S

S

S

S

+
S S

+
S

×
S

in1 in2

×

+2

out
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Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking

Lecture 3 - 37



Processing Element (PE)

Lecture 3 - 38

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
…

x0

w0

x0w0

0

x0w0



Processing Element (PE)

Lecture 3 - 39

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
… x0w0

x1

w1

x1w1

x0w0 
+x1w1



Processing Element (PE)

Lecture 3 - 40

y = x . w = x0w0 + x1w1 + … + xnwn

x0
x1

xn
…

w0
w1

wn
…

x0w0 
+x1w1

x2

w2

x2w2

x0w0 
+x1w1 
+x2w2



Parallelization (or Vectorization)

Lecture 3 - 41

y = x . w = x0w0 + x1w1 + … + xnwn

w
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x
1

w
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x
0

w
3

x
3

w
2

x
2

?



Parallelization (or Vectorization)

Lecture 3 - 42

y = x . w = x0w0 + x1w1 + … + xnwn

w
1

x
1

w
0

x
0

w
3

x
3

w
2

x
2

Adder Tree



Parallelization (or Vectorization)

Lecture 3 - 43

y = x . w = x0w0 + x1w1 + … + xnwn
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Parallelization (or Vectorization)

Lecture 3 - 44

y = x . w = x0w0 + x1w1 + … + xnwn

x0w0 
+x1w1 
+x2w2 
+x3w3

w
5

x
5

w
4

x
4

w
7

x
7

w
6

x
6

x4w4

x5w5

x6w6

x7w7

x4w4+x5w5+x6w6+x7w7



Parallelization (or Vectorization)

Lecture 3 - 45
Adder Tree

Multipliers Accumulator



Pipelining

Lecture 3 - 46

Adder Tree

Multipliers Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop



Pipelining

Lecture 3 - 47

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

d

c

f

e

h

g

1 cycle



Pipelining

Lecture 3 - 48

d

c

Initiation Interval: How often I can start the computation of a new element of a loop

a
bf

e

h

g

1 cycle



Pipelining

Lecture 3 - 49

f

e

Initiation Interval: How often I can start the computation of a new element of a loop

c
dh

g
a
b

1 cycle



Pipelining

Lecture 3 - 50

h

g

Initiation Interval: How often I can start the computation of a new element of a loop

e
f

c
d

a
b

1 cycle



Pipelining

Lecture 3 - 51

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 1 cycle

What is my throughput?  1 op/cycle



Pipelining

Lecture 3 - 52

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 5 cycles

Now, what is my throughput?  1 op/cycle
 if fully pipelined



Pipelining

Lecture 3 - 53

b

a

Initiation Interval: How often I can start the computation of a new element of a loop

g
hd

c

f

e

h

g
e
f

c
d

a
b

Latency = 5 cycles

Now, what is my throughput?  
1 op/cycle
 if fully pipelined

y

x

Space to store 
intermediate 
results

Allows you to 
start a new op per 
cycle II=1 



Pipelining

Lecture 3 - 54Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency



Pipelining and Interleaving

Lecture 3 - 55

0

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

abcd



Pipelining and Interleaving

Lecture 3 - 56

a

a

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

bcd



Pipelining and Interleaving

Lecture 3 - 57

a+b

a+b

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

cd



Pipelining and Interleaving

Lecture 3 - 58

a+b+c

a+b+c

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

d



Pipelining and Interleaving

Lecture 3 - 59

a+b+c+d

a+b+c+d

latency=1 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

What is my throughput?  1 op/cycle



Pipelining and Interleaving

Lecture 3 - 60

0

Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

bcd

Now, what is my throughput?  

cycle = 1stall!

a



Pipelining and Interleaving

Lecture 3 - 61

a

Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

What about 
accumulators?

Different because 
they have a data 
dependency

bcd

Now, what is my throughput?  

cycle = 2

0.5 ops/cycle  – data 
dependency stalls my 
pipeline!

Note: II = 2



Interleaving

Lecture 3 - 62
Latency = 2 cycle

Initiation Interval: How often I can start the computation of a new element of a loop

Interleave operands

abc

Duplicate registers

xyz



Interleaving

Lecture 3 - 63

0

Initiation Interval: How often I can start the computation of a new element of a loop

abc

0

xyz

cycle = 1



Interleaving

Lecture 3 - 64

0

Initiation Interval: How often I can start the computation of a new element of a loop

bc

a

xyz

cycle = 2



Interleaving

Lecture 3 - 65

a

Initiation Interval: How often I can start the computation of a new element of a loop

bc

x

yz

cycle = 3



Interleaving

Lecture 3 - 66

x

Initiation Interval: How often I can start the computation of a new element of a loop

c

a+b

yz

cycle = 4



Interleaving

Lecture 3 - 67

a+b

Initiation Interval: How often I can start the computation of a new element of a loop

c

x+y

z

cycle = 5



Interleaving

Lecture 3 - 68

x+y

a+b+c

Initiation Interval: How often I can start the computation of a new element of a loop

a+b+c

z

cycle = 6



Interleaving

Lecture 3 - 69

a+b+c

x+y+z

Initiation Interval: How often I can start the computation of a new element of a loop

x+y+z

a+b+c

cycle = 7

Latency = 2 cycle

Now, what is my throughput?  1 op/cycle Note: II = 1



Vectorization, Pipelining and Interleaving

Lecture 3 - 70

Adder Tree

Multipliers Accumulator

Initiation Interval: How often I can start the computation of a new element of a loop

Pipelining

Interleaving



PEs in the wild

Lecture 3 - 71

Hall and Betz: HPIPE

Chung et al. Brainwave



Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking

Lecture 3 - 72



On-Chip Memory (SRAM)

Lecture 3 - 73

Write Port Read Port

Address Data

0 234

1 543

2 434

3 766

… …



QUESTION

?
What decides the bit-width of the addresses?

1. The width of the data
2. The number of data entries
3. The address bus size
4. The data bus size



QUESTION

?
What decides the bit-width of the addresses?

1. The width of the data
2. The number of data entries
3. The address bus size
4. The data bus size

Has nothing to do with 
data. Need b bits to 
represent 2^b entries



On-Chip Memory (SRAM)

Lecture 3 - 76

Write Port Read Port

Address Data

0 234

1 543

2 434

3 766

… …

● Simple dual-port: can either 
read or write from one port 
(as in diagram)

● True dual-port: can both read 
and write from the same port



Connect RAM to MAC

Lecture 3 - 77
Adder Tree

Multipliers Accumulator



Connect RAM to MAC

Lecture 3 - 78
Adder Tree

Multipliers

RAM

Write Read ?



Connect RAM to MAC

Lecture 3 - 79
Adder Tree

Multipliers

RAM
(Activations)

Write Read

?

RAM
(Parameters)

Write Read

Use different memories for 
the two operands



Connect RAM to MAC

Lecture 3 - 80
Adder Tree

Multipliers

RAM
(Activations)

Write

?

RAM
(Parameters)

Write

Read

Duplicate number of ports to 
read 4 elements per cycle

Read

Read
Read

Read
Read

Read
Read



Connect RAM to MAC

Lecture 3 - 81
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Read

Duplicate number of ports to 
read 4 elements per cycle

Read

Read
Read

Read
Read

Read

Read

This is enough read bandwidth to 
keep my multipliers busy



QUESTION

?
What is wrong with adding many read ports to SRAM?

1. SRAM will be slow
2. SRAM will be large
3. SRAM will be power-hungry
4. Nothing is wrong, it’s fine



QUESTION

?
What is wrong with adding many read ports to SRAM?

1. SRAM will be slow
2. SRAM will be large
3. SRAM will be power-hungry
4. Nothing is wrong, it’s fine

Circuitry to support multiple 
concurrent reads to the 
same SRAM cells is 
expensive



Connect RAM to MAC

Lecture 3 - 84
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Read

Duplicate number of ports to 
read 4 elements per cycle

Read

Read
Read

Read
Read

Read

Read

This is enough read bandwidth to 
keep my multipliers busy



Connect RAM to MAC

Lecture 3 - 85
Adder Tree

Multipliers

RAM
(Activations)

Write

RAM
(Parameters)

Write

Spatial Reuse!

Read

Read
Read

Read

Read

This is enough read bandwidth to 
keep my multipliers busy



Multiported Memories

Lecture 3 - 86

RAM

Write
Read

Read

ASICs: Adding more ports increases 
area/power and delay in the SRAM circuitry FPGAs: You need to duplicate your memories!

RAM

Write Read

RAM

Write Read

Write

Write

Write

NOTE: Multiple write ports are even more complicated!
Need to decide what to do when two ports access same address.



Rule of Thumb
“Use small fast memory together large slow memory to provide 
illusion of large fast memory” – John Wawrzynek and Krste 
Asanovic
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RAM RAM

Bank 1

Memory Banking

Bank 0Write

Read

Read

WriteBank 1

Bank 0

ReadWrite

Arbitration and Crossbar
Explicitly-managed banks are 
common in on-chip memories

Adding more 
ports will now 
connect to the 
crossbar



Outline
1. PE Microarchitecture

a. Parallelization
b. Pipelining
c. Interleaving
d. Arithmetic

2. On-Chip Memory
b. Basics
c. Banking
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