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Abstract

Clustering is a fundamental task in data analysis: grouping similar objects together into
distinguishable subsets. Here, we introduce HDCluster, a novel high-degree graph-based
clustering algorithm designed to effectively and rapidly handle various real-world clustering
applications, particularly in the context of super-resolution single molecule localization microscopy
(SMLM). HDCluster efficiently handles datasets with large and variable numbers of clusters,
without requiring prior knowledge of the cluster count, relying on only one parameter. The high
speed and efficiency of HDCluster allow it to handle large SMLM datasets with millions of
localizations. A comprehensive quantitative comparison against state-of-the-art clustering
methods using simulated, public, and real-world datasets demonstrates that HDCluster
outperforms other clustering algorithms in terms of time efficiency and clustering performance
measures, such as ARl and AMI. HDCluster is particularly robust to noise, making it a promising
and effective tool for various clustering tasks in big-data settings, such as SMLM.
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INTRODUCTION

Clustering is an unsupervised machine learning task where data samples are grouped according
to similarities, ensuring that similar samples fall into the same group while dissimilar ones are
separated. Hence, grouping is formed based on intrinsic similarity patterns across the data’. Data
clustering is valuable in domains where ground truth labels are not available or hard to be
collected, such as single molecule localization microscopy (SMLM).

SMLM comprises a family of super-resolution imaging techniques, such as Photoactivated
Localization Microscopy (PALM)? and Stochastic Optical Reconstruction Microscopy (STORM)?,
that circumvent the Abbe diffraction limit of conventional light microscopy via stochastic excitation
of fluorophores and fitting of the point spread function (PSF) to localize single fluorophores at
precisions of tens of nanometers*. DNA points accumulation for imaging in nanoscale topography
(DNA-PAINT) utilizes the transient binding of fluorescent DNA strands to achieve both high
precision and multiplexing®. Minimal photon fluxes (MINFLUX) combines spatially structured
illumination with localization analysis® and Resolution Enhancement by Sequential Imaging
(RESI) combines DNA-PAINT with sequential imaging of sparse labeling sites’ achieving
nanometer and sub-nanometer resolution. SMLM data are represented as a point cloud of 2D/3D
coordinates of molecular localizations®. SMLM data cluster analysis enables quantitative study of
nucleic acid organization, protein aggregates, and other cellular structures at the nanoscale®™"".
However, SMLM data exhibit challenges such as noise, variations in density and size, large
dataset volumes, and the presence of a high and often unknown number of clusters'?.

Several algorithms have been proposed for data clustering in general, and specifically for SMLM
data analysis, based on diverse principles, including distance, density, graph/spectral properties,
or other similarity-driven approaches'?. Every clustering algorithm has underlying assumptions
and parameters that restrict its universality across applications and data types. For example, the
k-means algorithm requires the number of clusters to be specified ahead of time and assumes
spherical clusters of similar sizes"'®. Other clustering methods are sensitive to noise and outliers
(e.g., hierarchical clustering), lack scalability to very large datasets in terms of time and space
(i.e., memory), and struggle with clusters of varying shape and density"'*. Here, we introduce
HDCluster, a similarity graph-based clustering algorithm, and show that it outperforms competing
clustering algorithms and is particularly robust to the challenges of noisy, heterogeneous point
cloud-based SMLM data. HDCluster realizes various computational tasks aimed at SMLM data
analysis, including reconstructing binding sites, identifying nanoclusters and macromolecular
structures, and denoising the data.

RESULTS

1. HDCluster Framework and Computational Tasks

HDCluster is a spatial data clustering method that can be leveraged to find clusters in SMLM data.
The HDCluster algorithm has one parameter, merging threshold (mTh), used to construct the
similarity graph and then get the node degree as a feature to start iterating and merging the nodes
to get the clusters. The setting of the mTh parameter is related to the physical characteristics of
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the clusters, i.e., the size/scale of the sought clusters (Figure 1A). HDCluster finds the clusters
after the convergence condition is achieved and returns the per-localization class label, including
labels for noisy localizations. 8 is an optional parameter to control noise removal with a default
setting that can be changed if needed. See the Methods Section for more details about the
algorithm.

Figure 1B illustrates HDCluster capabilities, encompassing various computational tasks for SMLM
data analysis, such as (1) emitter reconstruction (or binding sites reconstruction), (2) finding true
biological clusters and nanoclusters in the SMLM data, and (3) denoising SMLM data.

2. HDCluster Performance Comparison with Other Clustering Methods

To evaluate clustering performance and tune the algorithm’s parameters, we used the adjusted
Rand index (ARI)"® and the adjusted mutual information (AMI)'®as performance metrics. ARI
measures similarity between predicted and ground truth labels and AMI captures the amount of
shared information between clusters, corrected for chance. AMI is a more robust measure when
the number of clusters varies and accounts for bias toward certain cluster size distributions''8.

We applied HDCluster and other commonly used clustering methods to the shape benchmarking
dataset'®, widely used for assessing clustering methods' performance. This data set of 2D points
and their corresponding membership as ground truth (GT) labels includes blob-like and spherical
clusters similar to SMLM data of biological clusters: Aggregation with 7 clusters, Flame with 2
clusters, R14 with 14 clusters, and D31 with 31 clusters (Supp. Figure 1A). We tested state-of-
the-art clustering methods, including Border Peeling (BP)®, Quasi-Cluster Centers (QCC)*',
Robust Continuous Clustering (RCC)??, Density Peaks (DP)?*, mean-shift (MS)?*, and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)®, as well as HDCluster, on these
benchmark datasets (Supp. Table 1 shows the number of parameters and other information for
the studied methods). We tuned each method’s parameters based on AMI. Supp. Figure 1A
shows the qualitative results and Figure 1C summarizes the quantitative results when applying
the clustering methods to the shape benchmarking dataset. Only HDCluster and DP retrieve the
correct number of clusters across all tested datasets. However, DP shows poor performance on
the Flame dataset (ARI of 33% and AMI of 41%), where HDCluster achieves much higher
accuracy (92% ARI and 86% AMI). Notably, HDCluster outperforms DBSCAN on the D31 and
R15 datasets, both of which mimic nanocluster structures observed in SMLM data.

Nieves et al.?® introduced a standard benchmarking framework for comparing clustering

algorithms on SMLM point cloud data. Their work includes generating simulated ground truth point
patterns with realistic blinking and localization uncertainty. The dataset comprises 10 distinct
scenarios/conditions (variations in density, cluster size, blinking behavior, background noise, etc.)
with and without multiple blinking artifacts. Each scenario contains 50 different point cloud files.
They tested and compared the performance of several clustering methods, which include:
DBSCAN?, topological mode analysis tool (TOMAT0)?, kernel density estimation (KDE)?, fast
optimized clustering algorithm for localizations (FOCAL)?, cluster analysis by machine learning
(CAML)*, ClusterViSu®', and SR-Tesseler®?. The methods’ parameter spaces are scanned
systematically under each condition. In their results, DBSCAN, ToMATo, and KDE generally
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perform well across multiple conditions and are relatively robust, with DBSCAN showing
superiority. The other methods, ClusterViSu, SR-Tesseler, and FOCAL, show weaker
performance in many settings. All methods suffer performance drops under multiple blinking
localization conditions. We assessed HDCluster using the benchmarking SMLM datasets in
accordance with the methodology outlined by Nieves et al.?®. All experiments were performed with
the denoising feature activated. We tuned the key parameters of HDCluster, mTh and the optional
filtering parameter 3, to maximize the average AMI of the 50 files of each scenario.

For performance comparison, we selected DBSCAN, the most effective method identified by
Nieves et al.?®, and employed their reported parameters to ensure fairness. The AMI and ARI
values for HDCluster and DBSCAN are presented in Supp. Table 2. Across all simulated
scenarios, HDCluster outperforms or matches DBSCAN in both ideal (i.e., no added blinking) and
multiple blinking scenarios. In the ideal scenarios, both methods achieve comparable results, with
HDCluster showing slightly higher ARI and AMI values in most cases (e.g., Scenario 3: 0.90 +
0.017 vs. 0.84 + 0.017 for ARI). However, when multiple blinking is introduced, HDCluster
demonstrates greater robustness, maintaining high average clustering accuracy (average ARI =
0.57 and AMI = 0.68) compared to DBSCAN, whose performance drops noticeably (average ARI
=~ 0.51 and AMI = 0.62). Under multiple-blinking (the harder, SMLM-like condition), HDCluster
shows a clear advantage of about +0.06 absolute difference in both ARl and AMI (= 9.7-11.8%
relative improvement). This highlights HDCluster’s ability to efficiently handle emitter counting and
multiple blinking artifacts typical in SMLM data.

3. HDCluster Robustness to Noise and Scalability

To test the ability of the different clustering methods to handle noisy data, we generated datasets
that comprise clusters with various shapes and densities with additive noise points as described
in Methods Section 4. Figure 2A shows one experiment for the generated clusters concatenated
with a noise level of 20% of the total clustered points drawn from a uniform distribution. DBSCAN
and HDCluster efficiently handle the noisy data and extract clusters, while QCC, DP, RCC and
MS are unable to accurately segment noise from clusters. We varied the noise level from 0%
(clusters only) to 100% with a step size of 10% and compared DBSCAN, BP and HDCluster at
each noise level (Figure 2B). The parameter(s) for DBSCAN and HDCluster are selected based
on ground truth data and the AMI score, as shown in Figure 2C, which shows a single case where
the noise level is 100%. DBSCAN and HDCluster are robust to high noise levels; for BP, AMI and
ARI are progressively reduced as the noise level exceeds 40% (Figure 2B).

To assess the speed of the clustering algorithm for SMLM data, we applied the clustering methods
to the same datasets and on the same hardware (Intel(R) Core(TM) i7-4790 CPU @ 3.6GHz.
Memory 32 GB, without other processes/applications running during testing). We first calibrated
the running time for each algorithm on the small dataset from Figure 2A. Some of the algorithms
are implemented in Python, while others are implemented in MATLAB. In our comparison, we
used the latest optimized implementation of DBSCAN in MATLAB 2024b. HDCluster is the fastest
algorithm, retrieving clusters in ~0.046 seconds, with DBSCAN second followed by MS, DP, RCC,
and QCC, and finally the BP algorithm (Figure 2D). We then applied the algorithms to a real SMLM
dataset of Caveolin-1 labeled HeLa cells of more than 1.5 million localizations®® (Supp. Figure 2).
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Only HDCluster, DBSCAN and MS were able to handle the data on our testing workstation
(Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz. Memory 94 GB) with the other algorithms
crashing the computer and failing to complete. We calculated the runtime for MS, DBSCAN, and
HDCluster starting with 10% of total localizations, progressively increasing the sample size to the
total number of localizations (Figure 2E). The runtime for MS grew exponentially with dataset size,
and we stopped the analysis after reaching 30% of the 1.5 million localizations. For DBSCAN and
HDCluster runtimes were calculated for increments up to the full data size (i.e., 100%, ~1.5 million
localizations). At 100% of the total data, HDCluster is >55 times faster than DBSCAN, and we
expect the trend to continue as the dataset becomes larger (Figure 2E).

4. HDCluster Binding Site Reconstruction Outperforms DBSCAN

Binding site and emitter reconstruction and protein counting are important tasks in SMLM data
analysis'**. To test whether the representative (or consensus) localizations of HDCluster
iterative merging approximate true emitter positions, we analyzed SMLM data from the Gatta-
PAINT 80nm nanoruler that has three binding sites (emitters) organized linearly with a spacing of
80nm (Supp. Figure 3A). Calculation of the 1st-5th nearest neighbor (NN) distances calculated
for HDCluster reconstructed emitters, shows that the majority of emitters are within ~80nm.
HDCluster was then applied to the DNA origami nanostructure dataset published recently for the
SPINNA method that compares experimental single-protein NN distances with simulated data
generated from user-defined protein oligomerization models®*. HDCluster was used to reconstruct
the binding sites for linear and triangular DNA origami nanostructures with three binding sites
spaced ~15nm (Supp. Figure 3B). We used mTh = 0.04 X pixelSize (i.e., mTh = 5.2nm),
where the pixel size is 130nm. For linear origami, HDCluster effectively reconstructs the binding
sites for the two origami structures and calculated NN distances, where the first peak is at ~15nm
and a second peak at ~30nm for linear origami and ~15nm for triangular nanostructures.

We then compared the binding site reconstruction performance of HDCluster and DBSCAN using
a dataset of 3 x 4 origami grids arranged at 20nm spacing (Figure 3A)**. HDCluster was applied
with mTh = 0.06 X pixelSize (i.e., mTh = 7.8nm for a pixel size of 130nm) and evaluated
against the results reported by Stein et al.*°, who analyzed NN of DBSCAN cluster centers using
the same parameters reported in their study: € = 2 X oyeya = 2 X 4.2 = 84 nm and MinPts =
6. Calculations of the 1st-5th NN distance show that the peaks are sharper and clearer for
HDCluster relative to DBSCAN, with the highest peak at 20nm (peak (a) in Figure 3B), the second
highest peak at 28nm (peak (b)) and so on (Figure 3B). The zoomed-in regions show superior
clustering performance when using HDCluster over DBSCAN. With DBSCAN, some of the binding
sites are filtered out, some merged and some averaged, affecting counting and the subsequent
analysis of NN values. Indeed, the frequency of occurrences is more representative for HDCluster
than DBSCAN; the expected 17 occurrences of peak (a) vs 8 occurrences of peak (d) in the 3 x 4
origami grids are accurately reported by HDCluster but not DBSCAN, which shows a similar
frequency of events for peaks (a) and (d). Overall, HDCluster outperforms DBSCAN at various
benchmarking clustering tasks and is significantly faster.
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5. Conclusion

HDCluster is a simple, scalable, one-parameter clustering method that is very fast and robust to
noise. By combining density-based clustering with graph-based techniques, HDCluster provides
robust and accurate cluster identification in SMLM datasets, even with very large datasets of
hundreds of thousands or millions of DNA-PAINT localizations, which allows for precise emitter
reconstruction.

METHODS
1. HDCluster Algorithm

HDCluster is an unsupervised algorithm for spatial data clustering. It is an iterative similarity
graph-based clustering method that discovers clusters and estimates their centroids, which are
referred to as consensus localizations that approximate the true emitter positions. Figure 1A
illustrates the algorithm based on 2D data points and details the underlying methodology.
However, the algorithm works for 3D spatial data as well. The one parameter that the user needs
to choose to run the algorithm is the “merging threshold (mTh)’. The algorithm begins by
constructing a similarity graph based on the spatial proximity parameter mTh and calculating the
node degree. Nodes are sorted based on the degree in descending order, so the algorithm
iteratively merges each high-degree node with its connected neighbors, computing their mean
spatial coordinates. The algorithm keeps iterating until all nodes are visited and produces a set of
mean nodes that represent preliminary cluster centers. In the next stage, HDCluster reconstructs
a new graph using the mean nodes and repeats the merging process across multiple iterations
until the convergence condition is reached, where no edges remain between mean nodes, which
is an indication that clusters are fully separated. Each top-level mean node is then assigned as a
unique cluster ID, and labels are backtracked from these centroids to the original nodes such that
every localization/point belongs to one cluster only. The resulting top-level mean nodes represent
the emitters of the extracted nanocluster/cluster. Additionally, HDCluster can incorporate a
denoising step to filter out low-degree nodes, effectively removing noisy/background localizations
(see Methods Section 3 for a more extensive discussion of filtering options).

The mTh parameter selection is based on the physical characteristics of the underlying clusters,
and one of the heuristics to set this parameter is based on Ripley’s H-function (see Methods
Section 2 for a more extensive discussion of mTh). However, it can be selected based on the
application and the spread of the clusters, as illustrated in Supp. Figure 4 and Equation (2). B is
an optional parameter to control the noise removal with a default setting that can be changed if
needed (see Methods Section 3 for a more extensive discussion of (3).

2. HDCluster Merging threshold (mTh) and Evaluation Measures

Merging threshold (mTh) in HDCluster is a spatial proximity parameter that governs the similarity
graph construction and guides the iterative merging of nodes toward the convergence of cluster
means of consensus localization. Selection of mTh depends on the intrinsic properties of the
dataset and the physical characteristics of the clusters, such as their spatial extent or point
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dispersion. Also, it can be determined by H-Ripley’s function or empirically through a data-driven
heuristic to balance cluster separation and cohesion.

To demonstrate how we can set the mTh parameter, we simulated various scenarios of
neighboring emitters (Supp. Figure 4A) with varying separation distance, defined as the space
between the centers of the clusters. o is the standard deviation of the Gaussian that quantifies
the spread of the localizations/points around each cluster center. We derived the overlapping
distance as a function of o and separation distance to quantify the extent of overlap between the
clusters, with negative values reflecting the separation between the boundaries of non-
overlapping clusters (Equation (1)). The parameter mTh can be set according to Equation (2).
We also define three measures of error: counting error (error_C), localization error (error_L1),
and localization error (error_L2) (Equations (3-5)).

To assess the applicability of the HDCluster in reconstructing the emitters, we simulate various
scenarios that may be similar to real-world situations, where the molecules can be sparse or very
dense. We simulated two Gaussian emitters and change two parameters, (1) the separation
distance (i.e., the distance between the centers/means of the two Gaussians or the emitters,
which we use to simulate the density of the molecule in larger grids) and (2) the standard deviation
of the Gaussians o, that simulates the localization precision, i.e., the uncertainty in detecting the
position of that emitter across repeated localizations, as shown in Supp. Figure 4A. The
overlapping distance between the two clusters is defined as the distance between the borders of
the clusters. The overlap between the localizations of the emitters is calculated according to
Equation (1). The overlapping distance is a function of o and separation distance. In the
simulation, we can change the separation distance and o to compute the amount of overlap
between the neighboring clusters. The overlap is negative when the localizations of the
neighboring emitters are not overlapping, and the overlap is positive when the localizations of the
neighboring emitters are overlapping. The overlap equals zero when the borders of the two
clusters are touching each other (Supp. Figure 4A).

Overlap = —(Separation — 20) Eq(1)
Where 0 is the standard deviation of the Gaussian-generated data.

The HDCluster parameter, merging threshold (mTh), can be selected to reconstruct the emitters'
locations based on Equation (2).

20 : Querlap <0

mTh =
120 — |MH : Querlap > 0

Ea(2)

In Equation (2), when the neighboring clusters are well separated or their borders touch each
other (i.e., Overlap < 0), the parameter mTh = 20 ensures appropriate merging within each
cluster. However, as clusters become closer and their borders overlap (i.e., Overlap > 0), mTh

should be reduced to prevent unintended merging of adjacent overlapping clusters (i.e., mTh can

Overlap | I
2

be safely adjusted to mTh = |20 — | ). This approach aligns with adaptive thresholding
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strategies used in hierarchical and graph-based clustering methods, where thresholds decrease
as clusters become denser or closer.

More formally, we simulated 3D grids of size 3 x 3 x 3 and we changed the separation distance
and the standard deviation of the Gaussians 0. Moreover, we also changed the density of the
localizations around everyone of the simulated emitters as shown in Supp. Figure 4B. HDCluster
is used to reconstruct the emitters. The parameter mTh is selected according to Equation (2). To
assess the quality of emitter location reconstruction, we introduced three measures, as we have
the ground truth location for the emitters. We quantitatively calculated three types of errors:
error_C Equation (3), error_L1 Equation (4), and error_L2 Equation (5).

Error C = —x (R —G) X 100% Eq(3)

where G is the number of ground truth (GT) emitters and R is the reconstructed emitters or binding
sites. In the error_C, positive values mean overcounting, negative values mean undercounting,
and zero means no counting error.

Error_L1 (nm) = %Ziﬂ D1; Eq(4)

where D1, is the distance between the GT emitter i and the location of the nearest reconstructed
emitter. Error_L1 is normalized by the number of ground truth emitters G.

Error_L2 (nm) = %Zizl D2; Ea(d)

where D2; is the distance between the reconstructed emitter j and the location of the nearest GT
emitter. Error_L2 is normalized by the number of reconstructed emitters R.

We generated a larger 3D 3 x 3 x 3 grid of simulated emitters and localizations, where the
localizations’ membership and the emitters’ location are considered as a ground truth (GT) for
evaluation via the error measures (Supp. Figure 4B). We generated 20 grids for each pair of o
and separation distance and computed the three types of counting (i.e., error_C) and localization
errors (i.e., error_L1 and error_L2). We started with a low density of 10 localizations per emitter
and increased the density to 35 localizations per emitter. We notice that the counting error
(error_C) is improved (Supp Figure 4B, left vs right), indicating emitter reconstruction is much
better for a higher density of localizations. As o decreases (i.e., more precise localizations), the 3

types of error become smaller (Supp. Figure 4B). For example, when using ¢ = 2, for any

separation distance 210nm, and for a number of localizations 35 per emitter, the error_C is zero,

and both the error_L1 and error_L2 are almost zeros (i.e., the location of the reconstructed
emitters is almost identical to the ground truth location). The error graphs show that the
reconstruction errors remain relatively low, even under challenging conditions where nearby
emitters exhibit substantial overlap. In the worst cases, error_L1 and error_L2 stay below ~30nm
and 14nm, respectively. Error_L1 and error_L2 fluctuate due to overcounting or undercounting,
specifically in challenging cases of highly overlapping or low-density nanoclusters.
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3. HDCluster Denosing Parameter - Spatial Filtering Option

HDCluster incorporates a denoising option to filter out noisy localizations (background, outlier
points, etc.). The denoising capability/function in HDCluster can be enabled or disabled by the
user. If enabled, the user can set a 3 value or rely on the default B value. The embedded filtering
works by calculating the degree for all the nodes, then labeling all the nodes with a degree below
a low degree with a 0 label (i.e., noisy localizations). The low_degree value is calculated as shown
in Equation (6).

Low_degree = B X mean(degree), Eq(6)

where mean(degree) is the average node degree that is calculated when the graph is constructed
with the mTh parameter, B which is a scalar that controls the denoising process. As a rule-of-
thumb, the default value B = 0.2 is selected to label the non-clustered localizations as noisy.
However, the user can select other 3 values that might control the noise removal according to the
data, where larger B values employ harsh filtering. 8 is a scaling factor that controls the minimum
node degree relative to the average connectivity of the graph, which determines how aggressively
HDCluster removes low-connectivity nodes (potential noise). Setting B = 0.2 ensures that only
nodes whose connectivity <20% of the mean graph degree are labeled as noise and generalizes
well across different datasets without prior tuning. Setting B balances between retaining true
cluster points at the periphery and filtering isolated/background points that do not contribute
meaningfully to the cluster structure. We provided the user with the ability to change B. Higher
values (i.e., >0.2) can lead to harsher filtering, which can fragment clusters and remove
localizations within low-density regions.

4. Generating Data with Various Shapes and Densities with Additive Noise

To test the robustness of the clustering methods to noise, we generated a dataset with K = 80
Gaussian clusters that varied in density and were randomly positioned in 3D space. Each cluster
has a minimum of 10 points and a maximum of 100 (for various-density clusters), and of various
shapes, varying the covariance matrix diagonal of the Gaussians as given in Equation (7).

Let each clusteri € {1,2,...,K} be defined by:

e Mean p; = [Wix, tiy, tiz]" € R®

O',Lzm 0
=0 o
e Covariance matrix (diagonal): 0 0 Oz
each cluster i contains n; points: x;; ~ N(u;,2;), j=1,...,n Eq(7)

Sampling procedure:

(i) For each cluster i € {1,2,..., K}, randomly sample the mean:
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Ui ~ Uniform([xminvxmax] X [yminv ymax] X [Zmin: Zmax]); then

(if) randomly sample diagonal variances:

0%, 05, 0l ~ Uniform(opim, 0hax) » where o, = 1 and g4, = 21

from the diagonal covariance matrix X; as shown above. Sample n; points from the 3D Gaussian
distribution x;; ~ N(u;, Z;). Notice that the off-diagonal elements are all zero, so the clusters are
axis-aligned ellipsoids. The variance values control the spread along each axis independently to
get different shapes. We simulated the irregular cluster sizes by drawing n; randomly (i.e., uniform
distribution) to vary the clusters’ densities. We then varied the noise by controlling the noise level,
where the noise level can be selected for every experiment and drawn from a uniform distribution.
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Supplementary Information and Figure Legends

Figure 1 Overview of the HDCluster framework to cluster, denoise, and reconstruct the
emitters/binding sites in simulated and DNA-PAINT data. (A) lllustration of the HDCluster
algorithm to obtain data clusters as well as the centroids (the consensus localizations that
approximate the true emitter positions by computing the mean of means) of the extracted clusters.
HDCluster is an iterative algorithm that starts from the similarity graph constructed based on the
mTh parameter. The degrees of the graph nodes are calculated. The nodes are sorted in
descending order of node degree. The algorithm starts iterating from the node with the highest
degree. All the nodes that share edges with this high-degree node are merged; the mean (in terms
of average coordinates for the nodes’ spatial locations) of these merged nodes is calculated and
all these merged nodes are marked as visited nodes. After that, the algorithm moves to the next
highest degree node in the list, with at least one node that is marked as not visited, and so on
until all the nodes are marked as visited. After concluding this first round of iterations, HDCluster
enters another round by constructing an updated graph based on the mean nodes that were
produced from the node merging of the first round of iterations. The algorithm will start iterating
again from the mean node with the highest degree, as it did in the first round, and keep iterating
and producing the mean of means until the convergence condition is reached. The convergence
condition is reached when the mean nodes have no edges (i.e., the degree of the top-level mean
nodes equals zero). Every one of the high-level mean nodes will be considered as a top-level
cluster ID and will be used to backtrack the cluster labels to their means and so on down to the
nodes that the means come from. The algorithm keeps propagating/backtracking the labels from
the top-level mean node down to the nodes, and all the nodes will get an ID or label based on the
top-level mean node. The algorithm does so for the rest of the top-level mean nodes. At the end,
all the nodes get labeled and have membership in one and only one cluster with a unique ID. The
top-level mean nodes are the emitters (consensus localizations that approximate the true emitter
positions) of the nanoclusters in SMLM data. HDCluster is capable of filtering out the noisy
localizations in addition to data clustering. (B) A general framework of SMLM data analysis and
the computational tasks that HDCluster can perform for SMLM data analysis. (C) Quantitative
analysis (ARI, AMI, #clusters) of clustering methods evaluated on the benchmark shape dataset'®
presented in Supp. Fig. 1. The best parameter(s) for each method are selected based on the AMI
measure.

Figure 2 Noise robustness analysis of various clustering methods at different noise levels.
Runtime comparison of the clustering methods based on the simulated and real SMLM
dataset. (A) Simulated 3D data of 80 Gaussian clusters with various densities and ellipsoidal
shapes is generated with various noise levels. In this simulation, we show the data with a 20%
noise level of the total number of localizations. The various clustering methods have been applied
to find the clusters and label the noisy localizations. For the parametric methods, the method’s
parameter(s) are tuned based on the AMI. (B) Comparison of the clustering methods with the
denoising capability for various noise levels. Some methods can handle noise but are not robust
to high noise values in the data. (C) Parameter selection for the DBSCAN and HDCluster methods
when applied to data with a 100% noise level. Both ARI and AMI measures were plotted for both
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methods at various parameters. The parameters with high AMI value were selected to report the
results presented in (B). (D) Calibrate the runtime for the various clustering methods when applied
to the simulated dataset presented in (A). All the methods were run on the same computer and
the same dataset for fair comparison. Not all the methods can be used on large datasets. (E)
Runtime analysis for the methods that can be run on large datasets, such as SMLM data.
HDCluster, DBSCAN, and mean-shift (MS) algorithms were run on a dataset of Caveolin-1
localizations®® presented in the Supp. Figure 2. We start running the clustering methods on 10%
of the whole data and calibrate the runtime, then we increase the localizations by 10% until we
reach 100% of the total localizations. Not all the methods scale with the dataset size. HDCluster*
refers to the version of the algorithm with the noise-handling option enabled.

Figure 3 Qualitative and quantitative comparison of binding sites reconstruction and
quality of clustering when using DBSCAN and HDCluster when applied to 3 x 4 DNA
origami dataset®®. (A) The quality of clusters impacts the binding sites' subsequent analysis, as
in the nearest neighbor (NN) analysis. We adopt the same DBSCAN parameters used in Stein et
al.*® to find the clusters. DBSCAN can find the clusters, but when the clusters overlap, it might get
them wrong. On the other hand, HDCluster can easily be adopted with one parameter to find more
accurate clusters and consequently the binding sites. (B) Quantitative analysis of the
reconstructed binding sites from both DBSCAN and HDCluster methods. The NN analysis for the
binding sites from the 3 x 4 DNA 20 nm origami grids shows that the histogram peaks correspond
to the geometrical grid of sites that distant 20 nm apart for both DBSCAN and HDCluster methods.
However, the HDCluster is more realistic, while DBSCAN has limitations for the overlapped
clusters and is sensitive to noisy points.

Supplementary Figure 1 Various clustering methods applied to benchmarking shape
datasets of a known number of clusters and points' memberships to which cluster. The
qualitative results comparison of the various clustering methods shows how the methods classify
the points in comparison to the provided ground truth. We depict the results of seven clustering
methods that do not require the number of clusters to be known ahead of time.

Supplementary Figure 2 Qualitative analysis comparison of the clustering methods based
on the real SMLM dataset. Qualitative analysis showing the results when applying both
HDCluster and DBSCAN methods to the Caveolin-1 data of more than 1.5 million localizations®?.
The visualizations show the noisy localizations and the clusters. The arrows in the zoom-in
regions show the quality of clustering for the overlapped clusters. The run time analysis for the
HDCluster and DBSCAN algorithms on this data is shown in Figure 2E.

Supplementary Figure 3 Applying HDCluster to reconstruct the binding sites from
dSTORM nanoruler and DNA-PAINT origami nanostructures datasets. (A) Gatta-PAINT 80
nm nanoruler imaged using ONI dSTORM Nanoimager. The HDCluster algorithm is used to
denoise, cluster, and reconstruct the emitters of the imaged localizations of the nanorulers. The
1st-5th nearest neighbor (NN) distances of the reconstructed emitters are calculated. The
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histogram of the 1st—-NN distances shows that the majority of reconstructed emitters are distant
~80 nm from each other, and the second peak of the histogram is at the 2nd—NN of ~160 nm. (B)
DNA-PAINT for two DNA origami nanostructures® is used to illustrate and validate HDCluster
denoising, clustering, binding sites reconstruction, and quantification. For the linear
nanostructures, HDCluster retrieves the binding sites, and the NN analysis shows the pattern of
the binding sites' stoichiometry. Also, for the triangular nanostructures, HDCluster retrieves the
binding sites, and the NN analysis shows the pattern of binding sites stoichiometry that
corresponds to the designed origami nanostructures.

Supplementary Figure 4 (A) Generating Gaussian clusters with various standard deviations (o)
and the separation distance values. The cluster's density (i.e., number of localizations), the
spread of localizations around the emitters, and the emitters’ distances can be controlled to
assess the performance of the emitters' reconstruction. o and separation distance values can be
used to set the merging threshold parameter of the HDCluster algorithm (Equation(2)). (B) 20 3D
grids of Gaussian clusters with various o and separation distance values are generated for each
pair of 0 and separation distance values for a specific cluster density. The counting (error_C) and
localization errors (error_L1 and error_L2) are calculated for every pair of o and separation
distance values to assess the quality of the reconstruction procedure for emitters/binding sites.
Examples for low- and high-density clusters are shown.
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A lllustration of the HDCluster algorithm
Raw data Find highest Merge all nodes Find 2nd highest Merge all nodes Find 3rd highest Merge all nodes Find highest
Merging degree node within merging degree node with within merging degree node with within merging degree mean
threshold threshold unvisited neighbor(s) threshold unvisited neighbor(s) threshold node

mTh

I @
mTh
.
.
@
Cluster 1 ®  Cluster2
° - ° - ® @ ® e e e
o © ° ® ® ® ® ®
o = ‘ = ’ = @ = ﬁ . = . = X
e ° e ° s ® s ® s @ s ® s ®
[ ] [ ] @® ® ®
Final clusters Backtrack the mean Backtrack the cluster Convergence, Merge all mean Find 2nd highest Merge all mean
labels to their nodes labels to their means no more merging. nodes within degree mean node nodes within
Identifying 2 clusters merging threshold merging threshold
) - Highest Neighboring Mean/average Mean of means
® Data point O Node Edge ® Visited node o node degree nodes O node A (level 2 of means)
B General framework of HDCluster for

cluster identification in SMLM data

* Reconstruct nanoclusters & binding sites
(multiple blinking)
# * Detect biological clusters
(molecular clustering)
* Filter out outlier (HDCluster*)
(background/noise)

SMLM data

(Localizations) # HDCluster
[XY,Z]

Quantitative comparison of clustering methods on the benchmark shape dataset

Aggregation Flame Error =
(x=7 clusters) (x=2 cIusters) =%
ARI AMI

#clust  ARI #clust  ARI #clust  ARI #clust
(%) (%) (%) (%)

BP 0.993 0.988 7 0.955 0.907 2 0.987 0.988 15 0.909 0.936 32 1
Qcc 0.99 0.985 7 0.955 0.899 2 0.98 0.982 15 0.893 0.952 29 2
RCC 0.995 0.991 7 0.445 0.578 5 0.975 0.979 15 0.929 0.953 33 5
DP 0.998 0.996 7 0.327 0.411 2 0.993 0.994 15 0.935 0.955 31 0
MS 0.731 0.78 6 0.886 0.811 2 0.937 0.952 15 0.856 0.918 31 1
DBSCAN  0.99 0.984 7 0.922 0.861 2 0.933 0.941 15 0.845 0.911 30 1
HDCluster 0.99 0.986 7 0.922 0.861 2 0.982 0.984 15 0.929 0.949 31 0

Figure 1
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A Qualitative comparison of clustering methods on simulated datasets containing clusters with 20% noise
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A Qualitative comparison of HDCluster and DBSCAN in binding sites reconstruction
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A Qualitative comparison of clustering methods on the benchmark shape dataset
Aggregation Flame R15 D31

Ground truth

BP

MS DBSCAN DP RCC QccC

HDCluster

Supp. Figure 1
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Clustering analysis of Caveolin-1 protein localizations (HeLa cell, super-resolution data)

3D point cloud
super-resolution data

The raw image contains 1,535,678 of Cav1 localizations

LD Zoomin 1

Cav1 clusters when Cav1 clusters when HDCluster is Cav1 clusters when Cav1 clusters when DBSCAN is
HDCluster is used used and noisy points are filtered out DBSCAN is used used and noisy points are filtered out

HDCluster method finds 4,276 Cav1 clusters when merging DBSCAN method finds 3,069 Cav1 clusters when epsilon
threshold = 120 nm. It takes ~ 1 min to find the clusters =120 nm and MinPts = 10. It takes ~ 1 hour to find the clusters

Supp. Figure 2
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A Gatta-PAINT 80 nm nanoruler imaged using the ONI dSTORM Nanoimager

HDCluster clusters

Gatta-PAINT nanoruler

The various colors show
different clusters

P |
0.014 QTZ\
Ul § _
/ NN distances

0.012 -

0.016

N
0/0\’
&)

L R Value 0.00697816
0.008 Bin edges [159.6 160.8]

G
)
P
>

o o
2 9
s S
-

#Reconstructed emitters (%)

\
"t i wmmwMﬂ MWMNNM il

0 50 200 50
1st- Sth NN dlstance (nm)

0.04

B DNA orlgaml nanostructures of different de5|gns imaged by DNA-PAINT

value 00376210
61

Zoom i i . ey v_I <
N ) i NN distances of binding
sites in DNA origami lines

value 0.0136307
dges [31.2 321

#Reconstructed emitters (%)

o 10 20 30 40 50 60 70 80
1st-5th NN distance (nm)

(%2} § G
2
= .
o Signal
£
©
£
o)
K
oF E
(2} =
= 0
o -~
o
I
0.08
7 0.07 i
8.84 m|II|on Iocahzatlons 0.06 NN distances of binding sites

in DNA origami triangles
X/ \/\/3

15 nm

#Reconstructed emitters (%)
)
o
2

60 70 80
1st-! sth NN dlstance 1nmh

Slgnal

Spp. Fiure 3

22


https://doi.org/10.1101/2025.10.23.684134
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.23.684134; this version posted October 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Gaussian standard deviation and separation distance between neighboring emitters in the grids
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Supp. Table 1: Comparison of state-of-the-art spatial clustering methods?*%° based on their key
characteristics and performance criteria. The table lists state-of-the-art clustering methods with
their characteristics, with a particular focus on their applicability to SMLM data. Based on our
study, we enumerate each method's robustness to noise, ability to explicitly label noisy
localizations or points, scalability to large datasets, and effectiveness when dealing with a high
number of clusters. We also assess the number of required parameters, the ease of parameter
tuning, the ability to detect clusters of varying shapes and densities, and the computational

efficiency when applied to large datasets containing hundreds of thousands of points.

Method Implicit Robust to | Scalability | Ability to | Parametric Easiness Arbitrary | Various | Speed
Denoising noise § for big data | Handle of shape density | (when
Support $ i g Many parameter | clusters | clusters | using

Clusters selection 100’s of
thousands
of
samples)

BP Supported Robust to Not scalable | Weak Non- NA (non- Limited Limited NA (due to
(-1 label is a certain (due to parametric parametric) lack of
given to noise level | memory scalability)
noisy points) | (border constraints)

points)
QcCC Moderate Not robust | Not scalable | Weak 2 Moderate Limited Good NA (due to
support (due to parameters (the lack of
memory (k, o) algorithm is scalability)
constraints) not very
sensitive to
the
parameters)
RCC Not Not robust | Not scalable | Weak Non- Easy (setk | Limited Good NA (due to
supported (due to parametric to construct lack of
memory (requires k the graph scalability)
constraints) for graph via mkNN
construction) | algorithm)

DP Supported Not robust | Not scalable | Weak 2 Moderate Moderate | Good NA (due to
(via IsHalo (due to parameters (manualivis | (Require lack of
option, 0 memory can be set ual S scalability)
label is given constraints) via decision selection of | changing
to noisy graph (p, 8) | the the
points) parameters. | kernel)

Not
applicable
when
#clusters is
very large)

DBSCAN Strong Robust to Scalable Strong 2 Hard Very Limited Slow (tens

It support (-1 high level parameters good of minutes)
label is given | of noises (€ - radius,
to noisy minPts)
points)

MS Not Not robust | Moderate Moderate | 1 parameter | Easy Limited Good Very slow
supported scalability (Kernel (bandwidth (many

(limited by bandwidth) is set based hours)
memory on clusters
constraints) scale)

HDCluster | Strong Robust to Superior Strong 1 parameter | Very easy Limited Very Very fast
support (via high level scalability (mTh); Bis (merging good (seconds)
IsNoise of noises an optional threshold is
option, 0 (Designed parameter set based
label is given for filtering on physical
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to noisy for SMLM- scale of the
points) like noise) clusters)

T None of the methods in this table require prior knowledge of the number of clusters.

I By big data we refer to algorithms that are scalable and capable of handling hundreds of thousands to millions of
points.

I+ For DBSCAN, results are reported based on MATLAB 2024b implementation.

A Parameter selection refers to 2D or 3D spatial data. For non-parametric methods, parameter selection is implicitly
determined by the algorithm based on the input data.

$ This indicates whether the algorithm accounts for labeling noisy points. However, this does not necessarily mean the
method is robust to noise or outlier detection.

§ This criterion was evaluated using generated datasets containing both clustered and noisy points (see Figure 2).

Supp. Table 2: Summary of clustering evaluation metrics across various scenarios and methods.
Results are presented as the mean + standard deviation, calculated from 50 independently
generated files for each scenario in SMLM benchmarking dataset?®. DBSCAN adopts the
parameters as reported in Nieves et al.?® that were tuned based on ARI. Look at Supp. Table 3
for the parameters used to generate this table. Where, SEM is the standard error of the mean
(SEM = std / sqrt(N)), where N=9 scenarios.

Method Ground Truth (GT) Multiple Blinking (MB)
(No Added Blinking)
ARI AMI ARI AMI

Scenario 2 HDCluster 0.86 + 0.02 0.85+0.018 | 0.74+0.059 | 0.82+0.03

DBSCAN 0.85+0.023 | 0.84 +0.02 0.16 + 0.069 | 0.36 +0.081
Scenario 3 HDCluster 0.90+0.017 | 0.83+£0.025 | 0.72+0.057 | 0.71 £ 0.045

DBSCAN 0.84+0.017 | 0.74+0.022 | 0.69+ 0.05 0.69 + 0.042
Scenario 4 HDCluster 0.68 +0.064 | 0.62+0.055 | 0.34 £ 0.099 | 0.41+0.079

DBSCAN 0.67 + 0.057 | 0.60+0.057 | 0.34+0.103 | 0.41+0.084
Scenario 5 HDCluster 0.55+0.027 | 0.72+0.009 | 0.38+0.036 | 0.65+0.012

DBSCAN 0.56 + 0.02 0.71+0.011 0.42+0.034 | 0.64+0.018
Scenario 6 HDCluster 0.70+0.02 0.74+0.012 | 0.63+0.036 | 0.70+0.018

DBSCAN 0.73+0.017 | 0.75+0.016 | 0.65+0.027 | 0.71 +£0.018
Scenario 7 HDCluster 0.55 £ 0.041 0.61+£0.027 | 0.43+0.074 | 0.64 +£0.032

DBSCAN 0.53+0.043 | 0.59+0.036 | 0.45+0.062 | 0.64 +0.032
Scenario 8 HDCluster 0.82+0.034 | 0.82+0.03 0.64 +0.067 | 0.76 + 0.044

DBSCAN 0.80+0.037 | 0.81+£0.031 0.64 + 0.061 0.74 + 0.062
Scenario 9 HDCluster 0.57+0.026 | 0.65+0.014 | 0.54 +0.037 | 0.63 +0.02

DBSCAN 0.58 £ 0.021 0.63 + 0.02 0.55+0.038 | 0.61+0.028
Scenario 10 HDCluster 0.85+0.026 | 0.84+0.025 | 0.71 +0.065 | 0.81 +£0.034

DBSCAN 0.84+0.028 | 0.84+0.024 | 0.72 +0.066 | 0.82 + 0.034
Metric HDCluster DBSCAN Absolute diff.

(Mean + SEM) | (Mean + SEM) | (HDCluster - DBSCAN) Relative Imrovment (%)
HDCluster Mean — DBSCAN Mean
- DBSCAN Mean «100

GT ARI 0.72+£0.05 0.71 £0.04 0.01 1.41 %
GT AMI 0.74 £0.03 0.72 £0.03 0.02 2.78 %
MB ARI 0.57 £0.05 0.51 £ 0.06 0.06 11.76 %
MB AMI 0.68 £ 0.04 0.62 £ 0.05 0.06 9.68 %
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Supp. Table 3: Methods’ Parameters. DBSCAN parameters adopted from Nieves et al.?®. The
HDCluster parameters are tuned based on the AMI measure.

Ground Truth Multiple Blinking
HDCluster DBSCAN HDCluster DBSCAN
mTh (nm) B € (nm) | MinPts | mTh (hnm) fB € (nm) | MinPts
Scenario 2 59 0.8 45 7 67 0.9 35 50
Scenario 3 34 2.1 40 10 48 1.7 45 50
Scenario 4 59 1.9 50 4 59 1.6 60 25
Scenario 5 50 0.8 35 8 53 0.8 35 34
Scenario 6 58 0.6 30 6 63 0.8 40 42
Scenario 7 74 0.7 65 6 80 0.8 65 32
Scenario 8 62 0.6 50 4 70 0.9 50 27
Scenario 9 77 0.6 45 12 110 0.7 45 50
Scenario 10 | 59 0.9 45 7 68 1 50 33
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