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Multithreading: Basics
• Thread

• Instruction stream with state (registers and memory)
• Register state is also called “thread context”

• Threads could be part of the same process 
(program) or from different programs
• Threads in the same program share the same address space (shared 

memory model)

• Traditionally, the processor keeps track of the 
context of a single thread
• Multitasking: When a new thread needs to be 

executed, old thread’s context in hardware written 
back to memory and new thread’s context loaded
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Hardware Multithreading
• General idea: Have multiple thread contexts in a 

single processor
• When the hardware executes from those hardware contexts 

determines the granularity of multithreading 

• Why?
• To tolerate latency (initial motivation)

• Latency of memory operations, dependent instructions, branch 
resolution

• By utilizing processing resources more efficiently
• To improve system throughput

• By exploiting thread-level parallelism
• By improving superscalar/OoO processor utilization

• To reduce context switch penalty
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Hardware Multithreading
• Benefit

+ Latency tolerance
+ Better hardware utilization (when?)
+ Reduced context switch penalty

• Cost
- Requires multiple thread contexts to be implemented in 

hardware (area, power, latency cost)
- Usually reduced single-thread performance
 - Resource sharing, contention
    - Switching penalty (can be reduced with additional hardware) 
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Simultaneous Multithreading
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Why Multithreading?
• ILP limitations of superscalar processors

ØMany control, data and functional dependences

• Wide superscalar pipelines cannot use all 
issue slots
ØVertical Waste: All issue slots in a cycle are not used
ØHorizontal waste: Some issue slots in a cycle are not 

used

• To increase throughput, we need to use 
thread-level parallelism (TLP)
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Simultaneous Multi-threading 
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Multithreaded/Multicore Processors

• Many approaches for executing multiple threads on a single die
ØMix-and-match: IBM Power8 CMP+SMT

MT 
Approach

Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system 
context switch

Fine-grained Everything but register file and control 
logic/state

Switch every cycle

Coarse-
grained

Everything but I-fetch buffers, register file 
and con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers, 
return address stack, architected register 
file, control logic/state, reorder buffer, 
store queue, etc.

All contexts concurrently active; 
no switching

CMT Various core components (e.g. FPU), 
secondary cache, system interconnect

All contexts concurrently active; 
no switching

CMP Secondary cache, system interconnect All contexts concurrently active; 
no switching
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SMT Microarchitecture [Emer,’01]



SMT Microarchitecture [Emer,’01]
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Multithreaded Programs
• Thread vs. process

ØThreads in a process share virtual address space
ØProcesses have different virtual address spaces

• Design Issues:
ØEach thread needs its own set of registers (register address space is not 

shared)
ØThreads cause interference in instruction and data caches
ØPrograms need to be parallelizable into multiple threads
ØSynchronization is necessary, may cause some threads to be idle (OS idle loop)
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SMT Microarchitecture [Emer,’01]
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Power 4
Single-threaded predecessor to 
Power 5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.



Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)



Power 5 data flow ...

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck 



Superscalar Processors: Where Have Cycles Gone?
• Issue slots are 

utilized only 19% 
of the time

• Many causes for 
issue stall 
cycles (Figure)

• Need aggressive 
latency-hiding 
techniques
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Commercial Multithreaded Workloads: Lost Cycles
• “Ready, not chosen”: 

Threads could issue 
but other threads use 
all issue resources 

• “Not Ready”: Cannot 
Issue
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Commercial Workloads: Where Have Cycles Gone?

• Figure shows 
percentage of cycles 
lost for different 
reasons

• “Other” is mainly 
“store buffer full” in 
TPC-C, “atomic 
instructions” in jbb, 
both in SPECweb
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Simultaneous Multithreading Models
• SM: Full Simultaneous Issue

ØCompletely flexible model: All threads compete for each of the issue slots every 
cycle

ØDisadvantage: Hardware complexity
• SM: Single Issue

ØEach thread can issue at most one instruction every cycle
• SM: Dual Issue and SM: Four Issue

ØEach thread can issue at most two (Dual Issue) or four (Four issue) instructions 
every cycle

• SM: Limited Connection
ØEach thread is connected to exactly one of each type of functional unit
ØLimits scheduling choices for functional units to reduce hardware complexity
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SMT Performance: Java and PARSEC benchmarks
• Figure shows speedup 

and energy efficiency 
(high is better) for Intel 
Core i7 
ØUses hyperthreading: 

similar to 2-way SMT

• Speedup averages 
1.28x for Java and 
1.31x for PARSEC

• Energy Efficiency 
average 0.99 for Java 
and 1.07 for PARSEC
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SMT vs. Multiprocessors Discussion
• SMT outperforms multiprocessing for all scenarios considered. 

Why?
• Advantages of SMT vs. Multicore

ØArea efficiency
ØReducing number of threads (i.e., threads becoming idle) allows other threads 

to progress faster in SMT processors, no change in MP 
ØGranularity and flexibility of design: Unit of design is a whole processor for MP, 

more flexible in SMT

• Disadvantages? 
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SMT Performance Side Effects
• Lowest priority thread runs much slower than high priority thread
• Highest priority thread sees degraded performance as more 

threads are added
ØSharing of resources (e.g., caches, TLB, BP tables)

• Caches are more strained by an MT workload vs. ST workload due 
to a decrease in locality
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SMT Design Issues
• Hardware complexity

ØScheduling hardware requirements increase with threads
ØRegister file size increase
ØMay need more ports

• Pipeline depth
ØBigger structures (e.g., register file) require longer access time
ØLeads to increasing the number of pipeline stages

• Issue policy
ØFixed thread priority
ØRound-Robin priority
ØICOUNT
ØOthers?
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Helper Threading
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Helper Threading for Prefetching
• Idea: Pre-execute a piece of the (pruned) program solely for 

prefetching data 
• Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can be considered a “thread”

n Speculative thread can be executed 
• On a separate processor/core
• On a separate hardware thread context
• On the same thread context in idle cycles (during cache misses)



Generalized Thread-Based Pre-Execution
• Dubois and Song, “Assisted 

Execution,” USC Tech Report 1998.

• Chappell et al., “Simultaneous 
Subordinate Microthreading (SSMT),” 
ISCA 1999.

• Zilles and Sohi, “Execution-based 
Prediction Using Speculative Slices”, 
ISCA 2001.



Improve Performance
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A-Stream runs highly reduced
R-stream 
finishes close 
behind

Full Program

Information 
about control 
and dataflow

Performance gain
R-stream executes highly optimized

29



Improve Fault Tolerance
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Shortened A-Stream with 
reduced instruction set

R-stream with full instruction set

Information about
computations and
results

If R-Stream detects a mismatch between results we can recover

recover the corrupted architectural 
state of the A-stream
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Thread-Based Pre-Execution Issues
• Where to execute the precomputation thread?

1. Core (least contention with main thread)
2. SMT thread on the same core (more contention)
3. Same core, same context, when the main thread is stalled

• When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

• How far ahead? 
• Too early: prefetch might not be needed
• Too late: prefetch might not be timely

2. When the main thread is stalled

• When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

31



Slipstream Processors
• Goal: use multiple hardware contexts to speed up single 

thread execution (implicitly parallelize the program)
• Idea: Divide program execution into two threads:

• Advanced thread executes a reduced instruction stream, speculatively
• Redundant thread uses results, prefetches, predictions generated by advanced 

thread and ensures correctness

• Benefit: Execution time of the overall program reduces
• Core idea is similar to many thread-level speculation 

approaches, except with a reduced instruction stream

• Sundaramoorthy et al., “Slipstream Processors: Improving 
both Performance and Fault Tolerance,” ASPLOS 2000.
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Slipstream Idea and Possible Hardware
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Removable Instructions

13

Distinguish three categories of ineffectual computation
1. Unreferenced writes are values overwritten before use

write x = 2 write x = 4 read x

2. Writes that do not modify the state of location

write x = 2 write x = 2 read x

3. Dynamic branches whose outcomes are consistently predicted correctly.

branch 2
origin

branch 1
branch 3

branch 4



Speculative Multithreading
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Speculative Parallelization Concepts
• Idea: Execute threads unsafely in parallel

• Threads can be from a sequential or parallel application

• Hardware or software monitors for data dependence violations

• If data dependence ordering is violated
• Offending thread is squashed and restarted

• If data dependences are not violated
• Thread commits
• If threads are from a sequential order, the sequential order needs to be preserved à 

threads commit one by one and in order
36



Example Tasks
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Parallel Programs vs. Thread Speculation
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Attributes Multicore Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task  
control independence

Required Not required

Software knowledge of inter-task  
data dependences

Required Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory  
Through messages

Through registers and  
memory

Register space Distinct for PEs Common for PEs

Memory space Common  
Distinct

Common for PEs



Big Idea
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• Start with a static representation of a 
program

• Sequence through the program to generate 
the dynamic stream of operations
• Use single PC to walk through

static representation

• Execute operations in dynamic stream as 
quickly as is possible

Speed up this entire process

PROGRAM

A

B  

C



What is a task?
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• A portion of the static representation 
resulting in a contiguous portion of the 
dynamic instruction stream

- part of a basic block
- basic block
- multiple basic blocks
- loop iteration
- entire loop
- procedure call, etc

PROGRAM



Big Idea
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Big Idea
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REG

P.U. P.U. P.U.
REG REG REG

P.U.

PIPE 
LINE

PIPE 
LINE

PIPE 
LINE

PIPE 
LINE

SEQUENCER

MEMORY DISAMBIGUATION 
CACHE HIERARCHY

• Processing Units (PUs) execute tasks

• Each PU has a processing element, 
instruction cache and a register file

• Sequencer assigns tasks to PUs 

• After task is assigned, PU fetches 
instructions and executes task until 
completion

• May need to use multi-version caches to 
store multiple versions of same value 
simultaneously

• At a high level, Multiscalar could also 
use multiple threads in an SMT 
processor



43

• Processor consists of several processing cores (or units)
• each core executes a task

• each core is equivalent to a typical datapath

• Execution cores are connected in a logical order (queue)
• hardware pointers to head and tail

• share logical register and memory address spaces

• Active cores (ones between head and tail)
• contain tasks in logical (sequential) order

• together constitute a large dynamic window



Handling Inter-Task Dependences
• Control dependences 

• Predict 
• Squash subsequent tasks on inter-task misprediction 

• Intra-task mispredictions do not need to cause flushing of later tasks

• Data dependences 
• Register file: mask bits and forwarding (stall until available)
• Memory: address resolution buffer (speculative load, squash on violation)
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Multiscalar Programs
• Each task has to specify which registers it creates, how to forward register values, when the 

task ends, and which tasks follow it
Ø Information stored in Task Descriptor

• Create Mask
Ø Register values that a task might produce 
Ø Conservative definition including all registers that could be produced (even if they are not produced in a particular 

instance of the task)

• Forward Bits
Ø One bit associated with every instruction in task
Ø Indicates whether destination register value is the last write by current task to that register, should be forwarded 

to subsequent tasks

• Stop Bits
Ø Needs to check if conditions for stopping current task are satisfied at current instruction then task is exited

• Release Instructions
Ø Indicates no further updates to register, can be forwarded to subsequent tasks
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Forwarding Registers Between Tasks
• Compiler must identify the last instance of write to a register 

within a task 
• Opcodes that write a register have additional forward bit, indicating the 

instance should be forwarded 
• Stop bits - indicate end of task 
• Release instruction 

• tells PE value not needed. 
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Address Resolution Buffer
• Multiscalar issues loads to ARB/D-cache as soon as address is 

computed 
• ARB is organized like a cache, maintaining state for all outstanding 

load/store addresses 
• Franklin and Sohi, “ARB: A hardware mechanism for dynamic 

reordering of memory references,” IEEE TC 1996. 

• An ARB entry:
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• Loads 
• ARB miss: data comes from D-cache (no prior stores yet)
• ARB hit: get most recent data to the load, which may be from D-cache, or 

nearest prior task with S=1 

• Stores 
• ARB buffers speculative stores 
• If store from an older task finds a load from a younger task to the same 

address à misspeculation detected 
• When a task commits, commit all of the task’s stores into the D-cache 

48

Address Resolution Buffer



SpMT/TLS Implementation Cost
• When speculative tasks violate sequential order, they need to be squashed

ØConsumes power without gaining performance

• Need to support multi-version caches for store values written by speculative tasks
ØValues can only be written to memory from non-speculative tasks
ØAdds complexity to cache design

• Dependence checking across tasks may require complex hardware

• Requires compiler support: Program analysis, creating task descriptors, adding code for 
dependence checking

• Adds more instructions or prefix bits to existing instructions
Ø Increases program size
ØCode may not be portable across processor implementations

• Some optimizations have been proposed to reduce energy overhead and hardware cost
49



VLIW Architectures
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VLIW (Very Long Instruction Word)
• A very long instruction word consists of multiple 

independent instructions packed together by the compiler
ØPacked instructions can be logically unrelated (contrast with SIMD)

• Idea: Compiler finds independent instructions and 
statically schedules (i.e. packs/bundles) them into a 
single VLIW instruction

• Traditional Characteristics
ØMultiple functional units
ØEach instruction in a bundle executed in lock step
ØInstructions in a bundle statically aligned to be directly fed into the 

functional units
51



VLIW Concept

• Fisher, “Very Long Instruction Word architectures 
and the ELI-512,” ISCA 1983.
ØELI: Enormously longword instructions (512 bits)
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VLIW Philosophy
• Philosophy similar to RISC (simple instructions and hardware)

ØExcept multiple instructions in parallel

• RISC (John Cocke, 1970s, IBM 801 minicomputer)
ØCompiler does the hard work to translate high-level language code to simple instructions (John 

Cocke: control signals)
qAnd, to reorder simple instructions for high performance

ØHardware does little translation/decoding à very simple

• VLIW (Fisher, ISCA 1983)
ØCompiler does the hard work to find instruction level parallelism 
ØHardware stays as simple and streamlined as possible

qExecutes each instruction in a bundle in lock step
qSimple à higher frequency, easier to design
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Commercial VLIW Machines
• Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
• Cydrome Cydra 5, Bob Rau
• Transmeta Crusoe: x86 binary-translated into internal VLIW
• TI C6000, Trimedia, STMicro (DSP & embedded processors)

ØMost successful commercially

• Intel IA-64
ØNot fully VLIW, but based on VLIW principles
ØEPIC (Explicitly Parallel Instruction Computing)
ØInstruction bundles can have dependent instructions
ØA few bits in the instruction format specify explicitly which instructions in the bundle 

are dependent on which other ones
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VLIW Tradeoffs
• Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à simple hardware for multiple 

instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to different functional units à simple 

hardware

• Disadvantages
-- Compiler needs to find N independent operations
 -- If it cannot, inserts NOPs in a VLIW instruction
 -- Parallelism loss AND code size increase
-- Recompilation required when execution width (N), instruction latencies, functional 

units change (Unlike superscalar processing)
-- Lockstep execution causes independent operations to stall
 -- No instruction can progress until the longest-latency instruction completes
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VLIW Issues: Dynamic Execution 
• Compiler cannot anticipate dynamic events or account for variable 

execution latencies
1. Cache misses 

ØStatic scheduling assumes cache hits 
ØVLIW requires blocking caches so a cache miss blocks issue for future instruction 

words, degrading performance 
2. Memory disambiguation 

ØPointer references are assumed to be dependent, couldn’t belong to same instruction 
word

ØAdds false dependences between loads and stores
3. Branch outcomes 

ØBranch mispredictions lead to executing compensation code
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Comparing Multiple-Issue Processor Designs

57ARCH Figure 3.15



Static vs Dynamic Scheduling
•  Arguments against dynamic scheduling:

Ø requires complex structures to identify independent
    instructions (scoreboards, issue queue)

§  high power consumption
§  low clock speed
§ the compiler can “easily” compute instruction latencies

    and dependences – complex software is always preferred to complex hardware (?) 

•  Instruction-level parallelism: overlap among instructions: pipelining or 
multiple instruction execution

•  What determines the degree of ILP?
Ø dependences: property of the program
Ø hazards: property of the pipeline
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Loop Scheduling

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy
  to analyze and optimize



Assumptions
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• Load: 2-cycles   (1 cycle stall for consumer)
• FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall
                                 if the consumer is a store)
• One branch delay slot
• Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the
                               consumer is a branch)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall



Loop Example
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for (i=1000; i>0; i--)
    x[i] = x[i] + s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              ADD.D    F4, F0, F2        ; add scalar
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              BNE        R1, R2, Loop    ; branch if R1 != R2
              NOP

Source code

Assembly code



Loop Example
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for (i=1000; i>0; i--)
    x[i] = x[i] + s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              ADD.D    F4, F0, F2        ; add scalar
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              BNE        R1, R2, Loop    ; branch if R1 != R2
              NOP

Source code

Assembly code

Loop:     L.D         F0, 0(R1)          ; F0 = array element
              stall
              ADD.D    F4, F0, F2        ; add scalar
              stall
              stall
              S.D         F4, 0(R1)          ; store result
              DADDUI  R1, R1,# -8      ; decrement address pointer
              stall
              BNE        R1, R2, Loop    ; branch if R1 != R2
              stall

10-cycle
schedule

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall



Smart Schedule
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• By re-ordering instructions, it takes 6 cycles per iteration instead of 10
• We were able to violate an anti-dependence easily because an
  immediate was involved
• Loop overhead (instrs that do book-keeping for the loop): 2
  Actual work (the ld, add.d, and s.d): 3 instrs
  Can we somehow get execution time to be 3 cycles per iteration?

Loop:     L.D         F0, 0(R1)     
              stall
              ADD.D    F4, F0, F2   
              stall
              stall
              S.D         F4, 0(R1)     
              DADDUI  R1, R1,# -8 
              stall
              BNE        R1, R2, Loop
              stall

Loop:     L.D         F0, 0(R1)     
              DADDUI  R1, R1,# -8
              ADD.D    F4, F0, F2   
              stall
              BNE        R1, R2, Loop
              S.D         F4, 8(R1)     

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall



Loop Unrolling
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Loop:     L.D         F0, 0(R1) 
              ADD.D    F4, F0, F2   
              S.D         F4, 0(R1)
              L.D         F6, -8(R1)
              ADD.D    F8, F6, F2
              S.D         F8, -8(R1)
              L.D         F10,-16(R1)
              ADD.D    F12, F10, F2
              S.D         F12, -16(R1)
              L.D          F14, -24(R1)
              ADD.D    F16, F14, F2
              S.D          F16, -24(R1)
              DADDUI  R1, R1, #-32
              BNE        R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs
• How long will the above schedule take to complete?



Scheduled and Unrolled Loop

65

Loop:     L.D         F0, 0(R1) 
              L.D         F6, -8(R1)
              L.D         F10,-16(R1)
              L.D          F14, -24(R1)
              ADD.D    F4, F0, F2  
              ADD.D    F8, F6, F2 
              ADD.D    F12, F10, F2
              ADD.D    F16, F14, F2
              S.D         F4, 0(R1)
              S.D         F8, -8(R1)
              DADDUI  R1, R1, # -32
              S.D         F12, 16(R1)
              BNE        R1,R2, Loop
              S.D         F16, 8(R1)            

• Execution time: 14 cycles or 3.5 cycles per original iteration

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall



Automatic Loop Unrolling
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• Determine the dependences across iterations: in the
  example, we knew that loads and stores in different iterations
  did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations
  are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing
  hazards; eliminate name dependences by using additional
  registers



The End?
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What We Covered In this Course
• Superscalar Processors: OoO execution, dynamic scheduling, issue logic
• Speculative Execution: Branch prediction, memory dependence prediction
• Technology: Trends, impact on architecture, power and energy
• Domain Specific Accelerators, Dataflow, SIMD, Vector Processors
• Memory Hierarchy: Caches, memory-level parallelism, cache prefetching, 

replacement and insertion policies, DRAM basics, novel memory technologies
• Parallel Architectures: Multicore processors, shared-memory and distributed 

memory architecture
• Cache Coherence Protocols and Memory Consistency Models
• Multithreading: SMT, SpMT, VLIW architectures
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Other Important Topics Not Covered In This Course
• Graphics Processors: GPUs, GPGPUs
• Dataflow architectures
• Security
• Reliability
• Virtual Memory implementations
• On-chip interconnection networks (Networks-on-Chip “NoC”)
• Synchronization primitives and lock/barrier implementations
• Architecting warehouse-scale computers
• Embedded Processors
• … and many other topics
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Reading Assignments
• ARCH Chapter 3.2, 3.7, 3.12 (Read)
• D. Tullsen et al., “Simultaneous Multithreading: Maximizing On-

Chip Parallelism,” ISCA 1995 (Read)
• G. Sohi et al., “Multiscalar Processors” (Read)
• J. Renau et al., “Thread-Level Speculation on a CMP Can be 

Energy Efficient,” ICS, 2005 (Skim)


