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Abstract 

Clustering is a fundamental task in data analysis: grouping similar objects together into 
distinguishable subsets. Here, we introduce HDCluster, a novel high-degree graph-based 
clustering algorithm designed to effectively and rapidly handle various real-world clustering 
applications, particularly in the context of super-resolution single molecule localization microscopy 
(SMLM). HDCluster efficiently handles datasets with large and variable numbers of clusters, 
without requiring prior knowledge of the cluster count, relying on only one parameter. The high 
speed and efficiency of HDCluster allow it to handle large SMLM datasets with millions of 
localizations. A comprehensive quantitative comparison against state-of-the-art clustering 
methods using simulated, public, and real-world datasets demonstrates that HDCluster 
outperforms other clustering algorithms in terms of time efficiency and clustering performance 
measures, such as ARI and AMI. HDCluster is particularly robust to noise, making it a promising 
and effective tool for various clustering tasks in big-data settings, such as SMLM.  
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INTRODUCTION 

Clustering is an unsupervised machine learning task where data samples are grouped according 
to similarities, ensuring that similar samples fall into the same group while dissimilar ones are 
separated. Hence, grouping is formed based on intrinsic similarity patterns across the data1. Data 
clustering is valuable in domains where ground truth labels are not available or hard to be 
collected, such as single molecule localization microscopy (SMLM). 

SMLM comprises a family of super-resolution imaging techniques, such as Photoactivated 
Localization Microscopy (PALM)2 and Stochastic Optical Reconstruction Microscopy (STORM)3, 
that circumvent the Abbe diffraction limit of conventional light microscopy via stochastic excitation 
of fluorophores and fitting of the point spread function (PSF) to localize single fluorophores at 
precisions of tens of nanometers4. DNA points accumulation for imaging in nanoscale topography 
(DNA-PAINT) utilizes the transient binding of fluorescent DNA strands to achieve both high 
precision and multiplexing5. Minimal photon fluxes (MINFLUX) combines spatially structured 
illumination with localization analysis6 and Resolution Enhancement by Sequential Imaging 
(RESI) combines DNA-PAINT with sequential imaging of sparse labeling sites7 achieving 
nanometer and sub-nanometer resolution. SMLM data are represented as a point cloud of 2D/3D 
coordinates of molecular localizations8. SMLM data cluster analysis enables quantitative study of 
nucleic acid organization, protein aggregates, and other cellular structures at the nanoscale9–11. 
However, SMLM data exhibit challenges such as noise, variations in density and size, large 
dataset volumes, and the presence of a high and often unknown number of clusters12. 

Several algorithms have been proposed for data clustering in general, and specifically for SMLM 
data analysis, based on diverse principles, including distance, density, graph/spectral properties, 
or other similarity-driven approaches12. Every clustering algorithm has underlying assumptions 
and parameters that restrict its universality across applications and data types. For example, the 
k-means algorithm requires the number of clusters to be specified ahead of time and assumes 
spherical clusters of similar sizes1,13. Other clustering methods are sensitive to noise and outliers 
(e.g., hierarchical clustering), lack scalability to very large datasets in terms of time and space 
(i.e., memory), and struggle with clusters of varying shape and density1,13. Here, we introduce 
HDCluster, a similarity graph-based clustering algorithm, and show that it outperforms competing 
clustering algorithms and is particularly robust to the challenges of noisy, heterogeneous point 
cloud-based SMLM data. HDCluster realizes various computational tasks aimed at SMLM data 
analysis, including reconstructing binding sites, identifying nanoclusters and macromolecular 
structures, and denoising the data.  

RESULTS 

1. HDCluster Framework and Computational Tasks 

HDCluster is a spatial data clustering method that can be leveraged to find clusters in SMLM data. 
The HDCluster algorithm has one parameter, merging threshold (mTh), used to construct the 
similarity graph and then get the node degree as a feature to start iterating and merging the nodes 
to get the clusters. The setting of the mTh parameter is related to the physical characteristics of 
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the clusters, i.e., the size/scale of the sought clusters (Figure 1A). HDCluster finds the clusters 
after the convergence condition is achieved and returns the per-localization class label, including 
labels for noisy localizations. β is an optional parameter to control noise removal with a default 
setting that can be changed if needed. See the Methods Section for more details about the 
algorithm.     

Figure 1B illustrates HDCluster capabilities, encompassing various computational tasks for SMLM 
data analysis, such as (1) emitter reconstruction (or binding sites reconstruction14), (2) finding true 
biological clusters and nanoclusters in the SMLM data, and (3) denoising SMLM data.  

2. HDCluster Performance Comparison with Other Clustering Methods 

To evaluate clustering performance and tune the algorithm’s parameters, we used the adjusted 
Rand index (ARI)15 and the adjusted mutual information (AMI)16as performance metrics. ARI 
measures similarity between predicted and ground truth labels and AMI captures the amount of 
shared information between clusters, corrected for chance. AMI is a more robust measure when 
the number of clusters varies and accounts for bias toward certain cluster size distributions17,18.  

We applied HDCluster and other commonly used clustering methods to the shape benchmarking 
dataset19, widely used for assessing clustering methods' performance. This data set of 2D points 
and their corresponding membership as ground truth (GT) labels includes blob-like and spherical 
clusters similar to SMLM data of biological clusters: Aggregation with 7 clusters, Flame with 2 
clusters, R14 with 14 clusters, and D31 with 31 clusters (Supp. Figure 1A). We tested state-of-
the-art clustering methods, including Border Peeling (BP)20, Quasi-Cluster Centers (QCC)21, 
Robust Continuous Clustering (RCC)22, Density Peaks (DP)23, mean-shift (MS)24, and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)25, as well as HDCluster, on these 
benchmark datasets (Supp. Table 1 shows the number of parameters and other information for 
the studied methods). We tuned each method’s parameters based on AMI. Supp. Figure 1A 
shows the qualitative results and Figure 1C summarizes the quantitative results when applying 
the clustering methods to the shape benchmarking dataset. Only HDCluster and DP retrieve the 
correct number of clusters across all tested datasets. However, DP shows poor performance on 
the Flame dataset (ARI of 33% and AMI of 41%), where HDCluster achieves much higher 
accuracy (92% ARI and 86% AMI). Notably, HDCluster outperforms DBSCAN on the D31 and 
R15 datasets, both of which mimic nanocluster structures observed in SMLM data. 

Nieves et al.26 introduced a standard benchmarking framework for comparing clustering 
algorithms on SMLM point cloud data. Their work includes generating simulated ground truth point 
patterns with realistic blinking and localization uncertainty. The dataset comprises 10 distinct 
scenarios/conditions (variations in density, cluster size, blinking behavior, background noise, etc.) 
with and without multiple blinking artifacts. Each scenario contains 50 different point cloud files.  
They tested and compared the performance of several clustering methods, which include: 
DBSCAN25, topological mode analysis tool (ToMATo)27, kernel density estimation (KDE)28, fast 
optimized clustering algorithm for localizations (FOCAL)29, cluster analysis by machine learning 
(CAML)30, ClusterViSu31, and SR-Tesseler32. The methods’ parameter spaces are scanned 
systematically under each condition. In their results, DBSCAN, ToMATo, and KDE generally 
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perform well across multiple conditions and are relatively robust, with DBSCAN showing 
superiority. The other methods, ClusterViSu, SR-Tesseler, and FOCAL, show weaker 
performance in many settings. All methods suffer performance drops under multiple blinking 
localization conditions. We assessed HDCluster using the benchmarking SMLM datasets in 
accordance with the methodology outlined by Nieves et al.26. All experiments were performed with 
the denoising feature activated. We tuned the key parameters of HDCluster, mTh and the optional 
filtering parameter β, to maximize the average AMI of the 50 files of each scenario.  

For performance comparison, we selected DBSCAN, the most effective method identified by 
Nieves et al.26, and employed their reported parameters to ensure fairness. The AMI and ARI 
values for HDCluster and DBSCAN are presented in Supp. Table 2. Across all simulated 
scenarios, HDCluster outperforms or matches DBSCAN in both ideal (i.e., no added blinking) and 
multiple blinking scenarios. In the ideal scenarios, both methods achieve comparable results, with 
HDCluster showing slightly higher ARI and AMI values in most cases (e.g., Scenario 3: 0.90 ± 
0.017 vs. 0.84 ± 0.017 for ARI). However, when multiple blinking is introduced, HDCluster 
demonstrates greater robustness, maintaining high average clustering accuracy (average ARI ≈ 
0.57 and AMI ≈ 0.68) compared to DBSCAN, whose performance drops noticeably (average ARI 
≈ 0.51 and AMI ≈ 0.62). Under multiple-blinking (the harder, SMLM-like condition), HDCluster 
shows a clear advantage of about +0.06 absolute difference in both ARI and AMI (≈ 9.7–11.8% 
relative improvement). This highlights HDCluster’s ability to efficiently handle emitter counting and 
multiple blinking artifacts typical in SMLM data. 

3. HDCluster Robustness to Noise and Scalability  

To test the ability of the different clustering methods to handle noisy data, we generated datasets 
that comprise clusters with various shapes and densities with additive noise points as described 
in Methods Section 4. Figure 2A shows one experiment for the generated clusters concatenated 
with a noise level of 20% of the total clustered points drawn from a uniform distribution. DBSCAN 
and HDCluster efficiently handle the noisy data and extract clusters, while QCC, DP, RCC and 
MS are unable to accurately segment noise from clusters. We varied the noise level from 0% 
(clusters only) to 100% with a step size of 10% and compared DBSCAN, BP and HDCluster at 
each noise level (Figure 2B). The parameter(s) for DBSCAN and HDCluster are selected based 
on ground truth data and the AMI score, as shown in Figure 2C, which shows a single case where 
the noise level is 100%. DBSCAN and HDCluster are robust to high noise levels; for BP, AMI and 
ARI are progressively reduced as the noise level exceeds 40% (Figure 2B). 

To assess the speed of the clustering algorithm for SMLM data, we applied the clustering methods 
to the same datasets and on the same hardware (Intel(R) Core(TM) i7-4790 CPU @ 3.6GHz. 
Memory 32 GB, without other processes/applications running during testing). We first calibrated 
the running time for each algorithm on the small dataset from Figure 2A. Some of the algorithms 
are implemented in Python, while others are implemented in MATLAB. In our comparison, we 
used the latest optimized implementation of DBSCAN in MATLAB 2024b. HDCluster is the fastest 
algorithm, retrieving clusters in ~0.046 seconds, with DBSCAN second followed by MS, DP, RCC, 
and QCC, and finally the BP algorithm (Figure 2D). We then applied the algorithms to a real SMLM 
dataset of Caveolin-1 labeled HeLa cells of more than 1.5 million localizations33 (Supp. Figure 2). 
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Only HDCluster, DBSCAN and MS were able to handle the data on our testing workstation 
(Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz. Memory 94 GB) with the other algorithms 
crashing the computer and failing to complete. We calculated the runtime for MS, DBSCAN, and 
HDCluster starting with 10% of total localizations, progressively increasing the sample size to the 
total number of localizations (Figure 2E). The runtime for MS grew exponentially with dataset size, 
and we stopped the analysis after reaching 30% of the 1.5 million localizations. For DBSCAN and 
HDCluster runtimes were calculated for increments up to the full data size (i.e., 100%, ~1.5 million 
localizations). At 100% of the total data, HDCluster is >55 times faster than DBSCAN, and we 
expect the trend to continue as the dataset becomes larger (Figure 2E).              

4. HDCluster Binding Site Reconstruction Outperforms DBSCAN 

Binding site and emitter reconstruction and protein counting are important tasks in SMLM data 
analysis14,34. To test whether the representative (or consensus) localizations of HDCluster 
iterative merging approximate true emitter positions, we analyzed SMLM data from the Gatta-
PAINT 80nm nanoruler that has three binding sites (emitters) organized linearly with a spacing of 
80nm (Supp. Figure 3A). Calculation of the 1st–5th nearest neighbor (NN) distances calculated 
for HDCluster reconstructed emitters, shows that the majority of emitters are within ~80nm. 
HDCluster was then applied to the DNA origami nanostructure dataset published recently for the 
SPINNA method that compares experimental single-protein NN distances with simulated data 
generated from user-defined protein oligomerization models34. HDCluster was used to reconstruct 
the binding sites for linear and triangular DNA origami nanostructures with three binding sites 
spaced ~15nm (Supp. Figure 3B). We used 𝑚𝑇ℎ	 = 	0.04	 × 	𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (i.e., 𝑚𝑇ℎ	 = 	5.2𝑛𝑚), 
where the pixel size is 130nm. For linear origami, HDCluster effectively reconstructs the binding 
sites for the two origami structures and calculated NN distances, where the first peak is at ~15nm 
and a second peak at ~30nm for linear origami and ~15nm for triangular nanostructures.   

We then compared the binding site reconstruction performance of HDCluster and DBSCAN using 
a dataset of 3 × 4 origami grids arranged at 20nm spacing (Figure 3A)35. HDCluster was applied 
with 𝑚𝑇ℎ	 = 	0.06	 × 	𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (i.e., 𝑚𝑇ℎ	 = 	7.8𝑛𝑚 for a pixel size of 130nm) and evaluated 
against the results reported by Stein et al.35, who analyzed NN of DBSCAN cluster centers using 
the same parameters reported in their study: 	𝜖	 = 	2 × 𝜎!"!# 	= 	2 × 4.2 = 8.4	𝑛𝑚 and 𝑀𝑖𝑛𝑃𝑡𝑠	 =
	6. Calculations of the 1st–5th NN distance show that the peaks are sharper and clearer for 
HDCluster relative to DBSCAN, with the highest peak at 20nm (peak (a) in Figure 3B), the second 
highest peak at 28nm (peak (b)) and so on (Figure 3B). The zoomed-in regions show superior 
clustering performance when using HDCluster over DBSCAN. With DBSCAN, some of the binding 
sites are filtered out, some merged and some averaged, affecting counting and the subsequent 
analysis of NN values. Indeed, the frequency of occurrences is more representative for HDCluster 
than DBSCAN; the expected 17 occurrences of peak (a) vs 8 occurrences of peak (d) in the 3 × 4 
origami grids are accurately reported by HDCluster but not DBSCAN, which shows a similar 
frequency of events for peaks (a) and (d). Overall, HDCluster outperforms DBSCAN at various 
benchmarking clustering tasks and is significantly faster. 
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5. Conclusion 

HDCluster is a simple, scalable, one-parameter clustering method that is very fast and robust to 
noise. By combining density-based clustering with graph-based techniques, HDCluster provides 
robust and accurate cluster identification in SMLM datasets, even with very large datasets of 
hundreds of thousands or millions of DNA-PAINT localizations, which allows for precise emitter 
reconstruction. 

METHODS 

1. HDCluster Algorithm 

HDCluster is an unsupervised algorithm for spatial data clustering. It is an iterative similarity 
graph-based clustering method that discovers clusters and estimates their centroids, which are 
referred to as consensus localizations that approximate the true emitter positions. Figure 1A 
illustrates the algorithm based on 2D data points and details the underlying methodology. 
However, the algorithm works for 3D spatial data as well. The one parameter that the user needs 
to choose to run the algorithm is the “merging threshold (mTh)”. The algorithm begins by 
constructing a similarity graph based on the spatial proximity parameter mTh and calculating the 
node degree. Nodes are sorted based on the degree in descending order, so the algorithm 
iteratively merges each high-degree node with its connected neighbors, computing their mean 
spatial coordinates. The algorithm keeps iterating until all nodes are visited and produces a set of 
mean nodes that represent preliminary cluster centers. In the next stage, HDCluster reconstructs 
a new graph using the mean nodes and repeats the merging process across multiple iterations 
until the convergence condition is reached, where no edges remain between mean nodes, which 
is an indication that clusters are fully separated. Each top-level mean node is then assigned as a 
unique cluster ID, and labels are backtracked from these centroids to the original nodes such that 
every localization/point belongs to one cluster only. The resulting top-level mean nodes represent 
the emitters of the extracted nanocluster/cluster. Additionally, HDCluster can incorporate a 
denoising step to filter out low-degree nodes, effectively removing noisy/background localizations 
(see Methods Section 3 for a more extensive discussion of filtering options). 

The mTh parameter selection is based on the physical characteristics of the underlying clusters, 
and one of the heuristics to set this parameter is based on Ripley’s H-function (see Methods 
Section 2 for a more extensive discussion of mTh). However, it can be selected based on the 
application and the spread of the clusters, as illustrated in Supp. Figure 4 and Equation (2). β is 
an optional parameter to control the noise removal with a default setting that can be changed if 
needed (see Methods Section 3 for a more extensive discussion of β).  

2. HDCluster Merging threshold (mTh) and Evaluation Measures 

Merging threshold (mTh) in HDCluster is a spatial proximity parameter that governs the similarity 
graph construction and guides the iterative merging of nodes toward the convergence of cluster 
means of consensus localization. Selection of mTh depends on the intrinsic properties of the 
dataset and the physical characteristics of the clusters, such as their spatial extent or point 
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dispersion. Also, it can be determined by H-Ripley’s function or empirically through a data-driven 
heuristic to balance cluster separation and cohesion.    

To demonstrate how we can set the mTh parameter, we simulated various scenarios of 
neighboring emitters (Supp. Figure 4A) with varying separation distance, defined as the space 
between the centers of the clusters. σ is the standard deviation of the Gaussian that quantifies 
the spread of the localizations/points around each cluster center. We derived the overlapping 
distance as a function of σ and separation distance to quantify the extent of overlap between the 
clusters, with negative values reflecting the separation between the boundaries of non-
overlapping clusters  (Equation (1)). The parameter mTh can be set according to Equation (2). 
We also define three measures of error: counting error (error_C), localization error (error_L1), 
and localization error (error_L2) (Equations (3–5)).  

To assess the applicability of the HDCluster in reconstructing the emitters, we simulate various 
scenarios that may be similar to real-world situations, where the molecules can be sparse or very 
dense. We simulated two Gaussian emitters and change two parameters, (1) the separation 
distance (i.e., the distance between the centers/means of the two Gaussians or the emitters, 
which we use to simulate the density of the molecule in larger grids) and (2) the standard deviation 
of the Gaussians σ, that simulates the localization precision, i.e., the uncertainty in detecting the 
position of that emitter across repeated localizations, as shown in Supp. Figure 4A. The 
overlapping distance between the two clusters is defined as the distance between the borders of 
the clusters. The overlap between the localizations of the emitters is calculated according to 
Equation (1). The overlapping distance is a function of σ and separation distance. In the 
simulation, we can change the separation distance and σ to compute the amount of overlap 
between the neighboring clusters. The overlap is negative when the localizations of the 
neighboring emitters are not overlapping, and the overlap is positive when the localizations of the 
neighboring emitters are overlapping. The overlap equals zero when the borders of the two 
clusters are touching each other (Supp. Figure 4A).   

𝑂𝑣𝑒𝑟𝑙𝑎𝑝	 = 	−(𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛	 − 	2𝜎)	        Eq(1)  

Where σ is the standard deviation of the Gaussian-generated data.  

The HDCluster parameter, merging threshold (mTh), can be selected to reconstruct the emitters' 
locations based on Equation (2).  

    Eq(2)  

In Equation (2), when the neighboring clusters are well separated or their borders touch each 
other (i.e., 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 0	), the parameter 𝑚𝑇ℎ	 = 	2𝜎 ensures appropriate merging within each 
cluster. However, as clusters become closer and their borders overlap (i.e., 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 > 0), mTh 
should be reduced to prevent unintended merging of adjacent overlapping clusters (i.e., mTh can 
be safely adjusted to 𝑚𝑇ℎ = |2𝜎 − | $%"&'()

*
||). This approach aligns with adaptive thresholding 
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strategies used in hierarchical and graph-based clustering methods, where thresholds decrease 
as clusters become denser or closer.     

More formally, we simulated 3D grids of size 3 × 3 × 3 and we changed the separation distance 
and the standard deviation of the Gaussians σ. Moreover, we also changed the density of the 
localizations around everyone of the simulated emitters as shown in Supp. Figure 4B. HDCluster 
is used to reconstruct the emitters. The parameter mTh is selected according to Equation (2). To 
assess the quality of emitter location reconstruction, we introduced three measures, as we have 
the ground truth location for the emitters. We quantitatively calculated three types of errors: 
error_C Equation (3), error_L1 Equation (4), and error_L2 Equation (5).  

𝐸𝑟𝑟𝑜𝑟_𝐶	 = 	 +
,
× (𝑅 − 𝐺) × 100%		       Eq(3) 

where G is the number of ground truth (GT) emitters and R is the reconstructed emitters or binding 
sites. In the error_C, positive values mean overcounting, negative values mean undercounting, 
and zero means no counting error.  

𝐸𝑟𝑟𝑜𝑟_𝐿1	(𝑛𝑚) = +
,
∑ 𝐷1--.+ 	        Eq(4) 

where 𝐷1- is the distance between the GT emitter i and the location of the nearest reconstructed 
emitter.  𝐸𝑟𝑟𝑜𝑟_𝐿1  is normalized by the number of ground truth emitters G.  

𝐸𝑟𝑟𝑜𝑟_𝐿2	(𝑛𝑚) = +
/
∑ 𝐷2--.+         Eq(5) 

where 𝐷2- is the distance between the reconstructed emitter i and the location of the nearest GT 
emitter.  𝐸𝑟𝑟𝑜𝑟_𝐿2  is normalized by the number of reconstructed emitters R.   

We generated a larger 3D 3 × 3 × 3 grid of simulated emitters and localizations, where the 
localizations’ membership and the emitters’ location are considered as a ground truth (GT) for 
evaluation via the error measures (Supp. Figure 4B). We generated 20 grids for each pair of σ 
and separation distance and computed the three types of counting (i.e., error_C) and localization 
errors (i.e., error_L1 and error_L2). We started with a low density of 10 localizations per emitter 
and increased the density to 35 localizations per emitter. We notice that the counting error 
(error_C) is improved (Supp Figure 4B, left vs right), indicating emitter reconstruction is much 
better for a higher density of localizations. As σ decreases (i.e., more precise localizations), the 3 
types of error become smaller (Supp. Figure 4B). For example, when using 𝜎	 = 2, for any 

separation distance ≥10nm, and for a number of localizations 35 per emitter, the 𝑒𝑟𝑟𝑜𝑟_𝐶 is zero, 
and both the	𝑒𝑟𝑟𝑜𝑟_𝐿1 and 𝑒𝑟𝑟𝑜𝑟_𝐿2 are almost zeros (i.e., the location of the reconstructed 
emitters is almost identical to the ground truth location). The error graphs show that the 
reconstruction errors remain relatively low, even under challenging conditions where nearby 
emitters exhibit substantial overlap. In the worst cases, 𝑒𝑟𝑟𝑜𝑟_𝐿1 and 𝑒𝑟𝑟𝑜𝑟_𝐿2 stay below ~30nm 
and 14nm, respectively. 𝐸𝑟𝑟𝑜𝑟_𝐿1 and 𝑒𝑟𝑟𝑜𝑟_𝐿2 fluctuate due to overcounting or undercounting, 
specifically in challenging cases of highly overlapping or low-density nanoclusters.  
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3. HDCluster Denosing Parameter - Spatial Filtering Option 

HDCluster incorporates a denoising option to filter out noisy localizations (background, outlier 
points, etc.). The denoising capability/function in HDCluster can be enabled or disabled by the 
user. If enabled, the user can set a β value or rely on the default β value. The embedded filtering 
works by calculating the degree for all the nodes, then labeling all the nodes with a degree below 
a low degree with a 0 label (i.e., noisy localizations). The low_degree value is calculated as shown 
in Equation (6).  

 𝐿𝑜𝑤_𝑑𝑒𝑔𝑟𝑒𝑒 = 𝛽 ×𝑚𝑒𝑎𝑛(𝑑𝑒𝑔𝑟𝑒𝑒),         Eq(6) 

where 𝑚𝑒𝑎𝑛(𝑑𝑒𝑔𝑟𝑒𝑒) is the average node degree that is calculated when the graph is constructed 
with the mTh parameter, β which is a scalar that controls the denoising process. As a rule-of-
thumb, the default value β = 0.2 is selected to label the non-clustered localizations as noisy. 
However, the user can select other β values that might control the noise removal according to the 
data, where larger β values employ harsh filtering. β is a scaling factor that controls the minimum 
node degree relative to the average connectivity of the graph, which determines how aggressively 
HDCluster removes low-connectivity nodes (potential noise). Setting β = 0.2 ensures that only 
nodes whose connectivity <20% of the mean graph degree are labeled as noise and generalizes 
well across different datasets without prior tuning. Setting β balances between retaining true 
cluster points at the periphery and filtering isolated/background points that do not contribute 
meaningfully to the cluster structure. We provided the user with the ability to change β. Higher 
values (i.e., >0.2) can lead to harsher filtering, which can fragment clusters and remove 
localizations within low-density regions.  

4. Generating Data with Various Shapes and Densities with Additive Noise 

To test the robustness of the clustering methods to noise, we generated a dataset with 𝐾 = 80 
Gaussian clusters that varied in density and were randomly positioned in 3D space. Each cluster 
has a minimum of 10 points and a maximum of 100 (for various-density clusters), and of various 
shapes, varying the covariance matrix diagonal of the Gaussians as given in Equation (7).  

Let each cluster 𝑖 ∈ {1,2, . . . , 𝐾} be defined by: 

● Mean 𝜇- = [𝜇-0 , 𝜇-1 , 𝜇-2]3 ∈ 	𝑅4	 

● Covariance matrix (diagonal):     

each cluster 𝑖 contains 𝑛- points: 𝑥-5 ∼ 𝑁(𝜇- , 𝛴-),			𝑗 = 1, . . . , 𝑛-  Eq(7) 

Sampling procedure: 

(i) For each cluster 𝑖 ∈ {1,2, . . . , 𝐾}, randomly sample the mean: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2025. ; https://doi.org/10.1101/2025.10.23.684134doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.23.684134
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

𝜇- ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚([𝑥6-7, 𝑥6(0] × [𝑦6-7, 𝑦6(0] × [𝑧6-7, 𝑧6(0]); then 

(ii) randomly sample diagonal variances: 

𝜎-0* , 𝜎-1* , 𝜎-2* ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜎6-7* , 𝜎6(0* )	,   where  𝜎6-7 = 1 and 𝜎6(0 = 21 

from the diagonal covariance matrix 𝛴- 	 as shown above. Sample 𝑛- points from the 3D Gaussian 
distribution 𝑥-5 ∼ 𝑁(𝜇- , 𝛴-). Notice that the off-diagonal elements are all zero, so the clusters are 
axis-aligned ellipsoids. The variance values control the spread along each axis independently to 
get different shapes. We simulated the irregular cluster sizes by drawing 𝑛- randomly (i.e., uniform 
distribution) to vary the clusters’ densities. We then varied the noise by controlling the noise level, 
where the noise level can be selected for every experiment and drawn from a uniform distribution.  
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Supplementary Information and Figure Legends 
 

Figure 1 Overview of the HDCluster framework to cluster, denoise, and reconstruct the 
emitters/binding sites in simulated and DNA-PAINT data. (A) Illustration of the HDCluster 
algorithm to obtain data clusters as well as the centroids (the consensus localizations that 
approximate the true emitter positions by computing the mean of means) of the extracted clusters. 
HDCluster is an iterative algorithm that starts from the similarity graph constructed based on the 
mTh parameter. The degrees of the graph nodes are calculated. The nodes are sorted in 
descending order of node degree. The algorithm starts iterating from the node with the highest 
degree. All the nodes that share edges with this high-degree node are merged; the mean (in terms 
of average coordinates for the nodes’ spatial locations) of these merged nodes is calculated and 
all these merged nodes are marked as visited nodes. After that, the algorithm moves to the next 
highest degree node in the list, with at least one node that is marked as not visited, and so on 
until all the nodes are marked as visited. After concluding this first round of iterations, HDCluster 
enters another round by constructing an updated graph based on the mean nodes that were 
produced from the node merging of the first round of iterations. The algorithm will start iterating 
again from the mean node with the highest degree, as it did in the first round, and keep iterating 
and producing the mean of means until the convergence condition is reached. The convergence 
condition is reached when the mean nodes have no edges (i.e., the degree of the top-level mean 
nodes equals zero). Every one of the high-level mean nodes will be considered as a top-level 
cluster ID and will be used to backtrack the cluster labels to their means and so on down to the 
nodes that the means come from. The algorithm keeps propagating/backtracking the labels from 
the top-level mean node down to the nodes, and all the nodes will get an ID or label based on the 
top-level mean node. The algorithm does so for the rest of the top-level mean nodes. At the end, 
all the nodes get labeled and have membership in one and only one cluster with a unique ID. The 
top-level mean nodes are the emitters (consensus localizations that approximate the true emitter 
positions) of the nanoclusters in SMLM data. HDCluster is capable of filtering out the noisy 
localizations in addition to data clustering. (B) A general framework of SMLM data analysis and 
the computational tasks that HDCluster can perform for SMLM data analysis. (C) Quantitative 
analysis (ARI, AMI, #clusters) of clustering methods evaluated on the benchmark shape dataset19 
presented in Supp. Fig. 1. The best parameter(s) for each method are selected based on the AMI 
measure. 

Figure 2 Noise robustness analysis of various clustering methods at different noise levels. 
Runtime comparison of the clustering methods based on the simulated and real SMLM 
dataset. (A) Simulated 3D data of 80 Gaussian clusters with various densities and ellipsoidal 
shapes is generated with various noise levels. In this simulation, we show the data with a 20% 
noise level of the total number of localizations. The various clustering methods have been applied 
to find the clusters and label the noisy localizations. For the parametric methods, the method’s 
parameter(s) are tuned based on the AMI. (B) Comparison of the clustering methods with the 
denoising capability for various noise levels. Some methods can handle noise but are not robust 
to high noise values in the data. (C) Parameter selection for the DBSCAN and HDCluster methods 
when applied to data with a 100% noise level. Both ARI and AMI measures were plotted for both 
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methods at various parameters. The parameters with high AMI value were selected to report the 
results presented in (B). (D) Calibrate the runtime for the various clustering methods when applied 
to the simulated dataset presented in (A). All the methods were run on the same computer and 
the same dataset for fair comparison. Not all the methods can be used on large datasets. (E) 
Runtime analysis for the methods that can be run on large datasets, such as SMLM data. 
HDCluster, DBSCAN, and mean-shift (MS) algorithms were run on a dataset of Caveolin-1 
localizations33 presented in the Supp. Figure 2. We start running the clustering methods on 10% 
of the whole data and calibrate the runtime, then we increase the localizations by 10% until we 
reach 100% of the total localizations. Not all the methods scale with the dataset size. HDCluster* 
refers to the version of the algorithm with the noise-handling option enabled. 

Figure 3 Qualitative and quantitative comparison of binding sites reconstruction and 
quality of clustering when using DBSCAN and HDCluster when applied to 𝟑 × 𝟒 DNA 
origami dataset35.  (A) The quality of clusters impacts the binding sites' subsequent analysis, as 
in the nearest neighbor (NN) analysis. We adopt the same DBSCAN parameters used in Stein et 
al.35 to find the clusters. DBSCAN can find the clusters, but when the clusters overlap, it might get 
them wrong. On the other hand, HDCluster can easily be adopted with one parameter to find more 
accurate clusters and consequently the binding sites. (B) Quantitative analysis of the 
reconstructed binding sites from both DBSCAN and HDCluster methods. The NN analysis for the 
binding sites from the 𝟑 × 𝟒  DNA 20 nm origami grids shows that the histogram peaks correspond 
to the geometrical grid of sites that distant 20 nm apart for both DBSCAN and HDCluster methods. 
However, the HDCluster is more realistic, while DBSCAN has limitations for the overlapped 
clusters and is sensitive to noisy points.  

     

Supplementary Figure 1 Various clustering methods applied to benchmarking shape 
datasets of a known number of clusters and points' memberships to which cluster. The 
qualitative results comparison of the various clustering methods shows how the methods classify 
the points in comparison to the provided ground truth. We depict the results of seven clustering 
methods that do not require the number of clusters to be known ahead of time.  

Supplementary Figure 2 Qualitative analysis comparison of the clustering methods based 
on the real SMLM dataset. Qualitative analysis showing the results when applying both 
HDCluster and DBSCAN methods to the Caveolin-1 data of more than 1.5 million localizations33. 
The visualizations show the noisy localizations and the clusters. The arrows in the zoom-in 
regions show the quality of clustering for the overlapped clusters. The run time analysis for the 
HDCluster and DBSCAN algorithms on this data is shown in Figure 2E. 

Supplementary Figure 3 Applying HDCluster to reconstruct the binding sites from 
dSTORM nanoruler and DNA-PAINT origami nanostructures datasets. (A) Gatta-PAINT 80 
nm nanoruler imaged using ONI dSTORM Nanoimager. The HDCluster algorithm is used to 
denoise, cluster, and reconstruct the emitters of the imaged localizations of the nanorulers. The 
1st–5th nearest neighbor (NN) distances of the reconstructed emitters are calculated. The 
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histogram of the 1st–NN distances shows that the majority of reconstructed emitters are distant 
~80 nm from each other, and the second peak of the histogram is at the 2nd–NN of ~160 nm. (B) 
DNA-PAINT for two DNA origami nanostructures34 is used to illustrate and validate HDCluster 
denoising, clustering, binding sites reconstruction, and quantification. For the linear 
nanostructures, HDCluster retrieves the binding sites, and the NN analysis shows the pattern of 
the binding sites' stoichiometry. Also, for the triangular nanostructures, HDCluster retrieves the 
binding sites, and the NN analysis shows the pattern of binding sites stoichiometry that 
corresponds to the designed origami nanostructures.  

Supplementary Figure 4 (A) Generating Gaussian clusters with various standard deviations (σ) 
and the separation distance values. The cluster’s density (i.e., number of localizations), the 
spread of localizations around the emitters, and the emitters’ distances can be controlled to 
assess the performance of the emitters' reconstruction. σ and separation distance values can be 
used to set the merging threshold parameter of the HDCluster algorithm (Equation(2)). (B) 20 3D 
grids of Gaussian clusters with various σ and separation distance values are generated for each 
pair of σ and separation distance values for a specific cluster density. The counting (error_C) and 
localization errors (error_L1 and error_L2) are calculated for every pair of σ and separation 
distance values to assess the quality of the reconstruction procedure for emitters/binding sites. 
Examples for low- and high-density clusters are shown. 
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Figure 3
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  Supp. Figure 1
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  Supp. Figure 3

A Gatta-PAINT 80 nm nanoruler imaged using the ONI dSTORM Nanoimager
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Supp. Figure 4

A Gaussian standard deviation and separation distance between neighboring emitters in the grids
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Supp. Table 1: Comparison of state-of-the-art spatial clustering methods20–25 based on their key 
characteristics and performance criteria. The table lists state-of-the-art clustering methods with 
their characteristics, with a particular focus on their applicability to SMLM data. Based on our 
study, we enumerate each method's robustness to noise, ability to explicitly label noisy 
localizations or points, scalability to large datasets, and effectiveness when dealing with a high 
number of clusters. We also assess the number of required parameters, the ease of parameter 
tuning, the ability to detect clusters of varying shapes and densities, and the computational 
efficiency when applied to large datasets containing hundreds of thousands of points. 

Method † Implicit 
Denoising 
Support $ 

Robust to 
noise § 

Scalability 
for big data 
‡ 

Ability to 
Handle 
Many 
Clusters 

Parametric Easiness 
of 
parameter 
selection ^ 

Arbitrary 
shape 
clusters 

Various 
density 
clusters 

Speed 
(when 
using 
100’s of 
thousands 
of 
samples) 

BP Supported   
(-1 label is 
given to 
noisy points) 

Robust to 
a certain 
noise level 
(border 
points) 

Not scalable 
(due to 
memory 
constraints) 

Weak Non-
parametric 

NA (non-
parametric) 

Limited Limited NA (due to 
lack of 
scalability) 

QCC Moderate 
support 

Not robust Not scalable 
(due to 
memory 
constraints) 

Weak 2 
parameters 
(k, a) 

Moderate 
(the 
algorithm is 
not very 
sensitive to 
the 
parameters) 

Limited Good NA (due to 
lack of 
scalability) 

RCC Not 
supported 

Not robust Not scalable 
(due to 
memory 
constraints) 

Weak Non-
parametric 
(requires k 
for graph 
construction) 

Easy (set k 
to construct 
the graph 
via mkNN 
algorithm) 

Limited Good NA (due to 
lack of 
scalability) 

DP Supported 
(via IsHalo 
option, 0 
label is given 
to noisy 
points) 

Not robust Not scalable 
(due to 
memory 
constraints) 

Weak 2 
parameters 
can be set 
via decision 
graph (r, d) 

Moderate 
(manual/vis
ual 
selection of 
the 
parameters. 
Not 
applicable 
when 
#clusters is 
very large) 

Moderate 
(Require
s 
changing 
the 
kernel) 

Good NA (due to 
lack of 
scalability) 

DBSCAN 
‡‡ 

Strong 
support (-1 
label is given 
to noisy 
points) 

Robust to 
high level 
of noises 

Scalable   Strong 2 
parameters 
(ε - radius, 
minPts) 

Hard  Very 
good 

Limited Slow (tens 
of minutes) 

MS Not 
supported 

Not robust Moderate 
scalability 
(limited by 
memory 
constraints) 

Moderate 1 parameter 
(Kernel 
bandwidth) 

Easy 
(bandwidth 
is set based 
on clusters 
scale) 

Limited Good Very slow 
(many 
hours) 

HDCluster Strong 
support (via 
IsNoise 
option, 0 
label is given 

Robust to 
high level 
of noises 
(Designed 

Superior 
scalability 

Strong 1 parameter 
(mTh); b is 
an optional 
parameter 
for filtering 

Very easy 
(merging 
threshold is 
set based 
on physical 

Limited Very 
good 

 Very fast 
(seconds) 
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to noisy 
points) 

for SMLM-
like noise) 

scale of the 
clusters) 

† None of the methods in this table require prior knowledge of the number of clusters. 
‡ By big data we refer to algorithms that are scalable and capable of handling hundreds of thousands to millions of 
points. 
‡‡ For DBSCAN, results are reported based on MATLAB 2024b implementation. 
^ Parameter selection refers to 2D or 3D spatial data. For non-parametric methods, parameter selection is implicitly 
determined by the algorithm based on the input data. 
$ This indicates whether the algorithm accounts for labeling noisy points. However, this does not necessarily mean the 
method is robust to noise or outlier detection. 
§ This criterion was evaluated using generated datasets containing both clustered and noisy points (see Figure 2). 

 
Supp. Table 2: Summary of clustering evaluation metrics across various scenarios and methods. 
Results are presented as the mean ± standard deviation, calculated from 50 independently 
generated files for each scenario in SMLM benchmarking dataset26. DBSCAN adopts the 
parameters as reported in Nieves et al.26 that were tuned based on ARI. Look at Supp. Table 3 
for the parameters used to generate this table. Where, SEM is the standard error of the mean 
(SEM = std / sqrt(N)), where N=9 scenarios. 

 Method Ground Truth (GT)            
(No Added Blinking) 

Multiple Blinking (MB) 

  ARI AMI ARI AMI 
Scenario 2 HDCluster 0.86 ± 0.02 0.85 ± 0.018 0.74 ± 0.059 0.82 ± 0.03 

DBSCAN 0.85 ± 0.023 0.84 ± 0.02 0.16 ± 0.069 0.36 ± 0.081 
Scenario 3 HDCluster 0.90 ± 0.017 0.83 ± 0.025 0.72 ± 0.057 0.71 ± 0.045 

DBSCAN 0.84 ± 0.017 0.74 ± 0.022 0.69 ± 0.05 0.69 ± 0.042 
Scenario 4 HDCluster 0.68 ± 0.064 0.62 ± 0.055 0.34 ± 0.099 0.41 ± 0.079 

DBSCAN 0.67 ±  0.057 0.60 ± 0.057 0.34 ± 0.103 0.41 ± 0.084 
Scenario 5 HDCluster 0.55 ± 0.027 0.72 ± 0.009 0.38 ± 0.036 0.65 ± 0.012 

DBSCAN 0.56 ± 0.02 0.71 ± 0.011 0.42 ± 0.034 0.64 ± 0.018 
Scenario 6 HDCluster 0.70 ± 0.02 0.74 ± 0.012 0.63 ± 0.036 0.70 ± 0.018 

DBSCAN 0.73 ± 0.017 0.75 ± 0.016 0.65 ± 0.027 0.71 ± 0.018 
Scenario 7 HDCluster 0.55 ± 0.041 0.61 ± 0.027 0.43 ± 0.074 0.64 ± 0.032 

DBSCAN 0.53 ± 0.043 0.59 ± 0.036 0.45 ± 0.062 0.64 ± 0.032 
Scenario 8 HDCluster 0.82 ± 0.034 0.82 ± 0.03 0.64 ± 0.067 0.76 ± 0.044 

DBSCAN 0.80 ± 0.037 0.81 ± 0.031 0.64 ± 0.061 0.74 ± 0.062 
Scenario 9 HDCluster 0.57 ± 0.026 0.65 ± 0.014 0.54 ± 0.037 0.63 ± 0.02 

DBSCAN 0.58 ± 0.021 0.63 ± 0.02 0.55 ± 0.038 0.61± 0.028 
Scenario 10 HDCluster 0.85 ± 0.026 0.84 ± 0.025 0.71  ± 0.065 0.81 ± 0.034 

DBSCAN 0.84 ± 0.028 0.84 ± 0.024 0.72  ± 0.066 0.82 ± 0.034 
 

Metric HDCluster 
(Mean ± SEM) 

DBSCAN 
(Mean ± SEM) 

Absolute diff. 
(HDCluster − DBSCAN) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐼𝑚𝑟𝑜𝑣𝑚𝑒𝑛𝑡	(%)

=
𝐻𝐷𝐶𝑙𝑢𝑠𝑡𝑒𝑟	𝑀𝑒𝑎𝑛 − 𝐷𝐵𝑆𝐶𝐴𝑁	𝑀𝑒𝑎𝑛

𝐷𝐵𝑆𝐶𝐴𝑁	𝑀𝑒𝑎𝑛
×100 

GT ARI 0.72 ± 0.05 0.71 ± 0.04 0.01 1.41 % 
GT AMI 0.74 ± 0.03 0.72 ± 0.03 0.02 2.78 % 
MB ARI 0.57 ± 0.05 0.51 ± 0.06 0.06 11.76 % 
MB AMI 0.68 ± 0.04 0.62 ± 0.05 0.06 9.68 % 
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Supp. Table 3: Methods’ Parameters. DBSCAN parameters adopted from Nieves et al.26. The 
HDCluster parameters are tuned based on the AMI measure.  

  Ground Truth Multiple Blinking 
  HDCluster DBSCAN HDCluster DBSCAN 
  mTh (nm) β ∈ (nm) MinPts mTh (nm) β ∈ (nm) MinPts 
Scenario 2 59 0.8 45 7 67 0.9 35 50 
Scenario 3 34 2.1 40 10 48 1.7 45 50 
Scenario 4 59 1.9 50 4 59 1.6 60 25 
Scenario 5 50 0.8 35 8 53 0.8 35 34 
Scenario 6 58 0.6 30 6 63 0.8 40 42 
Scenario 7 74 0.7 65 6 80 0.8 65 32 
Scenario 8 62 0.6 50 4 70 0.9 50 27 
Scenario 9 77 0.6 45 12 110 0.7 45 50 
Scenario 10 59 0.9 45 7 68 1 50 33 
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