
CMPT 450/750: Computer Architecture
Fall 2024

Memory Consistency
& DRAM

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2021 Alaa Alameldeen and Arrvindh Shriraman

DRAM Basics

2

DRAM
• Stands for “Dynamic Random Access Memory”
• Volatile memory, used as main memory in most computer systems
• DRAM cells are single-transistor, single-capacitor cells (1T1C)

• Much higher density than 6T SRAM cells

• Data stored by charging or discharging capacitor
• Reads are destructive: Data needs to be written back to cell after read
• As capacitors lose charge over time, DRAM cells need to be “refreshed” to

restore charge
• “Dynamic” RAM requires periodic refreshing while “Static” RAM doesn’t

• Power consumption is mostly from leakage and refresh power

3

DRAM Cell

• Storing “1”: Set Wordline (WL) to high to turn on transistor, set Bitline (BL) to high to charge
capacitor

• Storing “0”: Set Wordline to high to turn on transistor, set Bitline to low to discharge capacitor

• Read cell: Set Wordline to high to turn on transistor, value is read on the Bitline (sensed using
a sense amplifier to amplify change)
• Reading disturbs charge stored on capacitor so old value needs to be restored 4

Bitline

Wordline

Compare to: SRAM Cell (6T)

• Storing “1”: Set Wordline to high to turn on access transistors, set Bitline to high and 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 to low to
store “1” at lower inverter output, “0” at upper inverter output

• Storing “0”: Set Wordline to high to turn on access transistors, set Bitline to low and 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 to high to
store “0” at lower inverter output, “1” at upper inverter output

• Read cell: Set Wordline to high to turn on access transistors, value from lower transistor is read on
Bitline and upper inverter is read on 𝑩𝒊𝒕𝒍𝒊𝒏𝒆 (Read is not destructive) 5

𝐵𝑖𝑡𝑙𝑖𝑛𝑒

Wordline

Bitline

DRAM Types
• DRAM has different types with different interfaces optimized

for different purposes
• Commodity: DDR, DDR2, DDR3, DDR4, DDR5, …
• Low power (for mobile): LPDDR1, …, LPDDR5, …
• High bandwidth (for graphics): GDDR2, …, GDDR5, …
• Low latency: eDRAM, RLDRAM, …
• 3D stacked: WIO, HBM, HMC, HBM2.0, …

• Underlying microarchitecture is fundamentally the same
• A flexible memory controller can support various DRAM types.

This complicates the memory controller
• Difficult to support all types (and upgrades)
• Analog interface is different for different DRAM types

Modern DRAM Types: Comparison to DDR3
• Bank groups

• 3D-stacked DRAM

DRAM
Type

Banks
per

Rank

Bank
Groups

3D-
Stacked

Low-
Power

DDR3 8
DDR4 16 ü

GDDR5 16 ü

HBM
High-

Bandwidth
Memory

16 ü

HMC
Hybrid Memory

Cube
256 ü

Wide I/O 4 ü ü

Wide I/O 2 8 ü ü

LPDDR3 8 ü

LPDDR4 16 ü

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

dedicated Logic Layer

DRAM
Type

Banks
per

Rank

Bank
Groups

3D-
Stacked

Low-
Power

DDR3 8
DDR4 16 ü

GDDR5 16 ü

HBM
High-

Bandwidth
Memory

16 ü

HMC
Hybrid Memory

Cube
256 ü

Wide I/O 4 ü ü

Wide I/O 2 8 ü ü

LPDDR3 8 ü

LPDDR4 16 ü

Bank Group Bank Group

Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows,
higher latency

Memory Controllers
• Controls Memory Channel

• Sends bank, row, and column addresses to memory via the address bus.
• Sends control signals, Row Address Strobe (RAS), Column Address Strobe (CAS),

Output enable, clock, and clock enable.
• Sends/receives data to/from memory via the data bus.

• Rank Selection
• Selects the active rank by enabling Chip Select (CS) signals on the chip-select bus.

• Address Decoding: Chip Select bits, Bank address bits, Row/column
addresses (based on DRAM configuration).

• Special Functions
• Error detection and correction (ECC), Prefetching for improved performance.
• Initiating parallel memory accesses

8

DRAM Control Logic Is Large

9
Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

DRAM Control Logic Is Large

10https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

DRAM Control Logic Is Large

11https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

12

13

A dual-socket system has a maximum DRAM capacity of 2x64GB = 128 GB
A single socket may have 4 memory channels each with 2 DIMMs, so capacity per socket = 4x2x8GB = 64GB
If each DIMM has

2 ranks, each rank has 8 chips, and each
chip has 4 banks, then the total
memory capacity per DIMM is
2x8x4x1Gb = 64Gb (8GB)

A x16 DIMM has 16
arrays per bank (1Gb)

A DRAM array contains 8192 rows
and 8192 columns (64Mb)

DRAM Terminology
• A system has multiple sockets each containing a chip multiprocessor (i.e., a multicore

processor) that interfaces to DRAM using one or more memory channels each controlled by a
memory controller
• Single socket systems are common in client systems, multi-socket systems are common for servers

• Each memory channel can interface with one or more DIMMs “Dual Inline Memory Module”
• A DIMM is a circuit board with chips on both sides

• Each DIMM is divided into ranks (typically 1 or 2)

• Each Rank has multiple DRAM chips which are further divided into banks. Each bank is
addressable independently of other banks

• Each bank is divided into one or more memory arrays (also called subarrays or tiles). Each
array contains rows and columns
• A “xN” DIMM has N memory arrays per bank and can access data from N columns simultaneously
• For example, a “x4” DIMM has 4 memory arrays per bank, and can read 4 bits from each bank simultaneously

14

Why?
• Why multiple ranks?

- Increases capacity per module
- Enables rank interleaving for higher performance.
- Better power management by activating only necessary ranks.

• Why multiple banks?
- Improves parallelism through bank interleaving.
- Reduces latency by hiding internal operations.
- Maximizes memory bus utilization.

15

Why are memory controllers difficult to design?

16

• Need to obey DRAM timing constraints for correctness
ØThere are many (50+) timing constraints in DRAM
Ø tWTR: Minimum number of cycles to wait before issuing a read command after a write command

is issued
Ø tRC: Minimum number of cycles between the issuing of two consecutive activate commands to

the same bank
Ø…

• Need to keep track of many resources to prevent conflicts
ØChannels, banks, ranks, data bus, address bus, row buffers

• Need to handle DRAM refresh
• Need to manage power consumption
• Need to optimize performance & QoS (in the presence of constraints)

ØReordering is not simple
ØFairness and QoS needs complicates the scheduling problem

17
Credit: Prof. Onur Mutlu

18
Credit: Prof. Onur Mutlu

Memory Controller Design Is Becoming More Difficult

19

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Memory Array
• A memory cell is at the

intersection of wordline
(horizontal) and bitline (vertical)

• Row decoder decodes row address
bits to enable a single row
wordline

• Sense amplifiers amplify signals on
bitlines

• Column decoder decodes column
address bits to select a few bits
from the data buffer

20

Memory Array

Ro
w

 D
ec

od
er

Column Decoder

Sense Amplifiers

In/Out Data Buffers (Row Buffer)

Sense AmplifiersSense AmplifiersSense Amplifiers

Memory ArrayMemory Array

Memory Bank
• Contains multiple arrays
• Figure shows a x4 bank which

contains 4 memory arrays, each
with its own set of sense amplifiers

• For memory reads, data from all
arrays are read into a row buffer,
then column decoder selects which
bits to send out. Row buffer data
needs to be written back after
reads to restore original bit values

• For memory writes, the whole row
is read first to row buffer, selected
bits (based on column address) are
modified, then whole row is
written back

21

Ro
w

 D
ec

od
er

Column Decoder

Memory ArrayMemory Array

Sense Amplifiers

In/Out Data Buffers (Row Buffer)

Row Buffer
• Each bank has a row buffer where the active row is cached following a read

• DRAM row also called a “page” (different from the page concept in virtual memory)

• Subsequent reads from the same row get data from row buffer (saving RAS and
cell access time). This is called a row buffer hit

• Since reads are destructive, row buffer data needs to be written back to row
before accessing a different row

• Row buffer size depends on number of columns and number of arrays per bank
• Example: A x8 chip with 8192 rows x 8192 columns has a row buffer size of 8x8192 bits = 8KB

• Open page vs. Closed page policy
• Open page: Keep data of active row in row buffer. Works well for high spatial locality (multiple row

buffer hits before a row buffer miss)
• Closed page: Write back row buffer data to row and precharge bitelines to save tRP time when accessing

a different row. Works well for low spatial locality

22

Row-buffer management policies

23

• Open row
• Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

• Closed row
• Close the row after an access (if no other requests already in the request buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

• Adaptive policies
• Predict whether or not the next access to the bank will be to the same row and

act accordingly

24

Steps for a Memory Read Operation
1. CPU request misses all cache levels, is sent to memory controller (MC)

2. Request is queued at MC until all prior and higher priority requests are handled

3. MC decodes address into chip select, bank, row and column address bits and sent over to DRAM

4. All bitlines in a bank are precharged (i.e., set to a level in the middle between logic 0 and 1).
Row Precharge Time is referred to as tRP.

5. Appropriate row is activated: Chip select and bank address bits enable bank, RAS signals row
address bits are ready, row decoder enables wordline for selected row. This switches on
transistors so stored value in capacitors can alter charge of precharged bitlines. Row needs to be
active for at least tRAS to ensure data is read and restored before precharging another row.

6. Data from all bitlines within selected row are sent to sense amplifiers which amplify the signal
read from memory cells and store data into row buffer. Column address can be sent to row
buffer after time tRCD (row-address to column-address delay)

7. MC reads column: Chip select and bank address bits enable bank, CAS signals column address
bits are ready, column decoder selects appropriate column, all bits from that column across
different arrays are connected to output drivers which drive data bus. CL is CAS latency: time
between sending a column address and receiving data 25

Refresh Operations
• DRAM cells lose charge over time (leakage) so they need to be recharged before bits flip

• If a row is read or written via normal memory controller requests, then it is automatically
refreshed
• However, no guarantee that a specific row will be read/written before bits flip

• To avoid errors due to charge loss, rows are periodically refreshed
• All rows have to be refreshed within a refresh cycle
• Time between refreshes (tREFI) is based on time to flip weakest cells

• Refreshes usually initiated by the memory controller

• Refresh overhead:
• Latency: During refresh operations to a bank, no reads or writes can be performed to that bank. tRFC is delay between a

REFRESH command and next valid command to same bank.
• Power and Energy: Refresh power is a significant fraction of DRAM power/energy consumption

• Self-refresh mode is performed by DRAM in low power mode when CPU and memory controller
are turned off

26

DRAM Power Modes

27

• DRAM chips have power modes
• Idea: When not accessing a chip power it

down

• Power states
• Active (highest power)
• All banks idle
• Power-down
• Self-refresh (lowest power)

• Tradeoff: State transitions incur latency
during which the chip cannot be accessed

Other Memory Technologies: Embedded DRAM

28

• eDRAM is a DRAM integrated on the same die
or multi-chip module (MCM) as the CPU

• Uses a logic process instead of a DRAM
process

• Typically used as a large L4 cache

• Compared to DRAM:
• Pros: Faster, higher bandwidth
• Cons: More expensive, has lower capacity and requires

more frequent refreshes

• Compared to SRAM:
• Pros: Denser (larger capacity) and lower cost/bit
• Cost: Slower and requires additional cost to manufacture

eDRAM:
• DRAM on a logic process

Faster, higher bandwidth than DRAM
Denser than SRAM

CPU CPU CPU CPU

L3 Cache (SRAM)

eDRAM

Other Memory Technologies: Stacked DRAM

29

• Multi-layer Stack of DRAM chips

• Could be above/below CPU/GPU die or stacked
on a separate die

• Example: High-Bandwidth Memory (HBM)

• Pros: higher bandwidth, potentially faster than
DRAM

• Single HBM3 stack can have bandwidth higher than
800GB/sec

• Cons: More expensive (higher cost/bit), smaller
capacity

• Could be used with DRAM or other technologies
as part of a multi-level memory system

Stacked DRAM:
• High-Bandwidth Memory (HBM)
• Hybrid Memory Cube (HMC)

Faster, higher bandwidth than DRAM

Other Memory: Non-Volatile Memory

30

• Typically denser than DRAM

• Non-volatile technology: Stored values
persist past power shutdown

• Example: 3D Xpoint (3DXP), Phase Change
Memory (PCM)

• Pros: higher capacity vs. DRAM, non-volatile
• Can be used as a persistent memory (PMEM)

• Cons: Slower than DRAM, limited bandwidth,
limited write endurance

• Could also be used with DRAM or other
technologies as part of a multi-level memory
system

Non-Volatile Memory (NVM):
• 3D Xpoint
• Phase-Change Memory (PCM)

Large capacity, non-volatile but slower

3D Xpoint
(Intel, Micron)

FAST Memory

Heterogeneous Memory Systems

31

CPU

SLOW Memory
• Memory outside CPU/GPU die can have multiple

levels of heterogeneous memory technologies
• Different types of memory co-exist:

ØFast (higher BW and/or lower latency)
ØSlow (lower BW and/or higher latency)

• Systems perform better with higher hit rates in
fast memory

• Fast memory could be organized as:
ØA cache for slow memory; OR
ØPart of a flat memory address space

• When does cache make sense vs. flat address
space?

32

Reading Assignments
• ARCH Chapter 5.6, 5.7 (Read)

• S. Adve and K. Gharachorloo, “Shared Memory Consistency
Models: A Tutorial,” Technical Report, 1995 (Read)

• Jacob, Ng and Wang, “Memory Systems: Cache, DRAM, Disk”
Chapter 7 (Read), Chapter 8 (Skim). Access from SFU Library.

Memory Consistency

33

Memory consistency is Hard
• Memory consistency models are difficult to understand
 – Knowing when and how to use memory barriers in your
programs takes a long time to master

• I read the long version of this paper about once a year –
Started in graduate architecture, still mastering this

• Even if you can’t master this material, it is worth conveying
some intuitions and getting you started on the path
 – Multi-core programming is increasingly common

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?
• “World”?
• Nothing?
• “Hello World”?

Thread2

B = 1
if (A == 0)

print “World”;

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?
• “World”?
• Nothing?
• “Hello World”?

Thread2

B = 1
if (A == 0)

print “World”;

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?

Thread2

B = 1
if (A == 0)

print “World”;

A = 1

if (B == 0)

print “Hello”;
B = 1

if (A == 0)

print “World”;

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?
• ”World”?

Thread2

B = 1
if (A == 0)

print “World”;

A = 1

if (B == 0)

print “Hello”;

B = 1

if (A == 0)

print “World”;

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?
• ”World”?
• Nothing

Thread2

B = 1
if (A == 0)

print “World”;

if (B == 0)

print “Hello”;

B = 1

A = 1

if (A == 0)

print “World”;

Multithreadedprograms
• InitiallyA=B =0

• Thread 1
• A = 1
• if (B == 0)
• print “Hello”;

• What can be printed?
• “Hello”?
• ”World”?
• Hello World

Thread2

B = 1
if (A == 0)

print “World”;

Thingsthatshouldn’thappen

This programshould neverprint“HelloWorld”.

Thread1

A = 1
if (B == 0)

print “Hello”;

Thread2

B = 1
if (A == 0)

print “World”;

A“happens-before”graphshows theorder in whicheventsmust
execute to get adesiredoutcome.
• Ifthere’s a cycle in thegraph, anoutcome is impossible—an

event must happenbefore itself!

Memory Consistency Models
• Formal specification of how the memory system will appear to the

programmer
• Places restrictions on the value that can be returned by a “read” operation in

a shared memory program execution
Ø“Read” should return the value of the last “Write” to the same location
ØFor uniprocessor, “last” is defined by program order
ØFor a multiprocessor, not clear how to define “last write”

• Example (textbook)

43

Why Memory Consistency Models are Important
• Programmability

ØSome memory consistency models are easier to reason about than others
ØWith no clear definition of memory consistency, programmers have to be conservative

with shared data

• Performance
ØStrict consistency models don’t allow many performance optimizations in hardware and

system software
ØConservative programming strategies may inhibit parallelism

• Portability
ØPrograms written for one architecture may not work on another architecture with a

different memory consistency model

44

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Memory
A = 0
B = 0

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed
Memory
A = 0
B = 0

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1 Memory
A = 1
B = 0

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1 Memory
A = 1
B = 0

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

B = 1

Memory
A = 1
B = 1

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

B = 1

Memory
A = 1
B = 1

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

B = 1

r1 = A (= 1)

Memory
A = 1
B = 1

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

B = 1

r1 = A (= 1)

Memory
A = 1
B = 1

Sequentialconsistency
Canbe seenasa “switch” runningone instruction at a time

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

B = 1

r1 = A (= 1)

r0 = B (= 1)

Memory
A = 1
B = 1

Sequentialconsistency
Two invariants:
• All operations executed in somesequential order
• Each thread’s operationshappen inprogramorder

Saysnothingabout which order all operations happen in
• Any interleavingof threads is allowed

• Due to Leslie Lamport in 1979

Theproblemwith SC

Memory

Core1
A = 1
r0 = B

Core2
B = 1
r1 = A

Executed

A = 1

These two instructions
don’t conflict—there’s no
need to wait for the first

one to finish!

And writingto memory
takes forever*
*about 100cycles=30ns

Optimization:Storebuffers
• Storewrites in a local buffer and thenproceed to next instruction

immediately
• Thecachewill pull writes out of the storebufferwhen it’s ready

Core1
Thread1

A = 1
r0 = B

Store buffer

Caches
A = 0
B = 0

Memory
A = 0
B = 0

Optimization:Storebuffers
• Storewrites in a local buffer and thenproceed to next instruction

immediately
• Thecachewill pull writes out of the storebufferwhen it’s ready

Core1
Thread1

C = 1
r0 = C

Store buffer

Caches
C = 0

Memory
C = 0

Storebufferschangememorybehavior

Core1 Core2 Thread2

B = 1
r1 = A

(1)
(2)

(3)
(4)

Thread1

A = 1
r0 = BStore buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

SC: No!

Storebufferschangememorybehavior

Core1 Core2 Thread1

A = 1
r0 = B

Thread2

B = 1
r1 = A

(1)
(2)

(3)
(4)Store buffer Store buffer

Memory
A = 0
B = 0

Can r0 = 0 and r1 = 0?

SC:No! Store buffers:Yes!
Executed
r0 = B (= 0)

r1 = A (= 0)

A = 1

B = 1

So,whousesstorebuffers?
EverymodernCPU!
• x86
• ARM
• PowerPC
• …

100

80

60

40

20

0

MP3D LU PTHOR

No
rm
al
ize
d
Ex
ec
ut
io
n
Ti
m
e

SC

Write Buffer

Performanceevaluationofmemoryconsistencymodels forshared-memorymultiprocessors. Gharachorloo,
Gupta, Hennessy. ASPLOS 1991.

Store Buffer

Implementing Sequential Consistency (2)

61

Adve and Gharachorloo, Figure 5b: Overlapping Writes

Allowing P1’s writes to local memories to finish faster
violates SC, leading to incorrect read order at P2

Implementing Sequential Consistency (3)

62

Adve and Gharachorloo, Figure 5c: Non-blocking Reads

Allowing P2’s read from local memory to finish faster
violates SC, leading to P2 reading new value of Head but
old value of data

Implementing Sequential Consistency (4)
• Architectures with caches

ØCache coherence represents the mechanism that propagates a newly written value to
the cached copies of the modified location

ØMemory consistency model is the policy that places an early and late bound on when a
new value can be propagated to any given processor

ØHow do we detect the completion of a write operation?

66

Implementing SC: Write Atomicity (1)
• Writes to the same location need to be serialized

67

Adve and Gharachorloo, Figure 6

• Assuming a write update protocol and a general interconnection network, writes to A by P1 and P2 can
reach P3 and P4 in different orders, violating the write atomicity condition of SC

• Can be avoided if we guarantee writes to the same location are serialized (e.g,, using write-invalidate
cache coherence protocol)

Relaxed Memory Models (1)
• Can relax either:

ØProgram order requirement
ØWrite atomicity requirement

• Relaxing program order requirement
ØWrite to a following read
ØTwo writes
ØRead to a following read or write

• Relaxing write atomicity requirement
ØCan a read return the value of another processor’s write before the write is visible to all

processors?
• Relaxing both requirements

ØCan a processor read the value of its own previous write before it is made visible to all other
processors?

69

Adve and Gharachorloo, Figure 7

Relaxed Memory Models (2)

70

Adve and Gharachorloo, Figure 8

Weak Ordering (WO)
• Classifies memory operations into two categories

ØData operations
ØSynchronization operations

• To enforce program order between two operations, programmer needs to
specify synchronization operation

• Intuition: reordering data operations in between synchronization operations
would not affect correctness

• Writes appear atomic to programmer

76

But Can Programs Live with Weaker Memory?
• “Correctness”: same results as sequential consistency
• Most programs don’t require strict ordering (all of the time) for “correctness”

• But how do we know when a program will behave correctly?

Program Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Sufficient Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Identifying Races and Synchronization

78

• Two accesses conflict if:
– (i) access same location, and (ii) at least one is a wrrite

• Order accesses by:
– program order (po)
– dependence order (do): op1 --> op2
 if op2 reads op1

• Data Race:
– two conflicting accesses on different processors
– not ordered by intervening accesses

• Properly Synchronized Programs:
– all synchronizations are explicitly identified
– all data accesses are ordered through synchronization

MFENCE

• It simply stalls the thread that performs the MFENCE until write buffer empty

…
READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

MFENCE

MFENCE 41

31

51

21

Thread 2

11

51

11

41

31

21

31

21

11

11

21

31

41

51

Thread 0 Thread 1 Thread 3

Time

41

51

MFENCE operations create partial orderings
• that are observable across threads

READ/WRITE

• An MFENCE operation enforces the ordering seen on the previous slide:
– does not begin until all prior reads & writes from that thread have completed
– no subsequent read or write from that thread can start until after it finishes

Optimizations for Synchronized Programs

80

• Intuition: many parallel programs have mixtures of “private” and “public” parts*

– the “private” parts must be protected by synchronization (e.g., locks)
– can we take advantage of synchronization to improve performance?

READ/WRITE
…READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

SYNCH

SYNCH

Example:

Grab a lock

Insert node into data structure
• Essentially a “private” activity; reordering is ok

Release the lock
• Now we make it “public” to the other nodes

*Caveat: shared data is in fact always visible to other threads.

Optimizations for Synchronized Programs

81

READ/WRITE
…

READ/WRITE

READ/WRITE

SYNCH

… READ/WRITE
“Weak Ordering” (WO)

• properly synchronized programs should yield the same result as on an SC machine

Between synchronization operations:
• we can allow reordering of memory operations
• (as long as intra-thread dependences are preserved)

Just before and just after synchronization operations:
• thread must wait for all prior operations to complete

Overly
Conservative

Exploiting Asymmetry in Synchronization
• Lock operation: only gains (“acquires”) permission to access data
• Unlock operation: only gives away (“releases”) permission to access data

…
READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

LOCK

UNLOCK

Weak Ordering (WO)

1

2

3
Release Consistency (RC)

Make sure writes completed before exit critical section
Make sure don’t read/write shared state until lock acquired

READ/WRITE
…

READ/WRITE

ACQUIRE

RELEASE

READ/WRITE
…

READ/WRITE 1
2

READ/WRITE
…

READ/WRITE
3

READ/WRITE

Release Consistency (RC)
• Classifies memory operations into:

ØOrdinary operations
ØSpecial operations

qSync: Synchronization operations
qNsync: asynchronous data operations, not used for synchronization

• Sync operations are either
ØAcquire: read operation to gain access to a set of shared locations (e.g., lock, spin for a flag to

be set)
ØRelease: write operation to grant permission for accessing set of shared location (e.g., unlock,

set flag)
• Different RC Models provide different program orders among special operations

ØRCsc: acquire → all, all → release, special → special
ØRCpc: RCsc: acquire → all, all → release, special → special except for special write followed by

a special read

83

