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Single-molecule localization microscopy (SMLM) achieves nanoscale imaging of complex protein structures in the cell. However, the
ability to capture structural variability across cell conditions (cell lines, gene expression, treatment) from 3D point cloud SMLM data
remains limited. We present siMILe, a novel weakly-supervised machine learning method based on multiple instance learning (MIL),
leveraging shape and network features of protein assemblies, to close this important gap in interpretable subcellular discovery. siM-
ILe identifies condition-specific changes in protein structures, without requiring structure-level supervision, and improves structure
classification by extending embedded instance selection (MILES) through adversarial erasing and a symmetric classifier. siMILe is
validated on simulated SMLM data and by detecting caveolae from caveolin-1 (Cav1) labeled PC3 prostate cancer cells differentially
expressing cavin-1. In PC3-CAVIN1 cells dually labeled for Cav1 and cavin-1, cavin-1 closely associates with siMILe-identified cave-
olae, to a lesser extent with higher-order non-caveolar Cav1 scaffolds, but not with base Cav1 oligomers that correspond to 8S com-
plexes, supporting a role for progressive cavin-1 interaction in 8S complex oligomerization. These results highlight siMILe’s potential
to identify differential molecular structures in distinct cell conditions. siMILe extends the SuperResNET SMLM software platform
with the ability to detect interpretable structural differences across conditions.

1 Introduction

Single-molecule localization microscopy (SMLM) is a super-resolution microscopy technique that achieves
superior resolution based on detection of the stochastic blinking of isolated fluorophores [1]. SMLM achieves
20 nm lateral resolution, compared to the ∼250 nm resolution limit encountered by conventional mi-
croscopy [2], with more recent SMLM-based approaches such as MinFlux achieving 1-3 nm 3D resolu-
tion [1, 3]. The application of machine learning algorithms to 3D SMLM has increased the efficacy and
accuracy of the reconstruction of super-resolution images from point emitter frames and for background
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fluorescence classification [4, 5]. However, approaches for quantitative analysis of 2D or 3D point-cloud
data remain limited. Cluster analysis methods, including statistical, Bayesian, density-based, correlation-
, tessellation-, image-, and machine-learning based approaches, have been applied to SMLM data [6, 7,
8]. The SuperResNET network analysis software platform leverages the power of graph-based construc-
tion and advanced machine learning techniques to process and interpret the complex point cloud data
generated by SMLM [9]. Previously, we applied SuperResNET to caveolin-1 (Cav1) point clouds to clas-
sify caveolae and smaller non-caveolar oligomeric structures, called scaffolds [10] and detected caveolae
and three classes of scaffolds as well as structural changes induced by point mutations to the Cav1 scaf-
folding domain [9, 11, 12]. More recently, SuperResNET was able to detect changes to clathrin coated
pits induced by small molecule inhibitors of clathrin endocytosis, which were not observed by transmis-
sion electron microscopy, and effectively interpret MinFlux clathrin pits and vesicles [13]. SuperResNET
analysis of publicly available 2D SMLM data for nucleoporin Nup96 effectively segmented nuclear pores
and Nup96 corners and distinguished 2 modules within the corners at 10.7±0.1 nm distance, thereby
achieving molecular resolution [14]. Therefore, SuperResNET represents a highly sensitive approach to
studying the spatial or molecular architecture of subcellular structures in situ in the intact cell.

The primary strengths of SuperResNET lie in its ability to analyze the network structure inherent in
SMLM data and its integration of advanced machine learning algorithms for pattern recognition and
structure identification. These features enable SuperResNET to uncover subtle structural patterns and
relationships that might be overlooked by conventional analysis methods. The use of prior knowledge,
in the form of defined group labels, enabled identification by SuperResNET of diverse Cav1 structures
showing that the base Cav1 oligomer (the so-called 8S complex) combines to form higher-order scaffolds
and caveolae [9, 15]. PC3 prostate cancer cells that express Cav1, but not the adaptor protein cavin-1
(also called PTRF) required for caveolae formation, were compared with PC3-CAVIN1 cells transfected
with cavin-1 that now present caveolae, defining parameters that enabled identification of known struc-
tures, the 8S complex and caveolae, and thereby previously unknown intermediate higher order oligomers [9].
SuperResNET has also been used to study the spatial relationship on caveolae of the adaptor proteins
EHD2 and PASCIN2 [16].

Here we build on SuperResNET to present a discovery method named siMILe, a weakly-supervised, ma-
chine learning algorithm designed to identify discriminatory changes in mesoscale domain structures be-
tween conditions. The idea is to leverage only weak labels: the image- or cell-level information, such as
cell type, epigenetic, or environmental interventions [17]. ‘Strong’ labels in this context would be object-
or structure-level annotations, which in SMLM often are absent.

Such a problem statement is frequently tackled by multiple instance learning (MIL) methods. Unlike
traditional supervised learning techniques, where labels are assigned to each object, or ‘instance’, with
MIL, the assumption is that only a set, or collection of instances, called ‘bags’, can be given a label. This
is particularly effective when individual instances cannot be labeled, whether infeasible or expensive.
It is important to note that this differs from quantifying the structural diversity or heterogeneity [18,
19], given that discovery of diversity does not in itself leverage weak labels to find discriminative differ-
ences. MIL has been applied to many fields, ranging from confocal microscopy [20], drug efficacy discov-
ery [21], DNA protein identification, and histopathology classification [13]. A more recent proposed MIL
approach [22] optimizes its output so that nearby objects have the same or a similar object label. While
this is a valid constraint in several MIL applications, here it would not be appropriate because in SMLM
proximate protein complexes can be quite dissimilar.

In this paper, not only are we the first to apply MIL to SMLM, but we enhance MIL via embedded in-
stance selection (MILES) [14] for improved instance classification through the first use of adversarial
erasing in MIL, enhanced with a new symmetric classifier. Adversarial erasing iteratively removes iden-
tified structures and retrains the model, ensuring detection of all discriminative structures rather than
just the most prominent ones. The symmetric classifier enables simultaneous identification of structures
unique to each condition in a single analysis, eliminating the need for separate comparisons and improv-
ing computational efficiency. siMILe, illustrated in Fig 1, uses only image-level labels, allowing the po-
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tential for discovery by eliminating the need for manual annotations. The method is applied to a simu-
lated dSTORM dataset to evaluate its efficacy, and to PC3 and PC3-CAVIN1 cells expressing cavin-1 to
display the ability of siMILe to extract discriminative structures from SMLM. The trained model from
this dataset is then applied to a new dataset of PC3-CAVIN1 cells dually labeled for Cav1 and cavin-1
to investigate its generalizability, and to verify using object level ground truth that the structures de-
tected by siMILe are indeed discriminate from a biological perspective. This is achieved by validating
the findings by contrasting them to protein interactions, information that was withheld from siMILe.
These results support the ability of siMILe to identify changes in mesoscale domain structure, advanc-
ing our understanding of differential expression of intracellular molecular structures in distinct cell con-
ditions.

2 Results

2.1 Problem statement

In SMLM, each acquired image produces a 3D point cloud of molecular localizations. Throughout this
paper, we use “image” and “point cloud” interchangeably to refer to these SMLM datasets. Formally, we
are given input I: a set of n pairs (Pi, Yi) for i = 1, ..., n, where Pi is a point cloud and Yi is an associ-
ated class label. Each point cloud Pi consists of (x, y, z) coordinates (3D vectors of real numbers), and
the class labels Yi ∈ {0, 1} indicate the condition from which the point cloud is derived.

Our expected output is a set of n pairs (Qi, Ŷi) for i = 1, ..., n. Each Qi is a set of Ji disjoint subsets
{Qij : j = 1, ..., Ji}, where each subset Qij ⊂ Pi represents a segmented structure and Qij ∩ Qik = ∅
for all j ̸= k. Each Ŷi is a set of labels {Ŷij : j = 1, ..., Ji} corresponding to the subsets, where Ŷij ∈
{0, 1,−1} indicates whether subset Qij is discriminative to condition 0, discriminative to condition 1,
or common to both conditions (-1). Algorithm 1 summarizes the mathematical notation of the problem
setup.

Problem formulation for learning discriminative segmentations from point clouds with weakly supervised labels. The
input is a set of 3D point clouds with a binary label for each point cloud based on its class. The output corresponding to a
given input is a set of disjoint segmentations on the input, where each segmentation can be labeled as discriminative to the
class given by the input label, or not discriminative (common).

1: Input:
2: I = {(Pi, Yi) | 1 ≤ i ≤ n} ▷ Input contains n point clouds each with a single label
3: Pi = {Pij | Pij ∈ R3 ∧ 1 ≤ j ≤ Ni} ▷ Each point cloud Pi is a set of Ni real number 3D points.
4: Yi ∈ {0, 1} ▷ Label of point cloud Pi

5: Output:
6: O = {(Qi, Ŷi) | 1 ≤ i ≤ n} ▷ Output contains n new point cloud sets each with a set of labels
7: Qi = {Qij | Qij ⊂ Pi ∧ (Qij ∩Qik = ∅, ∀k ̸= j)} ▷ Set of disjoint subsets of the input point clouds

8: Ŷi = {ŷij | ŷij ∈ {−1, 0, 1, } ∧ 1 ≤ j ≤ |Qi|} ▷ Subsets are given a class or null label

We use the SuperResNET network analysis platform to segment the point cloud, motivated by previ-
ous work supporting its ability to segment and extract clusters representing oligomeric biological struc-
tures [9, 11, 12]. A mean-shift algorithm segments the localizations into clusters, constellations of 3D
points, or ‘blobs’ that represent these structures. SuperResNET also extracts features from these blobs
based on size, shape, topology, point statistics, and graph networks. We refer the interested reader for
more detail to the original work [9]. After SuperResNET processes all point clouds from a given condi-
tion, it produces segmented structures called ’blobs’ (the Qij subsets). Each blob is represented by a 30-
dimensional feature vector, yielding a feature matrix of shape N × 30 where N is the total number of
blobs across all point clouds in that condition. We use this representation to compare conditions and ex-
tract blobs deemed distinct to their condition and are therefore discriminative. Next, we introduce mul-
tiple instance learning (MIL) as the core underlying weakly-supervised formulation used to learn the dis-
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2.2 Multiple Instance Learning for SMLM

criminative blobs in the output of our problem setup. We then introduce the diverse density (DD) MIL
framework [23] that uses a single concept vector to classify bags of instances in feature space based on
proximity to the concept vector. Next, we present multiple-instance learning via embedded instance se-
lection (MILES) [24] which extends DD with the use of multiple concept vectors. This enables learning
more complex relationships for classifying bag labels, and provides an algorithm for blob classification.
Finally, we detail our method, siMILe, which extends MILES. The contributions of siMILe focus on the
integration of adversarial erasing (AE) for improved instance classification and a symmetric classifier
(SC) to reduce unnecessary computation time by asymmetric AE iterations. The base functionality of
MIL algorithms is to identify discriminative from common objects, given two labels. But this can also
cover the simpler use case where one set (A) or label is enclosed by the other one (B). In this case, there
are no objects unique to A, only common to both and discriminative to B. In our problem statement,
this case is not warranted; we need to be able to find those objects that are discriminative to each label
individually. The combination of AE+SC in siMILe is designed to improve instance classification when
discriminative instances exist in both classes (Fig. 1).

2.2 Multiple Instance Learning for SMLM

The problem formulation outlined in Algorithm 1 describes a weakly supervised learning paradigm where
we need to extract discriminative blobs within an image using only the information provided by its con-
dition label. Our method makes use of multiple instance learning (MIL), a weak supervision framework
introduced by Dietterich et al. for drug activity prediction [25]. MIL identifies objects or ‘instances’ un-
der conditions where class labels are represented by sets of instances, as opposed to individual instances.
In the context of this paper, these ‘instances’ are the blobs (segmented structures) produced by Super-
ResNET, representing approximate protein structures. Training data points (the instances/blobs in our
application) are grouped into bags containing a set number of instances. Using these bags, where each
bag has a label that corresponds to a condition label under which the image is acquired, the focus of
some MIL methods (e.g., MI-SVM [26], Citation-kNN [27], EM-DD [28]) is predicting a bag label us-
ing the aggregated information of its instances.For other methods (e.g., mi-SVM [26], APR [25]), it is
more important to classify the individual instances by taking advantage of the representations learned
by predicting their bag. Aggregating the information of the instances is useful when some instances are
not capable of representing their weak label, while others are, and this distinction is unknown. In the
traditional MIL formulation, there are two bag classes: positive and negative. The positive class contains
instances that can be labeled as positive or negative, whereas the negative class is assumed to only con-
tain negative instances. This 2-class setup is visualized in Figure 2-A. Given that an instance of the pos-
itive class has the potential to be found in the negative class, classification is performed on bags. In pos-
itive bags, the proportion of positive instances it contains is referred to as the witness rate [29]. In the
traditional formulation, it is assumed that there is at least one positive instance in the bag; otherwise, a
positive bag would be indistinguishable from a negative bag.

2.3 MILES

Diverse density (DD) [30] is a MIL algorithm notable for the use of a single ‘concept’ to aid in classify-
ing bags, where this concept is a representation of the relationship between positive and negative classes.
The target concept is assumed to be closer to positive instances and further away from negative ones,
providing a method to differentiate the bags according to their label, as seen in Figure 3. Given a poten-
tial concept c, positive bag B+

i , and negative bag B−
i , the concept that is most likely to fit the bags is

determined by the number of positive and negative bags that agree on the concept by maximizing:

DD(c) =
∏
i

Pr(c|B+
i )
∏
i

Pr(c|B−
i ). (1)
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2.3 MILES

Given that b+ij is an instance in bag B+
i , and b−ij is an instance in bag B−

i , a proposed method to esti-
mate Pr(c|Bi) is the following:

Pr(c|B+
i ) ∝ max

j
exp

(
−
∥∥b+ij − c

∥∥2
σ2

)
. (2)

Pr(c|B−
i ) ∝ 1−max

j
exp

(
−
∥∥b−ij − c

∥∥2
σ2

)
. (3)

Equation 2 finds the closest distance between any instance in the positive bag B+
i to the concept, maxi-

mizing the value towards 1 as the distance decreases. Similarly, Equation 3 finds the same distance, but
reaches the maximum value as the distance increases instead. The distance between an instance and the
concept is scaled by 1

σ2 . When the scaling factor σ is small, an instance needs to be closer to the concept
to achieve high similarity.

Multiple-Instance learning via embedded instance selection (MILES) extends the use of a single target
concept to the use of many target concepts. With this change, it is now assumed that the ensemble of
concepts is capable of representing more complex relationships between the bags than those possible by
a single concept that is required to be closer to positive bags. For example, a given concept may instead
be closer to the negative bags than to the positive bags. Given a set of concepts C, the estimate of Pr(c|Bi)
is now defined independently of the bag label:

Pr(c|Bi) ∝ max
j

exp

(
−∥bij − c∥2

σ2

)
, c ∈ C. (4)

Given N = N+ + N− where N+ is the number of instances of the positive class and N− is the number
of instances of the negative class, MILES uses all N instances as potential concepts; C = {c1, c2, ..., cN}.
If each instance in a bag Bi is represented by a single feature vector bij, then Bi can be embedded in a
N -dimension vector Ei through an aggregation of its instances as follows:

Ei = [sim(Bi, c1), sim(Bi, c2), ..., sim(Bi, cN)]
T . (5)

sim(Bi, c) = max
j

exp

(
−∥bij − c∥2

σ2

)
. (6)

The value of Eik, k ∈ {1, 2, ..., N} is equal to the similarity between the most similar instance in Bi to
the concept ck as defined in Equation 6.

Given all our bags, represented by their embedding vector and a bag label, the algorithm learns to clas-
sify the bags through an L1-norm linear support vector machine (SVM) [31]. The SVM learns to fit a
hyperplane that best separates the bags based on their label through an optimization process, where
the separation is performed in the same space as the bags’ embedding. Since an L1-norm penalty is ap-
plied, the optimization process is incentivized to reduce the sum of the absolute value of the hyperplane
weights, leading to sparsity. A bag is simply classified on the basis of the side of the SVM hyperplane it
resides.

Each dimension in the embedding of a bag is based on the most similar of its instances to a concept,
but this concept can be equally similar to multiple instances. For a concept ck, the number of these in-
stances is mk. From the perspective of an instance bij, there is also a set of concepts to which it was
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2.4 siMILe

among the most similar in bag Bi to; we denote the set of indices corresponding to these concepts as Ij.
Given that wk is the kth weight in the SVM hyperplane, the classification score of an instance is:

ICS(bij) =
∑
k∈Ij

wksim(Bi, ck)

mk

. (7)

The ICS of bij is computed by summing all similarity values that bij contributed to the bag embedding,
with each value scaled by its corresponding SVM weight wk and normalized by mk, the number of in-
stances equally similar to concept ck. In this step, the required use of a linear SVM is seen, where the
weights of the SVM hyperplane can be directly mapped to the features of the bags embeddings. Once
the classification score of an instance is calculated, a threshold is used to determine its label. Although
the authors of MILES acknowledge that different thresholds may be used, they recommend that any-
thing greater than −b

|Ui| be labeled positive. Where b is the SVM hyperplane bias, and Ui is the minimal

set of instances in Bi required to create its embedding as defined in Equation 5.

2.4 siMILe

Although MILES is powerful, only a single positive instance is theoretically required to correctly classify
a bag. This means that a bag containing multiple positive instances can ignore some of them during the
creation of the bag embedding or during the SVM learning phase, while still maintaining equivalent per-
formance on bag classification. This susceptibility to using only a fraction of the discriminative features
to classify is a problem intrinsic to many such classifiers, hindering MILES’ ability to correctly classify
all positive instances. Furthermore, as described, MILES assumes a traditional MIL formulation, making
it inefficient when the goal is to compare two classes and extract discriminative instances from each, in-
stead of from only one. For example, as given in Fig. 2B, assume you have classes A and B, where class
A contains instances a and instances c, while class B contains instances b and instances c. When looking
to predict the discriminative instances in these classes, which are the instances a and b, MILES would
require two training phases. In the first phase, we would declare class A the positive class and label all
instances in class B negative, since instances a are now considered positive instances; MILES would look
to label them as positive. During the second run, the classes are swapped and the B class is considered
positive; the same procedure is used, except with the goal of applying positive labels to instances b. This
requirement of multiple phases is inefficient and can cause unstable results in the case that the model
learns by focusing only on the discriminative instances that exist within the negative class. In this case,
positive bags are classified as positive based only on the absence of discriminative instances found in the
negative bags, which means that the difference between positive and negative instances in positive bags
is not represented in either the bag embedding or the learned SVM weights, to the detriment of instance
classification.

To alleviate the problem caused by the use of a subset of discriminative positive instances to classify, we
improve MILES by implementing an adversarial erasing scheme (Fig. 4). In adversarial erasing, the goal
is to extract all discriminative instances by training the model over multiple iterations and removing
the predicted discriminative instances before the next iteration. In the traditional MIL case, this would
mean removing positive instances and retraining the classifier until no more positive instances can be
found. The iterations will end when the performance of the bag classifier is deemed insufficient. Practi-
cally, we set a minimum accuracy in bag classification performance, denoted minacc, to determine when
to stop further iterations. Adversarial erasing also helps in the situation where the classifier focuses only
on the discriminative instances in one class. Should this happen, those instances would be iteratively re-
moved until the classifier is forced to look at the discriminative instances in the other class.

To optimize the algorithm to classify both classes in a single run, we replace the single threshold classi-
fication of the instance classification scores with a k-means scheme using three centers. Given the set of
all predicted instances as X, a given instance bij ∈ X is predicted as follows:
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2.5 Evaluation on Simulated Dataset

V = {ICS(x) : x ∈ X} (8)

tA, tnull, tB = kmeans3(V ) (9)

cij = argmin
t∈{tA,tnull,tB}

(|ICS(bij)− t|) (10)

yij =

 1 cij = tA
−1 cij = tnull
0 cij = tB

(11)

The scores of all predicted instances are aggregated and used with k-means to find three class centers.
The label of a given instance is applied based on the center it was closest to. Using this symmetric clas-
sifier to classify discriminative instances in both classes, siMILe avoids the computational cost of running
the asymmetric base algorithm twice. Furthermore, through the use of clusters, the algorithm is able to
be more conservative in its labeling, only labeling instances that cluster around the discriminative cen-
ters rather than labeling all instances above a fixed threshold as in traditional MILES. While this could
normally be to the detriment of the algorithm’s ability to classify all discriminative instances, the use
of adversarial erasing iterations negates this risk and instead enables more precise instance classifica-
tion (Sec. 2.5).

While it is in principle possible to use deep learning for the classification step, we select an SVM as the
basis for training in siMILe to keep training time very short. Although adversarial erasing is powerful
in its ability to label more discriminative instances and enable the use of MIL on classes that each con-
tain these discriminative instances, its iterative retraining could become prohibitive when using a deep
learning architecture instead. This is particularly seen in cases where these iterations can become nu-
merous. Future work can consider extending this to methods in which retraining can be done using deep
learning approaches without retraining from scratch, but this is beyond the scope of this work. By lever-
aging an SVM, siMILe maintains a relatively low training time, enabling use on less powerful hardware,
while also not requiring a graphics processing unit (GPU), and keeping siMILe’s carbon footprint suffi-
ciently small. Our results (Sec 2.5 and onward) show that performance is not meaningfully compromised
by these choices.

2.5 Evaluation on Simulated Dataset

We first detail the performance of siMILe on simulated data to quantify the effect of our algorithmic im-
provements between siMILe and MILES. Simulated SMLM data enables us to have full control of the
objects and noise model in the data, making it ideal to validate our stated claims that differentiate siM-
ILe from MILES. Using the RMLM [32] package to simulate dSTORM image acquisition, we generated
three types or classes of clustered localizations, or ‘blobs’: A, B, C. We grouped them in two labels or
‘conditions’: Sets with label A containing clusters of type a and c, while sets with label B contain clus-
ters of type b and c. (Fig. 5). We compare the ability of siMILe to extract discriminative instances from
each class against MILES, MILES with adversarial erasing (MILES + AE), and MILES with the sym-
metric classifier (MILES + SYM-C). We report the comparison metrics relative to bag size to alleviate
the potential issue of specific algorithms having better computational performance based on bag size.
The results are also provided based on the average of a nested cross-validation using 5 folds, with the
standard deviation reported. The results for F1, precision, recall, and training time are given in Fig-
ure 6. Figure 6 shows that siMILe outperforms MILES and the isolated improvements such as SYM-C
and AE consistently across bag sizes in all metrics. The exception occurs for very small bag sizes, but as
the reader can confirm, here all results for all methods are too noisy to extract consistent patterns.

The training time of a model is recorded using an Intel Core i7-7740X with 32GB RAM available on a
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2.6 siMILe identifies Caveolae as Discriminative Structures between PC3 and PC3-CAVIN1 cells

machine running Ubuntu 20.04; the time is reported based on use of a single core. Models using AE in-
clude all iterations in their recorded runtime. Runtime results show that siMILe has quite short training
times (< 20 min), enabling users to retrain it quickly if needed. siMILe has an increased training time
compared to MILES, trading training time for improved performance. Given the low overall training
time, this is a worthwhile compromise.

2.6 siMILe identifies Caveolae as Discriminative Structures between PC3 and PC3-CAVIN1
cells

Next, we evaluate siMILe on its capability to detect complex discriminative protein structures in real
dSTORM data using the PC3/PC3-CAVIN1 dataset [9]. Considering that Cav1 does not form caveo-
lae in the absence of cavin-1, we investigate the ability of siMILe to detect caveolae in cavin-1-expressing
PC3 cells (referred to as PC3-CAVIN1) in comparison to PC3 cells lacking cavin-1 and not presenting
caveolae [33].

Using the features produced by SuperResNET, we apply siMILe to classify the clusters in PC3-CAVIN1
as discriminative to PC3-CAVIN1 or common to PC3 (not discriminative) (Fig. 7). Our results labeled
8% of blobs within PC3-CAVIN1 as discriminative (Fig. 8). Blobs labeled discriminative to PC3-CAVIN1
cells are more spherical and much larger than the common blobs. SuperResNET classification (which
categorizes Cav1 structures as S1A scaffolds/8S complexes, S1B and S2 scaffolds as intermediate oligomers,
or caveolae based on size and morphology) of the discriminative blobs shows that they consist predomi-
nantly of caveolae, with a smaller proportion of S2 scaffolds, 1 S1B scaffold and no S1A scaffolds (Fig. 8B).
This is consistent with the 200-250 nm size and 90 nm distance to centroid of the point clouds, as well
as localization counts approaching that of the estimated 144±39 in caveolae [34]. It is clear that the model
is identifying caveolae-like structures as discriminative to PC3-CAVIN1.

2.7 Transfer of Trained Model to Dual-Channel Cav1-cavin-1 Dataset

Having identified discriminative structures in PC3-CAVIN1 cells, we next sought to validate these find-
ings using an independent dataset with biological ground truth. We applied the trained model to PC3-
CAVIN1 cells dually labeled for both Cav1 and cavin-1, where cavin-1 co-localization provides indepen-
dent validation of caveolar structures. The Cav1 channel was processed by SuperResNET to identify
S1A, S1B and S2 scaffolds as well as caveolae [9] and then overlaid with the cavin-1 labeled channel.
Representative two-channel dSTORM images show the spatial distribution of Cav1 and cavin-1 in PC3-
CAVIN1 cells, with SuperResNET classification revealing the organization of different Cav1 structural
classes relative to cavin-1 (Fig. 9).

Application of the PC3/PC3-CAVIN1 trained model to the Cav1 channel of this new dataset identified
22% of blobs as discriminative (Fig. 10A). Feature distributions of discriminative versus common blobs
showed similar patterns to those observed in the original dataset, with discriminative blobs exhibiting
larger size, higher localization counts, increased sphericity, less dense networks, and more modules. The
normalized Euclidean distance between blob classes in both datasets confirmed high feature similarity
(Fig. 10B), demonstrating successful model transfer.

2.8 Cavin-1 Interaction Validates Discriminative Structure Identification

To determine whether discriminative structures identified by siMILe represent biologically relevant pop-
ulations, we assessed their association with cavin-1. To quantify the spatial proximity between Cav1 and
cavin-1 structures, we calculated a Blob Overlap Parameter (BOP) for each Cav1 blob as − log(d/(rcav1+
rcavin-1)), where d is the distance between the Cav1 blob centroid and its nearest cavin-1 blob centroid,
and r represents the respective radii. Thus, a BOP value of 0 indicates structures with touching borders,
positive values indicate overlapping structures with higher values representing greater overlap, and nega-
tive values indicate separated structures with more negative values representing greater separation.
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Correlation analysis revealed that features associated with discriminative labeling also correlated with
cavin-1 interaction (Fig. 11A, all correlations p<0.001). Network density showed the strongest correla-
tion product (0.32), with both discriminative and cavin-1-interacting structures exhibiting lower den-
sity values. Distance to centroid metrics all correlated positively with both parameters, yielding corre-
lation products of 0.30 (average), 0.29 (median), and 0.28 (maximum). Spatial parameters (Y range:
0.28, X range: 0.27), structural features (max degree: 0.28, area: 0.27), and network modularity (0.23)
also showed positive correlations with both discriminative labeling and cavin-1 interaction. Characteris-
tic path length showed negative correlations with both parameters (correlation product: 0.27).

Analysis excluding SuperResNET-classified caveolae showed similar correlation patterns for scaffold struc-
tures (Fig. 11B, all correlations p<0.001). Size-related features showed the highest correlation products,
with volume (0.29), area (0.27), and localization count (0.27) all positively correlating with both dis-
criminative labeling and cavin-1 interaction. Network density maintained negative correlations with both
parameters (0.25), while distance to centroid metrics showed positive correlations (0.21-0.23). Network
modularity showed positive correlations (0.16), though reduced compared to the full dataset.

Examination of BOP across SuperResNET classes showed discriminative blobs had higher BOP values
than common blobs within each SRN class (Fig. 11C). This difference was most pronounced for S1B and
S2 scaffolds, while caveolae showed similar BOP for both populations. SuperResNET classification anal-
ysis showed 86% of caveolae were identified as discriminative, compared to 55% of S2 scaffolds, 26% of
S1B scaffolds, and 0% of S1A scaffolds (Fig. 12). Discriminative caveolae were smaller with fewer lo-
calizations than common caveolae. Discriminative S1B and S2 scaffolds showed lower network density,
higher distance to centroid values, larger spatial ranges, and greater size metrics compared to common
structures, with network modularity differences most pronounced in S1B.

These results demonstrate that siMILe, using only weak supervision, identifies structures with enhanced
cavin-1 interaction that include not only the expected caveolae but also S1B and S2 scaffold popula-
tions.

3 Discussion

3.1 siMILe: an improved MIL approach for SMLM

We introduce siMILe, an enhanced MIL approach incorporating MILES with adversarial erasing, to iden-
tify, using weak-supervised learning only, differences in protein oligomer structures in cells in SMLM.
Application of siMILe to SuperResNET-processed 3D SMLM point cloud data effectively identifies cave-
olae that are selectively found in PC3 cells expressing cavin-1 [9, 33]. We validate siMILe using simu-
lated and real data, and confirm our findings using known interaction of a second protein (cavin-1) to
illustrate that siMILe detects differential structures with biological basis. The use of MIL to label indi-
vidual structures in 3D point cloud SMLM data has yet to be explored. Our simulation results support
the ability of siMILe to improve the classification of more discriminative instances through its very high
recall and the significant increase in MILES recall with the addition of adversarial erasing (Fig. 5). The
combination of the symmetric classifier with adversarial erasing allows siMILe to maintain very high pre-
cision through many iterations that can conservatively label. While MILES can accurately identify dis-
criminative structures when analyzing larger datasets (high precision), it tends to miss many actual dis-
criminative structures (low recall) - a limitation that siMILe overcomes through its combined approach.

Overall, the consistently high F1 score regardless of bag size supports siMILe improvements over MILES.
The computational load of siMILe increased significantly with adversarial erasing when maximizing clas-
sification performance. We do however, observe, a reduction in this time based on the use of the sym-
metric classifier. Finally, across all metrics, the standard deviations of siMILe results are very low, al-
most always the lowest. This indicates that the contributions cause improved stability in siMILe, allevi-
ating sensitivity to parameters. Computation time is longer as the bag size increases when using adver-
sarial erasing. This shows that only a few discriminative instances are required to perform bag classifica-
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3.2 Cavin-1 association with higher-order Cav1 scaffolds

tion. As the bag size gets larger, it takes more iterations to remove all discriminative instances, whereas
smaller bag sizes allow more of these instances to be reflected in their bag embedding and during train-
ing, leading to correct labeling of them during the instance classification step. It could be claimed that
a different solution to this problem would be to use only small bag sizes instead of adversarial erasing.
The issue with this approach is that it is only possible when the data is well understood and the witness
rate known; otherwise, it cannot be determined which bag size contains few enough discriminative in-
stances. This requirement is reasonable in some applications, but not always possible in discovery.

3.2 Cavin-1 association with higher-order Cav1 scaffolds

SuperResNET previously selectively identified caveolae in PC3 prostate cancer cells transfected with
cavin-1 [9]. Using the same dataset we now show that siMILe identifies caveolae as discriminative struc-
tures in PC3-CAVIN1 cells demonstrating its ability to detect known structures unique to cavin-1 trans-
fected PC3 cells. siMILe also detected higher order S1B and S2 scaffolds as distinct but not isolated 8S
complexes. The 8S complex is a highly stable, SDS-resistant grouping of 11 Cav1’s that exhibits a barrel-
like shape by cryoEM [35, 36]. The 8S complex was identified as S1A scaffolds by SuperResNET and
shown to be modules that combine to form higher order scaffolds and caveolae [11]. That no S1A com-
plexes were found to be unique to PC3-CAVIN1 cells highlights the stable structure of the 8S complex
and the robust ability of siMILe to selectively detect discriminatory structures between datasets. Exten-
sion of the approach to a new dataset in which PC3-CAVIN1 cells are labeled for both Cav1 and cavin-1
shows that siMILe effectively selects cavin-1 labeled structures. These include caveolae but also higher
order S1B and S2 scaffolds but not 8S complexes (S1A scaffolds). Caveolae show a close association with
cavin-1 with siMILe identifying 80% of SuperResNET defined caveolae as discriminatory. Feature anal-
ysis highlights the larger size of common caveolae structures, suggesting that these might be closely as-
sociated, overlapping and unsegmented caveolae that are classed by SuperResNET as caveolae based
on size features. Discriminatory S1B and S2 scaffolds were found to more closely associate with cavin-1
than common S1B and S2 and present larger and more spherical shape features (Fig. 12). This suggests
that cavin-1 association with these oligomeric 8S complexes impacts their structure and their organiza-
tion.

Cavin-1 is thought to selectively associated with large 70S Cav1 oligomers at the plasma membrane [37,
33]. Our data show that cavin-1 can associate with higher order 8S oligomers, localized to the plasma
membrane by TIRF microscopy, and suggests that progressive association of cavin-1 with 8S complex
oligomers contributes to caveolae formation. siMILe is therefore a novel MIL-based algorithm that in-
corporates MILES and adversarial erasing to identify discriminatory structures based on SuperResNET
SMLM data analysis. siMILe identifies caveolae from cavin-1 expressing PC3 cells more effectively than
SuperResNET and identifies distinct conformations of 8S complex oligomers that are associated with
cavin-1. siMILe is therefore able to discover novel changes in protein oligomer structure conditional on
cell type, genomic, or environmental labels. Uniquely, siMILe is designed to tackle multiple labels with-
out compromising scalability, and remains interpretable.

4 Conclusion

We introduced siMILe, a novel enhancement on the MIL paradigm, to identify, using weak-supervised
learning only, differences in protein oligomer structures in cells in SMLM. We validate siMILe using sim-
ulated and real data, and confirm our findings using known interaction of a second protein (cavin-1) to
illustrate the siMILe detects differential structures with biological basis. siMILe will open the door to
novel discovery of changes in protein oligomer structure conditional on cell type, genomic, or environ-
mental labels. Uniquely, siMILe is through its symmetric classifier better positioned to tackle multiple
labels without compromising scalability, and remains interpretable when applied to interpretable fea-
tures.
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5 Materials and methods

5.1 PC3, PC3-CAVIN1 Dataset

A previously published SMLM image dataset of human PC3 prostate cancer cells is used [9]. Although
PC3 prostate cancer cells express Cav1 (CAV1; UniProtID: Q03135), they do not express cavin-1 (CAVIN1;
UniProtID: Q6NZI2), producing no caveolae. Through stable transfection of cavin-1 in PC3 cells, cave-
olae can be induced [33]. The dataset contains the PC3 cells absent of cavin-1/PTRF (referred to as
PC3) and PC3 cells transfected with cavin-1/PTRF (referred to as PC3-CAVIN1 cells). The images are
acquired over three replicates, each replicate contains 10 to 11 images; for both PC3 and PC3-CAVIN1
cells.

5.2 Simulated dSTORM dataset

We generate a simulated dSTORM point cloud dataset for testing siMILe on data with ground truth.
The point clouds were generated with the RSMLM software package, used in previous publications to
test clustering methods in simulations [38, 39], and the dSTORM simulation parameters were adopted
from [39]. We generate the dataset with two classes, A and B, using the setup visualized in Figure 2B.
Each class contains clusters representing the structure instances that belong to one of the two classes.
The class A contains cluster labels a and c, while the class B contains clusters labeled b and c. The cen-
troid of each cluster is uniformly distributed. The number of localizations is generated using a normal
distribution with a mean of 50 and standard deviation of 10. The position of the cluster localizations is
also generated with a normal distribution around the centroid, with the c clusters generated with equal
standard deviation in x, y, z of 20, whereas the a and b instances differ in their x and z standard devia-
tion, respectively, set at 40. For each class there were 50 cells generated with ∼200 blobs per cell and a
witness rate of 10%.

5.3 Dual-Channel Cav1-cavin-1 Dataset

5.3.1 Antibodies and Plasmid

Rabbit anti-Cav1 (#3267) was purchased from Cell Signaling and mouse anti-GFP (A11120) was pur-
chased from Invitrogen. Secondary goat anti-rabbit Alexa Fluor 647 F(ab)’2 (A-21246) was purchased
from Invitrogen, and goat anti-mouse CF 568 F(ab)’2 (20109) was purchased from Biotium. PTRF/cavin-
1-EGFP plasmid was a generous gift from Dr. Michelle Hill (The University of Queensland Diamantina
Institute, Brisbane, Australia) [33].

5.3.2 Cell Culture and Transfection

The PC3 cell (RRID: CVCL 0035) clonal line described in previous study [40] was maintained at 37 °C,
5% CO2 in RPMI-1640 medium (Thermo-Fisher Scientific Inc.) supplemented with 10% fetal bovine
serum (FBS, Thermo-Fisher Scientific Inc.) and 2mM L-glutamine (Thermo-Fisher Scientific Inc.). The
cells were passaged using 0.25% Trypsin-EDTA (Thermo-Fisher Scientific Inc.) at approximately 70%
confluency and were discarded at the 10th passage. The cells were tested regularly for mycoplasma using
a PCR kit (Catalogue# G238; Applied Biomaterial, Vancouver, BC, Canada)Joshi, 2008. Plasmid trans-
fection was done 24 hours after seeding the cells using Lipofectamine 2000 (Life Technologies, Thermo
Fisher Scientific) following manufacturer’s protocol.

5.3.3 SMLM Preparation and Imaging

Coverslips (No. 1.5 H) were sonicated for 30 minutes in 1M potassium hydroxide followed by 30-minute
sonication in 100% ethanol and then rinsed with Milli-Q water [12]. The cells were fixed 18 hours after
transfection using 4% paraformaldehyde (PFA) in phosphate-buffered saline containing 1 mM MgCl2
and 0.1 mM CaCl2 (PBS-CM) for 15 minutes, rinsed thrice with PBS-CM, permeabilized using 0.2%

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2025. ; https://doi.org/10.1101/2025.09.29.679377doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.29.679377
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.4 SuperResNET Merging and Filtering

Triton X-100 diluted in PBS-CM, incubated with Image-iT FX Signal Enhancer (Thermo Fisher Scien-
tific) and blocked using BlockAid Blocking Solution (Thermo Fisher Scientific) [12]. The cells were incu-
bated with primary rabbit anti-Cav1 and mouse anti-GFP diluted in saline sodium citrate (SSC) buffer
containing 1% BSA, 2% goat serum and 0.05% Triton X-100 overnight at 4 °C and then with secondary
F(ab’)2-goat anti-rabbit Alexa Fluor 647 and F(ab’)2-goat anti-mouse CF568. Cells were washed with
SSC buffer containing 0.05% Triton X-100 and post-fixed with 4% PFA for 15 minutes. The cells were
then incubated with 0.1 µm TetraSpeck Fluorescent Microspheres (Thermo Fisher Scientific) overnight.
Before imaging, samples were mounted in freshly prepared blinking buffer containing 10% glucose (Sigma-
Aldrich Inc.), 0.5 mg/ml glucose oxidase (Sigma-Aldrich Inc.), 40 µg/mL catalase (Sigma-Aldrich Inc.),
50 mM Tris, 10 mM NaCl and 50 mM β-mercaptoethanol (βME; Sigma-Aldrich Inc.) in Milli-Q water
and sealed on glass depression slide. Three replicates of dSTORM images (at least 10 randomly selected
images per replicate) were acquired using a Leica SR GSD 3D system with a 160 × objective lens (HC
PL APO 160 × /1.43, oil immersion), a 642 nm laser line, a 542 nm laser line and a EMCCD camera
(iXon Ultra, Andor). Epi-illumination was used to bring fluorophores to single molecule blinking, and
TIRF-illumination with 150 nm penetration depth was used for acquisition using Leica Application Suite
× using high power mode (region of interest 18×18 µm2). The Alexa Fluor 647 channel was acquired
prior to CF568 channel, and each channel was imaged for 4 minutes with 11 ms exposure per frame. 3D
localization was performed using a custom written macro of ImageJ plug-in ThunderSTORM [41], and
lateral drift was corrected using cross correlation. 647 and 568 channels were aligned using SMLMTools.jl [42]
using TetraSpeck as a reference.

5.4 SuperResNET Merging and Filtering

We used the SuperResNET network analysis tool [9] to preprocess the SMLM point cloud data for all
the datasets used. The program iteratively merges blinks within a predefined threshold to correct for
multiple-blinking fluorophores; we used a threshold of 10 nm for the simulated dataset, a threshold of 20
nm for the PC3,PC3-CAVIN1 dataset, and a threshold of 14 nm for both channels in the Cav1-cavin-1
dataset. This is followed by a reduction of background noise not associated with any molecules through
a filtering stage by comparing the degree graph of the localizations to that of a random graph with simi-
lar statistics. The degree graph was constructed using a proximity distance of 80 nm for both real datasets
to determine the neighbors, while 60 nm was used for the simulated dataset. A parameter α is used to
determine the filter cutoff. Given Dr as the mean degree in the random graph, the localizations that
contain a degree less than or equal to the cutoff α · Dr are removed. For the PC3-CAVIN1 dataset, this
value was set to α = 4. In the Cav1-cavin-1 dataset, the Cav1 channel used α = 0.5, while the cavin-1
channel used α = 1.95. This was determined by choosing an α that removed 95% from the background
of manually segmented cells.

5.5 siMILe Hyperparameters

For the PC3, PC3–CAVIN1 dataset, within each condition and for each experimental replicate we re-
served 2 cells for the validation set and 2 cells for the test set, using the remaining cells for training. Hy-
perparameters (bag size= 500, σ = 1000, C = 1000, minacc = 0.85) were selected by optimizing perfor-
mance on the validation set and then fixed for evaluation on the held-out test set.

For the simulated dataset and its ablation study (siMILe, MILES+AE, MILES+SYM-C, MILES), we
employ nested 5-fold cross-validation: an inner 5-fold grid search over the hyperparameter grid in Table
1, and an outer 5-fold loop to estimate held-out performance.
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Table 1: Grid of candidate values for inner-loop tuning on the simulated dataset.

Hyperparameter Candidate values
Bag size {5, 25, 50, 75, 100}
σ {0.1, 0.5, 1, 10, . . . , 106}
C {0.01, 0.1, 0.5, 1, . . . , 104}
minacc {0.5, 0.55, . . . , 0.95}
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7 Figures

Figure 1: Overview of the proposed pipeline. The data preprocessing is shown at the top of the figure, which includes
inputting SMLM conditions A and B into SuperResNET for denoising and segmentation, followed by feature extraction.
Next, the processed data of both conditions are input into the siMILe module for classification into either structures spe-
cific to A, structures specific to B, or ambiguous. The details of siMILe are given within the dotted box. To train, the
instances from a given class are grouped into bags, these bags are given an embedding by comparing all of its instances
to the training data. Each dimension is represented by comparing the similarity of the bag to a given training instance.
Next, a l1-norm SVM classifier learns to fit a hyperplane that best separates the bags based on class. The instances of a
bag can be labeled based on their contribution to the bags classification. Unlabeled instances are reused in the adversarial
erasing steps, where the model is retrained using them. Structures are visualized using the convex hull of its localizations
for clarity.
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Figure 2: Visualizing two different multiple instance learning formulations. (A) Depicts the traditional MIL for-
mulation with two classes: positive and negative. Both classes consist of negative instances, while only the positive class
contains positive instances. Therefore, it is assumed that while a positive bag will have at least one positive instance, a
negative bag will have only negative instances. (B) The case where both classes contain instances not found in the other.
Class A contains instances of type a and c, while class B contains instances of type b and c. Thus, it is assumed that while
each class contains instances shared with the other, they also contain instances that are specific to their class.

Figure 3: Diverse Density Concept Demonstrated. Example positive bags (green) and negative bags (red) are em-
bedded into 2D and plotted. A concept capable of differentiating the positive and negative bags is also plotted in the same
space. The positive bags have a closer distance to the concept than the negative bags, meaning that there exists a thresh-
old on this distance capable of correctly labeling all bags.
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Figure 4: Adversarial erasing applied to multiple instance learning. The visual is given in the context of the for-
mulation where two classes are compared; A and B, with class A having instances a and c, while class B has instances b
and c. The goal in this formulation is to label the instances a and instances b. The visualization follows the state of a sin-
gle class A bag through adversarial erasing iterations. In each iteration the classifier is trained to separate bags by class,
after which it applies labels to the instances in the bag. All instances given a label a are removed from the bag before the
next iteration. The iterations stop when attempting to train the classifier no longer results in the ability to sufficiently
classify bags, at which point all the labels given through the iterations are collected, with the remaining instances labeled
as c. The instances labeled a in early iterations are those that were the focus of the classifier while training at that itera-
tion, by removing them before the next iteration, the classifier is forced to learn based on the remaining.
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Figure 5: Generating the two conditions of the simulated dSTORM dataset and applying siMILe to identify
condition-specific clusters.. The simulated dSTORM dataset consists of 3D point clouds, each labeled as condition A
or B. Condition labels are determined by the cluster classes present within the point clouds, which differ by their genera-
tive distributions. Specifically, condition A contains clusters from classes a and c, while condition B includes clusters from
classes b and c. These point clouds are processed with the RMLM [32] package to simulate dSTORM image acquisition.
Once multiple datasets for each condition are generated, the siMILe pipeline is applied to identify and label clusters as
either condition-specific (discriminative) or common to both conditions..

Figure 6: Ablation results on instance classification performance and single core runtime. The highest F1 score
is maintained by siMILe across bag sizes, followed closely by MILES + AE, then MILES, with MILES + SYM-C having
the worst performance. The recall is similiar to F1 except for MILES + AE performing slightly better than siMILe re-
gardless of bag size. The highest precision scores are siMILe and MILES + SYM-C while MILES has the lowest except as
smaller bag sizes. The models using AE have significantly higher training times, increasing with bag size when maximiz-
ing classification performance, while MILES and MILES + SYM-C maintain low train times regardless of bag size when
achieving their best classification performance. Lines show mean values from nested 5-fold cross-validation with shaded
regions indicating ±1 standard deviation.
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Figure 7: Experiment setup for the application of siMILe to PC3,PC3-CAVIN1 and two-channel Cav1-
cavin-1 datasets. (A) The PC3,PC3-CAVIN1 3D point cloud dataset is split into training, validation, and testing sub-
sets. The training and validation sets are used to train siMILe and fine-tune hyperparameters for labeling clusters. The
final trained model is applied to the test set to generate the reported results. (B) The pre-trained model from A is applied
to the Cav1 channel of the Cav1-cavin-1 dataset. Clusters identified by the model are labeled and compared against the
SuperResNET-processed cavin-1 channel to assess co-occurrence by label.

Figure 8: Feature comparison of predicted blob labels in the PC3,PC3-CAVIN1 dataset. After applying siMILe
to compare the PC3 and PC3-CAVIN1 conditions, we show the proportion of labels predicted in the first plot out of the
7060 blobs, with ∼93% of the blobs labeled as common. The feature distribution of these blobs, based on the predicted
labels (discriminative in red and common in green), is compared against the feature distribution of all blobs in the PC3
(orange) and PC3-CAVIN1 (blue) datasets. The discriminative blobs are consistently larger in size with many more local-
izations. They also appear to be more spherical, contain less dense networks, and contain more modules. These features
are signature for caveolae, one of the known unique differences between PC3 and PC3-CAVIN1. This shows that siMILe
is able to isolate caveolae as unique to PC3-CAVIN1, given that they require cavin-1 to form. Objects identified as cave-
olae in panel B are classified using SuperResNET. It is possible that SuperResNET mislabels some S2 as caveolae and
vice versa, which can explain the partial agreement of siMILe and SuperResNET. Box plots show median (center line),
interquartile range (box), and 1.5× IQR (whiskers). Statistical comparisons were performed using the two-sided Mann-
Whitney U test. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Non-significant comparisons (p ≥ 0.05) are not
marked.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2025. ; https://doi.org/10.1101/2025.09.29.679377doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.29.679377
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9: SuperResNET classification of two-channel Cav1-cavin-1 dSTORM images (A) 2D mask overlay of
3D Cav1-cavin-1 two-channel dSTORM images. Scale bars: 2 µm (whole image) and 150 nm (inset). (B) Overlay of Cav1
SuperResNET classes (red: caveolae, yellow: S2, green: S1B, cyan: S1A) and cavin-1. Scale bars: 3 µm (whole image) and
250 nm (inset).
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Figure 10: Feature comparison of predicted blob labels in the Cav1-cavin-1 dataset from trained model. (A)
After applying siMILe trained on PC3,PC3-CAVIN1 to the Cav1 channel of the Cav1-cavin-1 dataset, the proportion of
labels is shown in the first plot, with the majority of the 30,412 blobs labeled as common. The feature distribution of these
blobs, based on the predicted labels (discriminative in red and common in green), is compared against the feature distribu-
tion of all blobs in the Cav1 (blue) images. The discriminative blobs consistently follow the trend seen in the PC3-CAVIN1
predictions. These blobs are of a larger size, contain a higher count of localizations, are more spherical, have less dense
networks, and have more modules. (B) The predicted labels are compared between both datasets through a normalized
euclidean distance, supporting the similarity of these labels across both datasets. Box plots show median (center line),
interquartile range (box), and 1.5× IQR (whiskers). Statistical comparisons were performed using the two-sided Mann-
Whitney U test. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Non-significant comparisons (p ≥ 0.05) are not
marked.
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Figure 11: Correlation analysis of network features with discriminative labels and cavin-1 interaction. (A)
Scatter plot showing the correlation of blob features with the discriminative label (x-axis) and cavin-1 interaction (y-
axis). Features follow a positive correlation trend, indicating a consistent relationship between discriminative properties
and increased cavin-1 interaction. The product of correlations ranked (right) highlights network density, distances to cen-
troid, and spatial range parameters as top contributors. (B) Similar correlation analysis excluding SRN caveolae samples.
The exclusion slightly alters correlation rankings, with volume, area, localization count, and network density being the
strongest contributors. (C) Box plots displaying cavin-1 Blob Overlap Parameter (BOP) distributions across different SRN
classes (All Classes, S1A, S1B, S2, and caveolae), separated by siMILe predicted labels (discriminative in red, common in
green, combined in gray). Across SRN S2 and S1B, discriminative blobs exhibit larger overlap compared to common blobs
based on the larger BOP values, indicating that siMILe identifies structures with cavin-1 association patterns despite not
being SRN caveolae. Box plots show median (center line), interquartile range (box), and 1.5× IQR (whiskers). Statistical
comparisons were performed using the two-sided Mann-Whitney U test. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <
0.001. Non-significant comparisons (p ≥ 0.05) are not marked.
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Figure 12: Feature comparison of discriminative and common blobs within SuperResNET classes. Results
from applying the PC3/PC3-CAVIN1 trained model to the Cav1-cavin-1 dataset (30,412 blobs), displayed as a 3×5 grid.
First two panels show the proportion of discriminative and common labels within each SRN class (S1A: 0% discrimina-
tive; S1B: 26%; S2: 55%; caveolae: 86%). Remaining panels show feature distributions for all samples (blue), as well as
discriminative (red) versus common (green) blobs within each class. For S1B and S2 scaffolds, discriminative blobs exhibit
lower network density, higher distance to centroid statistics, larger spatial ranges, and greater size metrics, with network
modularity differences very pronounced in S1B. Common caveolae show larger values across size-related features than dis-
criminative caveolae. S1A scaffolds excluded due to absence of discriminative blobs. Box plots show median (center line),
interquartile range (box), and 1.5× IQR (whiskers). Statistical comparisons were performed using the two-sided Mann-
Whitney U test. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Non-significant comparisons (p ≥ 0.05) are not
marked.
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