
CMPT 450/750: Computer Architecture
Fall 2024

Multithreading

Alaa Alameldeen & Arrvindh Shriraman

© Copyright 2021 Alaa Alameldeen and Arrvindh Shriraman

Multithreading: Basics
• Thread

• Instruction stream with state (registers and memory)
• Register state is also called “thread context”

• Threads could be part of the same process
(program) or from different programs
• Threads in the same program share the same address space (shared

memory model)

• Traditionally, the processor keeps track of the
context of a single thread
• Multitasking: When a new thread needs to be

executed, old thread’s context in hardware written
back to memory and new thread’s context loaded

2

Hardware Multithreading
• General idea: Have multiple thread contexts in a

single processor
• When the hardware executes from those hardware contexts

determines the granularity of multithreading

• Why?
• To tolerate latency (initial motivation)

• Latency of memory operations, dependent instructions, branch
resolution

• By utilizing processing resources more efficiently
• To improve system throughput

• By exploiting thread-level parallelism
• By improving superscalar/OoO processor utilization

• To reduce context switch penalty
3

Hardware Multithreading
• Benefit

+ Latency tolerance
+ Better hardware utilization (when?)
+ Reduced context switch penalty

• Cost
- Requires multiple thread contexts to be implemented in

hardware (area, power, latency cost)
- Usually reduced single-thread performance
 - Resource sharing, contention
 - Switching penalty (can be reduced with additional hardware)

4

Simultaneous Multithreading

5

Why Multithreading?
• ILP limitations of superscalar processors

ØMany control, data and functional dependences

• Wide superscalar pipelines cannot use all
issue slots
ØVertical Waste: All issue slots in a cycle are not used
ØHorizontal waste: Some issue slots in a cycle are not

used

• To increase throughput, we need to use
thread-level parallelism (TLP)

6

Issue Slots

Cy
cl

es

Multithreaded Categories

Tim
e (

pr
oc

es
so

r c
yc

le) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

8

Simultaneous Multi-threading

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BRCCCycle
One thread, 8 units

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BRCCCycle
Two threads, 8 units

Multithreaded/Multicore Processors

• Many approaches for executing multiple threads on a single die
ØMix-and-match: IBM Power8 CMP+SMT

MT
Approach

Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system
context switch

Fine-grained Everything but register file and control
logic/state

Switch every cycle

Coarse-
grained

Everything but I-fetch buffers, register file
and con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers,
return address stack, architected register
file, control logic/state, reorder buffer,
store queue, etc.

All contexts concurrently active;
no switching

CMT Various core components (e.g. FPU),
secondary cache, system interconnect

All contexts concurrently active;
no switching

CMP Secondary cache, system interconnect All contexts concurrently active;
no switching

9

Mikko Lipasti-University of Wisconsin

SMT Microarchitecture [Emer,’01]

SMT Microarchitecture [Emer,’01]

11

Multithreaded Programs
• Thread vs. process

ØThreads in a process share virtual address space
ØProcesses have different virtual address spaces

• Design Issues:
ØEach thread needs its own set of registers (register address space is not

shared)
ØThreads cause interference in instruction and data caches
ØPrograms need to be parallelizable into multiple threads
ØSynchronization is necessary, may cause some threads to be idle (OS idle loop)

12

SMT Microarchitecture [Emer,’01]

13

3/2/2011
cs252-S11, Lecture 12 14

Power 4
Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

Superscalar Processors: Where Have Cycles Gone?
• Issue slots are

utilized only 19%
of the time

• Many causes for
issue stall
cycles (Figure)

• Need aggressive
latency-hiding
techniques

17

Tullsen et al., Figure 2

Commercial Multithreaded Workloads: Lost Cycles
• “Ready, not chosen”:

Threads could issue
but other threads use
all issue resources

• “Not Ready”: Cannot
Issue

18

ARCH Figure 3.31

Commercial Workloads: Where Have Cycles Gone?

• Figure shows
percentage of cycles
lost for different
reasons

• “Other” is mainly
“store buffer full” in
TPC-C, “atomic
instructions” in jbb,
both in SPECweb

19

ARCH Figure 3.32

Simultaneous Multithreading Models
• SM: Full Simultaneous Issue

ØCompletely flexible model: All threads compete for each of the issue slots every
cycle

ØDisadvantage: Hardware complexity
• SM: Single Issue

ØEach thread can issue at most one instruction every cycle
• SM: Dual Issue and SM: Four Issue

ØEach thread can issue at most two (Dual Issue) or four (Four issue) instructions
every cycle

• SM: Limited Connection
ØEach thread is connected to exactly one of each type of functional unit
ØLimits scheduling choices for functional units to reduce hardware complexity

20

SMT Performance: Java and PARSEC benchmarks
• Figure shows speedup

and energy efficiency
(high is better) for Intel
Core i7
ØUses hyperthreading:

similar to 2-way SMT

• Speedup averages
1.28x for Java and
1.31x for PARSEC

• Energy Efficiency
average 0.99 for Java
and 1.07 for PARSEC

21
ARCH Figure 3.35

SMT vs. Multiprocessors Discussion
• SMT outperforms multiprocessing for all scenarios considered.

Why?
• Advantages of SMT vs. Multicore

ØArea efficiency
ØReducing number of threads (i.e., threads becoming idle) allows other threads

to progress faster in SMT processors, no change in MP
ØGranularity and flexibility of design: Unit of design is a whole processor for MP,

more flexible in SMT

• Disadvantages?

23

SMT Performance Side Effects
• Lowest priority thread runs much slower than high priority thread
• Highest priority thread sees degraded performance as more

threads are added
ØSharing of resources (e.g., caches, TLB, BP tables)

• Caches are more strained by an MT workload vs. ST workload due
to a decrease in locality

24

SMT Design Issues
• Hardware complexity

ØScheduling hardware requirements increase with threads
ØRegister file size increase
ØMay need more ports

• Pipeline depth
ØBigger structures (e.g., register file) require longer access time
ØLeads to increasing the number of pipeline stages

• Issue policy
ØFixed thread priority
ØRound-Robin priority
ØICOUNT
ØOthers?

25

Helper Threading

26

Helper Threading for Prefetching
• Idea: Pre-execute a piece of the (pruned) program solely for

prefetching data
• Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can be considered a “thread”

n Speculative thread can be executed
• On a separate processor/core
• On a separate hardware thread context
• On the same thread context in idle cycles (during cache misses)

Generalized Thread-Based Pre-Execution
• Dubois and Song, “Assisted

Execution,” USC Tech Report 1998.

• Chappell et al., “Simultaneous
Subordinate Microthreading (SSMT),”
ISCA 1999.

• Zilles and Sohi, “Execution-based
Prediction Using Speculative Slices”,
ISCA 2001.

Improve Performance

26
.1
1.
18

M
ic
ha
el
Ke
lle
r

A-Stream runs highly reduced
R-stream
finishes close
behind

Full Program

Information
about control
and dataflow

Performance gain
R-stream executes highly optimized

29

Improve Fault Tolerance

26
.1
1.
18

M
ic
ha
el
Ke
lle
r

Shortened A-Stream with
reduced instruction set

R-stream with full instruction set

Information about
computations and
results

If R-Stream detects a mismatch between results we can recover

recover the corrupted architectural
state of the A-stream

30

Thread-Based Pre-Execution Issues
• Where to execute the precomputation thread?

1. Core (least contention with main thread)
2. SMT thread on the same core (more contention)
3. Same core, same context, when the main thread is stalled

• When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

• How far ahead?
• Too early: prefetch might not be needed
• Too late: prefetch might not be timely

2. When the main thread is stalled

• When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

31

Slipstream Processors
• Goal: use multiple hardware contexts to speed up single

thread execution (implicitly parallelize the program)
• Idea: Divide program execution into two threads:

• Advanced thread executes a reduced instruction stream, speculatively
• Redundant thread uses results, prefetches, predictions generated by advanced

thread and ensures correctness

• Benefit: Execution time of the overall program reduces
• Core idea is similar to many thread-level speculation

approaches, except with a reduced instruction stream

• Sundaramoorthy et al., “Slipstream Processors: Improving
both Performance and Fault Tolerance,” ASPLOS 2000.

32

Slipstream Idea and Possible Hardware

33

!

"#ABC!DE))#*!

+I#-E.L01!
20*#!
P#0*4#*!
DE))#*!

R16.*E-.L01!
2B-7#!

D*B1-7!
8*#4L-.0*!

!
!
!
!
!
9:!
"B.B!
2B-7#!

+I#-E.L01!
20*#!

P#0*4#*!
DE))#*!

R16.*E-.L01!
2B-7#!

D*B1-7!
8*#4L-.0*!

!
!
!
!
!
9:!
"B.B!
2B-7#!

RP;8*#4L-.0*!

RP;"#.#-.0*!

<;6.*#B=! P;6.*#B=!

!
9>!2B-7#!?P;6.*#B=!6.B.#!01AC@!

Removable Instructions

13

Distinguish three categories of ineffectual computation
1. Unreferenced writes are values overwritten before use

write x = 2 write x = 4 read x

2. Writes that do not modify the state of location

write x = 2 write x = 2 read x

3. Dynamic branches whose outcomes are consistently predicted correctly.

branch 2
origin

branch 1
branch 3

branch 4

Speculative Multithreading

35

Speculative Parallelization Concepts
• Idea: Execute threads unsafely in parallel

• Threads can be from a sequential or parallel application

• Hardware or software monitors for data dependence violations

• If data dependence ordering is violated
• Offending thread is squashed and restarted

• If data dependences are not violated
• Thread commits
• If threads are from a sequential order, the sequential order needs to be preserved à

threads commit one by one and in order
36

Example Tasks

37

Parallel Programs vs. Thread Speculation

38

Attributes Multicore Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task
control independence

Required Not required

Software knowledge of inter-task
data dependences

Required Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory
Through messages

Through registers and
memory

Register space Distinct for PEs Common for PEs

Memory space Common
Distinct

Common for PEs

Big Idea

39

• Start with a static representation of a
program

• Sequence through the program to generate
the dynamic stream of operations
• Use single PC to walk through

static representation

• Execute operations in dynamic stream as
quickly as is possible

Speed up this entire process

PROGRAM

A

B

C

What is a task?

40

• A portion of the static representation
resulting in a contiguous portion of the
dynamic instruction stream

- part of a basic block
- basic block
- multiple basic blocks
- loop iteration
- entire loop
- procedure call, etc

PROGRAM

Big Idea

41

predict predict

A
B C

PROGRAM

A

B

C

Big Idea

42

REG

P.U. P.U. P.U.
REG REG REG

P.U.

PIPE
LINE

PIPE
LINE

PIPE
LINE

PIPE
LINE

SEQUENCER

MEMORY DISAMBIGUATION
CACHE HIERARCHY

• Processing Units (PUs) execute tasks

• Each PU has a processing element,
instruction cache and a register file

• Sequencer assigns tasks to PUs

• After task is assigned, PU fetches
instructions and executes task until
completion

• May need to use multi-version caches to
store multiple versions of same value
simultaneously

• At a high level, Multiscalar could also
use multiple threads in an SMT
processor

43

• Processor consists of several processing cores (or units)
• each core executes a task

• each core is equivalent to a typical datapath

• Execution cores are connected in a logical order (queue)
• hardware pointers to head and tail

• share logical register and memory address spaces

• Active cores (ones between head and tail)
• contain tasks in logical (sequential) order

• together constitute a large dynamic window

Handling Inter-Task Dependences
• Control dependences

• Predict
• Squash subsequent tasks on inter-task misprediction

• Intra-task mispredictions do not need to cause flushing of later tasks

• Data dependences
• Register file: mask bits and forwarding (stall until available)
• Memory: address resolution buffer (speculative load, squash on violation)

44

Multiscalar Programs
• Each task has to specify which registers it creates, how to forward register values, when the

task ends, and which tasks follow it
Ø Information stored in Task Descriptor

• Create Mask
Ø Register values that a task might produce
Ø Conservative definition including all registers that could be produced (even if they are not produced in a particular

instance of the task)

• Forward Bits
Ø One bit associated with every instruction in task
Ø Indicates whether destination register value is the last write by current task to that register, should be forwarded

to subsequent tasks

• Stop Bits
Ø Needs to check if conditions for stopping current task are satisfied at current instruction then task is exited

• Release Instructions
Ø Indicates no further updates to register, can be forwarded to subsequent tasks

45

Forwarding Registers Between Tasks
• Compiler must identify the last instance of write to a register

within a task
• Opcodes that write a register have additional forward bit, indicating the

instance should be forwarded
• Stop bits - indicate end of task
• Release instruction

• tells PE value not needed.

46

Address Resolution Buffer
• Multiscalar issues loads to ARB/D-cache as soon as address is

computed
• ARB is organized like a cache, maintaining state for all outstanding

load/store addresses
• Franklin and Sohi, “ARB: A hardware mechanism for dynamic

reordering of memory references,” IEEE TC 1996.

• An ARB entry:

47

• Loads
• ARB miss: data comes from D-cache (no prior stores yet)
• ARB hit: get most recent data to the load, which may be from D-cache, or

nearest prior task with S=1

• Stores
• ARB buffers speculative stores
• If store from an older task finds a load from a younger task to the same

address à misspeculation detected
• When a task commits, commit all of the task’s stores into the D-cache

48

Address Resolution Buffer

SpMT/TLS Implementation Cost
• When speculative tasks violate sequential order, they need to be squashed

ØConsumes power without gaining performance

• Need to support multi-version caches for store values written by speculative tasks
ØValues can only be written to memory from non-speculative tasks
ØAdds complexity to cache design

• Dependence checking across tasks may require complex hardware

• Requires compiler support: Program analysis, creating task descriptors, adding code for
dependence checking

• Adds more instructions or prefix bits to existing instructions
Ø Increases program size
ØCode may not be portable across processor implementations

• Some optimizations have been proposed to reduce energy overhead and hardware cost
49

VLIW Architectures

50

VLIW (Very Long Instruction Word)
• A very long instruction word consists of multiple

independent instructions packed together by the compiler
ØPacked instructions can be logically unrelated (contrast with SIMD)

• Idea: Compiler finds independent instructions and
statically schedules (i.e. packs/bundles) them into a
single VLIW instruction

• Traditional Characteristics
ØMultiple functional units
ØEach instruction in a bundle executed in lock step
ØInstructions in a bundle statically aligned to be directly fed into the

functional units
51

VLIW Concept

• Fisher, “Very Long Instruction Word architectures
and the ELI-512,” ISCA 1983.
ØELI: Enormously longword instructions (512 bits)

52

VLIW Philosophy
• Philosophy similar to RISC (simple instructions and hardware)

ØExcept multiple instructions in parallel

• RISC (John Cocke, 1970s, IBM 801 minicomputer)
ØCompiler does the hard work to translate high-level language code to simple instructions (John

Cocke: control signals)
qAnd, to reorder simple instructions for high performance

ØHardware does little translation/decoding à very simple

• VLIW (Fisher, ISCA 1983)
ØCompiler does the hard work to find instruction level parallelism
ØHardware stays as simple and streamlined as possible

qExecutes each instruction in a bundle in lock step
qSimple à higher frequency, easier to design

53

Commercial VLIW Machines
• Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
• Cydrome Cydra 5, Bob Rau
• Transmeta Crusoe: x86 binary-translated into internal VLIW
• TI C6000, Trimedia, STMicro (DSP & embedded processors)

ØMost successful commercially

• Intel IA-64
ØNot fully VLIW, but based on VLIW principles
ØEPIC (Explicitly Parallel Instruction Computing)
ØInstruction bundles can have dependent instructions
ØA few bits in the instruction format specify explicitly which instructions in the bundle

are dependent on which other ones

54

VLIW Tradeoffs
• Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à simple hardware for multiple

instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to different functional units à simple

hardware

• Disadvantages
-- Compiler needs to find N independent operations
 -- If it cannot, inserts NOPs in a VLIW instruction
 -- Parallelism loss AND code size increase
-- Recompilation required when execution width (N), instruction latencies, functional

units change (Unlike superscalar processing)
-- Lockstep execution causes independent operations to stall
 -- No instruction can progress until the longest-latency instruction completes

55

VLIW Issues: Dynamic Execution
• Compiler cannot anticipate dynamic events or account for variable

execution latencies
1. Cache misses

ØStatic scheduling assumes cache hits
ØVLIW requires blocking caches so a cache miss blocks issue for future instruction

words, degrading performance
2. Memory disambiguation

ØPointer references are assumed to be dependent, couldn’t belong to same instruction
word

ØAdds false dependences between loads and stores
3. Branch outcomes

ØBranch mispredictions lead to executing compensation code

56

Comparing Multiple-Issue Processor Designs

57ARCH Figure 3.15

Static vs Dynamic Scheduling
• Arguments against dynamic scheduling:

Ø requires complex structures to identify independent
 instructions (scoreboards, issue queue)

§ high power consumption
§ low clock speed
§ the compiler can “easily” compute instruction latencies

 and dependences – complex software is always preferred to complex hardware (?)

• Instruction-level parallelism: overlap among instructions: pipelining or
multiple instruction execution

• What determines the degree of ILP?
Ø dependences: property of the program
Ø hazards: property of the pipeline

58

59

Loop Scheduling

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy
 to analyze and optimize

Assumptions

60

• Load: 2-cycles (1 cycle stall for consumer)
• FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall
 if the consumer is a store)
• One branch delay slot
• Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the
 consumer is a branch)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

Loop Example

61

for (i=1000; i>0; i--)
 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
 ADD.D F4, F0, F2 ; add scalar
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 BNE R1, R2, Loop ; branch if R1 != R2
 NOP

Source code

Assembly code

Loop Example

62

for (i=1000; i>0; i--)
 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
 ADD.D F4, F0, F2 ; add scalar
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 BNE R1, R2, Loop ; branch if R1 != R2
 NOP

Source code

Assembly code

Loop: L.D F0, 0(R1) ; F0 = array element
 stall
 ADD.D F4, F0, F2 ; add scalar
 stall
 stall
 S.D F4, 0(R1) ; store result
 DADDUI R1, R1,# -8 ; decrement address pointer
 stall
 BNE R1, R2, Loop ; branch if R1 != R2
 stall

10-cycle
schedule

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

Smart Schedule

63

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10
• We were able to violate an anti-dependence easily because an
 immediate was involved
• Loop overhead (instrs that do book-keeping for the loop): 2
 Actual work (the ld, add.d, and s.d): 3 instrs
 Can we somehow get execution time to be 3 cycles per iteration?

Loop: L.D F0, 0(R1)
 stall
 ADD.D F4, F0, F2
 stall
 stall
 S.D F4, 0(R1)
 DADDUI R1, R1,# -8
 stall
 BNE R1, R2, Loop
 stall

Loop: L.D F0, 0(R1)
 DADDUI R1, R1,# -8
 ADD.D F4, F0, F2
 stall
 BNE R1, R2, Loop
 S.D F4, 8(R1)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

Loop Unrolling

64

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 L.D F6, -8(R1)
 ADD.D F8, F6, F2
 S.D F8, -8(R1)
 L.D F10,-16(R1)
 ADD.D F12, F10, F2
 S.D F12, -16(R1)
 L.D F14, -24(R1)
 ADD.D F16, F14, F2
 S.D F16, -24(R1)
 DADDUI R1, R1, #-32
 BNE R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs
• How long will the above schedule take to complete?

Scheduled and Unrolled Loop

65

Loop: L.D F0, 0(R1)
 L.D F6, -8(R1)
 L.D F10,-16(R1)
 L.D F14, -24(R1)
 ADD.D F4, F0, F2
 ADD.D F8, F6, F2
 ADD.D F12, F10, F2
 ADD.D F16, F14, F2
 S.D F4, 0(R1)
 S.D F8, -8(R1)
 DADDUI R1, R1, # -32
 S.D F12, 16(R1)
 BNE R1,R2, Loop
 S.D F16, 8(R1)

• Execution time: 14 cycles or 3.5 cycles per original iteration

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

Automatic Loop Unrolling

66

• Determine the dependences across iterations: in the
 example, we knew that loads and stores in different iterations
 did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations
 are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing
 hazards; eliminate name dependences by using additional
 registers

The End?

67

What We Covered In this Course
• Superscalar Processors: OoO execution, dynamic scheduling, issue logic
• Speculative Execution: Branch prediction, memory dependence prediction
• Technology: Trends, impact on architecture, power and energy
• Domain Specific Accelerators, Dataflow, SIMD, Vector Processors
• Memory Hierarchy: Caches, memory-level parallelism, cache prefetching,

replacement and insertion policies, DRAM basics, novel memory technologies
• Parallel Architectures: Multicore processors, shared-memory and distributed

memory architecture
• Cache Coherence Protocols and Memory Consistency Models
• Multithreading: SMT, SpMT, VLIW architectures

68

Other Important Topics Not Covered In This Course
• Graphics Processors: GPUs, GPGPUs
• Dataflow architectures
• Security
• Reliability
• Virtual Memory implementations
• On-chip interconnection networks (Networks-on-Chip “NoC”)
• Synchronization primitives and lock/barrier implementations
• Architecting warehouse-scale computers
• Embedded Processors
• … and many other topics

69

70

Reading Assignments
• ARCH Chapter 3.2, 3.7, 3.12 (Read)
• D. Tullsen et al., “Simultaneous Multithreading: Maximizing On-

Chip Parallelism,” ISCA 1995 (Read)
• G. Sohi et al., “Multiscalar Processors” (Read)
• J. Renau et al., “Thread-Level Speculation on a CMP Can be

Energy Efficient,” ICS, 2005 (Skim)

