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Abstract

Simultaneous segmentation of multiple organs from different medical imaging modalities is a crucial

task as it can be utilized for computer-aided diagnosis, computer-assisted surgery, and therapy

planning. Thanks to the recent advances in deep learning, several deep neural networks for medical

image segmentation have been introduced successfully for this purpose. In this paper, we focus on

learning a deep multi-organ segmentation network that labels voxels. In particular, we examine

the critical choice of a loss function in order to handle the notorious imbalance problem that

plagues both the input and output of a learning model. The input imbalance refers to the class-

imbalance in the input training samples (i.e., small foreground objects embedded in an abundance

of background voxels, as well as organs of varying sizes). The output imbalance refers to the

imbalance between the false positives and false negatives of the inference model. In order to tackle

both types of imbalance during training and inference, we introduce a new curriculum learning

based loss function. Specifically, we leverage Dice similarity coefficient to deter model parameters

from being held at bad local minima and at the same time gradually learn better model parameters

by penalizing for false positives/negatives using a cross entropy term. We evaluated the proposed

loss function on three datasets: whole body positron emission tomography (PET) scans with 5

target organs, magnetic resonance imaging (MRI) prostate scans, and ultrasound echocardigraphy

images with a single target organ i.e., left ventricular. We show that a simple network architecture

with the proposed integrative loss function can outperform state-of-the-art methods and results of
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the competing methods can be improved when our proposed loss is used.

Keywords: Class-imbalance, output imbalance, deep convolutional neural networks, loss function,

multi-organ segmentation

1. Introduction

Organ segmentation is an important processing step in medical image analysis, e.g., for image

guided interventions, radiotherapy, or improved radiological diagnostics. A plethora of single/multi-

organ segmentation methods including machine/deep learning approaches has been introduced

in the literature for different medical imaging modalities, e.g., magnetic resonance imaging, and5

positron emission tomography (PET).

More recently, deep learning based medical image segmentation approaches have gained great

popularity [1–6]. Several deep convolutional segmentation models in the form of encoder-decoder

networks have been proposed for both medical and non-medical images to learn features and clas-

sify/segment images simultaneously in an end-to-end manner e.g., 2D U-Net [7], 3D U-Net [8], 3D10

V-Net [9], 2D SegNet [10]. These models with/without modifications have been widely applied to

both binary and multi-class medical image segmentation problems.

When performing segmentation especially using deep networks, one has to cope with two types

of imbalance issues:

a) Input imbalance (i.e., prior probability) or inter-class-imbalance during training, i.e., much15

fewer foreground pixels/voxels relative to the large number of background voxels in binary segmenta-

tion, and smaller objects/classes in a multi-class segmentation relative to other larger objects/classes

and the background. Therefore, classes with more observations (i.e., voxels) overshadow the mi-

nority classes.

b) Output imbalance (i.e., posterior probability). During inference, it is unavoidable to have false20

positives and false negatives. False positives are the background voxels (or other objects in the case

of multi-class) that are wrongly labeled as the target object. False negatives refer to the voxels of a

target object that are erroneously labeled as background or, in the case of multi-organ segmentation,

mislabelled as another organ. Clearly, eliminating both false positives and false negatives is the

ultimate ideal. However, in practical systems, one increases as the other decreases. For certain25

applications, reducing the false positive (FP) rate is more important than reducing the false negative
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(FN) rate or vice versa. The following are example cases where FP should be penalized more: to

handle missing organs and to prevent a model from segmenting normal active regions in PET image

segmentation (i.e., relatively high intensity regions compared to background which are considered

as neither lesion nor organ). PET organ segmentation is useful when a corresponding computed30

tomography (CT) image is not available to help with detecting organs. Even if a corresponding

CT image is available, usually PET and CT need to be registered. In contrast, for some other

applications false negatives should be penalized more, e.g., in ultrasound image segmentation where

the boundaries of organs are not very clear, target regions might be under-segmented or in magnetic

resonance imaging (MRI) segmentation, small spaces of unsegmented regions within a segmented35

area might be produced. However, conventional loss functions lack a systematic way of controlling

the trade-off between false positive and false negative rates.

Dealing with class-imbalance in image segmentation is critical when training deep models. De-

signing a proper loss function is a way of handling the imbalance [9]. U-Net (both 2D and 3D) and

2D SegNet minimize cross entropy loss to mimic ground truth segmentation masks for an input40

image while 3D V-Net applies a Dice based loss function.

Cross entropy is commonly used as a loss function in deep learning. Although it can potentially

control output imbalance i.e., false positives and false negatives, it has sub-optimal performance

when segmenting highly input class-imbalanced images [10]. There are several ways of handling

input imbalance in general classification tasks, e.g., random over/under sampling, synthetic minor-45

ity over-sampling technique (SMOTE) [11]. Similar to SMOTE, the threshold calibration method,

introduced by Pozzolo et al. [12], operates at the data-level, i.e., it requires the data to be under-

sampled first. However, this cannot be used when the input is an image and we deal with classifying

pixels/voxels (i.e., segmentation). To be specific, it would be meaningless to undersample an image

by removing only some of its majority class (e.g., background) pixels/voxels in the case of using50

full-volumes. Although in patch based approaches, patches can be selected in way to handle the im-

balance during training, they do not encode full contextual information and the choice of patch size

is not straightforward. Therefore, several different loss-function based techniques such as weighted

cross entropy [13], median frequency balancing as used in 2D SegNet [10], the Dice optimization

function as used in the 3D V-Net method [9], and a focal loss function [14] have been proposed.55

Among all methods introduced for tackling the input-imbalance problem, the Dice based loss

function has shown better performance for binary-class segmentation problems [13]. However, the
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Table 1: Applied loss functions in the existing deep models for handling imbalance; In-Imb and Out-Imb refer to

input imbalance and output imbalance, respectively

Method Loss function In-Imb Out-Imb

2D U-Net [7] Weighted cross entropy X

3D U-Net [8] Weighted cross entropy X

3D V-net [9] Dice X

Brosch et. al [18] Sensitivity + specificity X

Sudre et. al [13] Generalized/weighted Dice X

Berman et. al [19] Jaccard/IoU X

Lin et. al [14] Focal X

Proposed Combo X X

ability of the Dice loss function to control the trade-off between false positives and false negatives

(i.e., output imbalance) has not been explored in previous works. Controlling the trade-off is not

a trivial issue for some types of medical images and it is not easily handled by a classical Dice60

optimization function.

Table 1, lists previous works that used different loss functions to cope with input/output im-

balance. As reported in the table, none of the current loss functions are able to explicitly handle

both input and output imbalance. Some other works attempted to enhance output imbalance in

the segmented images using post processing techniques, e.g., Hu et al., [15] applied an energy based65

refinement step to improve the CNN segmentation results. Similarly, Gibson et al., [16] applied a

threshold based refinement step to cope with false positives produced by their convolutional neural

network (CNN) based organ segmentation model. Yang et al. [17] also applied a post processing

step to reduce both false positives and false negatives in segmented images. In this paper, we

leverage both the cross entropy and the Dice optimization functions to define a new loss function70

that handles both of the aforementioned input and output imbalance types by using global spatial

information driven by Dice term and explicitly and gradually enforcing the trade-off between FNs

and FPs by cross entropy term.

In this paper, we make the following contributions: a) We introduce a curriculum learning

based loss function to handle input and output imbalance (in algorithmic-level) in segmentation75

problems. b) Our proposed loss improves previous deep models namely 3D U-Net, 3D V-Net,
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and our extended version of 2D SegNet i.e., 3D SegNet in both training and testing accuracy for

single and multi-organ segmentation from different modalities. c) The proposed loss function, by

controlling the trade-off between false positives and negatives, is able to handle missing organs

i.e., by penalizing the false positives more. d) We extend 3D U-Net and 3D V-Net from binary to80

multiclass segmentation models. e) We introduce the first deep volumetric multi-organ semantic

model which simultaneously segments and classifies multiple organs from whole body 3D PET

scans.

2. Method

Given a medical image volume, the goal is to predict the class of each voxel by assigning an85

activation value p(x) ∈ [0, 1] to each voxel x. We adopt a deep learning technique to learn a

prediction model Φ(x; θ) : x → p(x), where θ denotes the model parameters and pi is activation

value for organ/class i.

Cross Entropy Loss Function. For multi-class problems, the cross entropy loss can be

computed as C =
∑
x

∑
i ti ln(pi(x)) where p is the predicted probability mass function (PMF),90

which assigns a probability/activation value to each class for each voxel, and t is the one-hot encoded

target (or ground truth) PMF, where the index i iterates over the number of organs and x over the

number of the samples (i.e., voxels). C can be computed as a sum of several binary cross entropy

terms, which for some multi-class problems, as in this paper, makes it possible to have control over

false positives/negatives. In the case of binary classification, C can be rewritten as95

C =
∑
x

ti ln(pi) + (1− ti) ln(1− pi) (1)

The term (1− ti) ln(1− pi) penalizes false positives as it is zero when the prediction is correct.

The binary formulation can also be extended and used for multi-class problems as 1
N

∑N
i=1 ti ln(pi)+

(1− ti) ln(1− pi) where N = number of classes× number ofsamples. Therefore, the output is

an average of multiple binary cross entropies.

Dice Optimization Function. The Dice function is a widely used metric for evaluating image100

segmentation accuracy, which can be written in forms ofDice = True positives / (number of positives+

number of false positives) or Dice = 2 × TP/(FN + (2 × TP ) + FP ). It can also be rewritten

as a weighted function to generalize into multi-class problems [13]. Recently generalized version of
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Dice was introduced [13]. In the binary case, the generalized Dice loss function is written as

GDL = 1

(
2

(
2∑
l=1

wl
∑
n

rlnpln

)
/

(
2∑
l=1

wl
∑
n

rln + pln

))
(2)

where R and P are the reference foreground segmentation with voxel values rn and predicted105

segmentation with voxel values pn. However, the GDL formulation requires the whole volume to

produce meaningful weights (i.e., wl), but in most cases, because of limited GPU memory, the

segmentation should be performed on sub-volumes. It is also possible to use weighted version of

Dice also known as Fβ score [20] to control the trade-off between precision and recall. However,

in case of using Dice (F1 or its weighted version Fβ) or GDL with sigmoid activation function in110

output layer of the network to model probabilities, the derivative of the loss in the back-propagation

with respect to a specific weight wjk in layer L looks like:

∂Dice

∂wLjk
=

1

n

∑
x

aL−1k

(
Dice

(
aLj , y

))′
σ′
(
zLj
)

(3)

where σ′
(
zLj
)

is the derivative of the sigmoid activation function. When a neuron has a value

close to 0 or 1, the gradient of the sigmoid is very small. As a result, the gradient of the whole

cost function with respect to wjk will become very small. Such a saturated neuron will change115

its weights very slowly. Note that in equation above Dice (F1) can be replaced by Fβ or GDL.

However, in case of using cross entropy the gradient is computed as

∂CE

∂wLjk
=

1

n

∑
x

aL−1k

(
σ
(
zLj
)
− y
)

(4)

Here gradient is not affected by σ′
(
zLj
)

anymore, so the gradient only depends on the neurons

output, the target y and the neurons input aL−1k . This avoids learning slow-down and helps with

the vanishing gradient problem from which deep neural networks suffer.120

Combo Loss. To leverage the Dice function that handles the input class-imbalance problem,

i.e., segmenting a small foreground from a large context/background, while at the same time con-

trolling the trade-off between FP and FN and enforcing a smooth training using cross entropy

as discussed above, we introduce our loss L as a weighted sum of two terms: A Dice loss and a

modified cross entropy (i.e. adding β and 1−β to control output FP and FN) to encode curriculum125

learning, and is written as:

6



L = α

(
− 1

N

N∑
i=1

β (ti − ln pi) + (1− β) [(1− ti) ln (1− pi)]
)

− (1− α)

K∑
i=1

(
2
∑N
i=1 piti + S∑N

i=1 pi +
∑N
i=1 ti + S

)
(5)

where α controls the amount of Dice term contribution in the loss function L, and β ∈ [0, 1] controls

the level of model penalization for false positives/negatives: when β is set to a value smaller than

0.5, FP are penalized more than FN as the term (1 − ti) ln (1 − pi) is weighted more heavily,

and vice versa. In our implementation, to prevent division by zero, we perform add-one smoothing130

(a specific instance of the additive/Laplace/Lidstone smoothing) [21], i.e., we add unity constant

S to both the denominator and numerator of the Dice term. Although the proposed loss seems to

be simply combining two different loss functions, we deliberately chose the binary version of the

cross entropy to enable us to explicitly enforce a the intended trade-off between false positives and

negatives using the parameter β (equation 5) and, at the same time, keep the model parameters135

out of bad local minima via the global spatial information provided by Dice term. In L, curriculum

learning can be seen as a strategy for improving the convergence of highly nonconvex optimization

problems [22]. In the initial stages of the model optimization of our approach, if the Dice term acts

alone it may tend to converge to an overfit solution quickly. However, the addition of the cross-

entropy term acts as a regularizer for the Dice term and avoids large model parameter changes that140

may lead to unsuitable model parameters.

After sigmoid normalization over all the channels (i.e., classes) in the last layer, the Combo

loss function is computed using the flattened volumes (one-hot multi-label encoding for both the

predicted and ground truth volumes containing several objects) of size W ×H ×D × C where W ,

H, D, and C refer to width, height, depth, and number of channelsclasses. This strategy makes it145

simple to generalize to multi-class segmentation hence directly controlling FPs and FNs over entire

volume.

Model Parameter Optimization. To optimize the model parameters θ to minimize the loss,

we use error back propagation, which relies on the chain rule. We calculate the gradient of L with

respect to pj , i.e., dL/dpj ,150
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Table 2: Comparison between our proposed method and state of the art deep learning segmentation methods. Up S

refer to up-sampling type.

Network SC Loss Up S Params

2D SegNet [10] No Cross entropy Specific 16,375,169

3D U-Net [8] Yes Cross entropy Regular 12,226,243

3D V-Net [9] Yes Dice Regular 84,938,241

Proposed No Proposed Regular 13,997,827

Figure 1: The applied network architecture. Black: convolution 3×3×3, MP: max-pooling 2×2×2, UP: up-sampling

2 × 2 × 2. The values inside the boxes show number of channels.

∂L

∂pj
= 2α×

(
− 1

N

N∑
i=1

β

(
ti
pi

)
+ (1− β)

(
− 1− ti

1− pi

))
−

(1− α)

N∑
i=1

ti

(∑N
i=1 pi +

∑N
i=1 ti

)
− pj

(∑N
i=1 piti

)
(∑N

i=1 pi +
∑N
i=1 ti

)2 (6)

Then we calculate how the changes in the model parameters in the last layer of the deep architecture

affect the predicted pj , and so on.

Deep Model Architecture. We use the deep architecture shown in Fig. 1. This architecture

departs from existing architectures like 3D U-Net, 3D U-Net, and 2D SegNet as listed in Table 2.

We adopt this simple network to show that the improvement in results is not attributed to some155

elaborate architecture and to validate our hypothesis that, even with a simple shallower architecture

as long as a proper loss function is used, it is possible outperform more complex architectures e.g.,

networks with skip connections [7–9] or specific up-sampling [10].

Training. For multi-organ segmentation from whole body PET images, as the volumes are

too large to fit into memory, we extract random sub-volumes from each whole body scan to train160

a model. Each sub-volume could include voxels belonging to n ∈ {0, 1, ...,K} organs, with n = 0
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indicating a sub-volume including only background. However, for binary segmentation i.e., 3D

ultrasound and MRI datasets, we train using the entire volumes. On test data (only for PET), we

apply a volumetric sliding window (with stride), i.e., a volumetric field of view V is partitioned

into smaller sub-volumes {v1, v2, ...vn}, where the size of vi is the same as that of the training165

sub-volumes. Along any of the dimensions, the stride would be at least 1 voxel and at most the size

of the sub-volume in that dimension. Larger strides speed up the computation at the expense of

coarser spatial predictions. Let vi be a subvolume with activation avi , Vx be the set of subvolumes

that include x, AVx be the set of corresponding activation values. T (AVx) is the set of indicator

variables whose value is 1 if the activation is larger than t, and 0 otherwise, where t is a threshold170

value. Then, the the label assigned to voxel x is given by: f (x) =

0, if max(T (AVx
)) = 0

1, otherwise
. In

other words, a single voxel x may reside within multiple overlapping subvolumes; if the activation

of any these subvolumes is larger than threshold T , then x is assigned 1, and 0 otherwise.

3. Implementation details

a) PET multi-organ segmentation: For training the PET multi-organ segmentation network, from175

each training image, we extract 100 randomly positioned 80× 80× 80-voxel sub-volumes per organ

(5 organs in total: brain, heart, left kidney, right kidney, and bladder) and another 100 for negative

background sub-volumes. Therefore, we train all the models with ∼ 600× number of training

volumes. In test, the striding size was set to 20×20×20. PET volumes size varied from 128×128× ∼

200 to 128 × 128× ∼ 500. We train and test all the models using two Titan-X GPUs in parallel180

each with batch-size 1.

b) Ultrasound echocardiography and prostate MRI segmnetation: We train and test all the models

on these datasets with whole-volume images (i.e., not sub-volumes) of size 128 × 128 × 128 and

48 × 256 × 256 for ultarsound and MRI datasets, respectively using two M5000 GPUs in parallel

each with batch-size 2. As explored by Masters et al., [23], small mini-batch sizes can provide more185

up-to-date gradient calculations, which results in more stable and reliable training while reducing

over-fitting more compared to larger batch sizes.

As MRI and ultrasound images are taken from a part of the body, the number of slices per

volume are relatively less compared to PET whole body volumes. To prevent sliding window for

both training and testing and fitting whole MRI and ultrasound volumes into memory, we slightly190
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resampled MRI and Ultrasound images without losing much information causes by resampling.

However, PET volumes should be highly resized in order to be fitted into memory which results in

considerable accuracy drop. Therefore, we did not resample PET images.

For all datasets, we initialize our models and competing methods using the method introduced

by and Bengio [24] and train them with ADADELTA [25], with learning rate of 1, ρ = 0.95,195

ε = 1e − 08, and decay = 0. All the models are coded using TensorFlow. To prevent gradient

vanishing/exploding we use batch normalization after each convolution layer [26]. It also allows us

to use higher learning rate. Similar to how hyperparameters values are selected in deep models,

e.g., learning rate and pooling window size, the optimal values for α and β were also found by grid

search to optimize results on the validation set (i.e., one round of cross-validation). We found that200

the equal contribution (i.e., α = 0.5) of Dice and cross-entropy terms gives the best results. We

experimentally found that different data can be sensitive to either FP or FN or both e.g. PET

suffers more from false positive, due to noise and to small metabolic activities all over the body

(β = 0.4). Ultrasound and MRI data, on the other hand, suffer more from under segmentation

i.e. false negatives (β = 0.6 for MRI and β = 0.7 for ultrasound images), which is due to unclear205

borders of left ventricle and prostate, respectively. Therefore we set different values to handle the

imbalance properly for each data. For the last layer of the proposed method, we applied the sigmoid

activation function as it allowed us to compute the loss over only foreground objects (i.e., there is

no extra channel for the background class, as softmax function requires) and then normalize the

output into the range [0-1]. To obtain the segmentation masks we use threshold of 0.5.210

All the models have been trained for a fixed number of epochs and we report the results for the

best epoch based on the validation set. Note that for the competing methods we set the hyper-

parameters as proposed by the authors of these methods. For fairness and to elucidate the direct

effect of the proposed Combo loss, when we replace the original loss functions of the competing

methods with Combo loss (Tables 3 and 5), we do not change the original network hyper-parameters.215

4. Datasets

For evaluation, we use three different datasets: a) 58 whole body PET scans of resolution

∼ 0.35× ∼ 0.35× ∼ 3.5 − 5 mm. We randomly pick 10 whole body volumes for testing and

train with the 48 remaining volumes. We normalize the intensity range of our training and testing

volumes using the min-max method based on min and max intensity values of the whole training220
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set. Next, in both training and testing, each single sub-volume is also normalized to [0, 1] using

its min and max before feeding it into network. b) 958 MRI prostate scans of different resolution

which were resampled to voxel size of 1×1×3 (mm). We randomly picked 258 volumes for testing,

and train with remaining 700 volumes. c) hlUltrasound echocardiography images of resolution

2× 2× 2 (mm), used for left ventricular myocardial segmentation, were split into 430 train and 20225

test. The datasets were collected internally and from The Cancer Imaging Archive (TCIA) QIN-

HEADNECK and ProstateX datasets [27–31]. Samples of the three datasets are shown in Fig. 2.

The ground truth for ultrasound and MRI datasets were generated by experts in medical imaging

and anatomy using the established Siemens annotation pipeline which has been adopted previously

in a large number of research projects and published works by Siemens and collaborators., The230

PET ground truth segmentation has been completed by a medical image analysis researcher with

several years of experience.

Figure 2: Samples of the used datasets. The first column shows the left ventricular myocardium (highlighted in red)

in ultrasound echocardiography. In the second column, the prostate is highlighted in red in an MRI scan. For MRI

and ultrasound samples, the 2 rows show the axial and coronal views. Column 3 shows coronal view of a whole body

PET scan.

5. Results

We perform a set of experiments on three different datasets to show the effectiveness of the

proposed method on both input and output imbalance. Note that segmentation models suffer less235

from input imbalance when organs are not relatively much smaller than other organs, but suffer

more from output imbalance as the boundaries of the organs are clearly visible, e.g. in ultrasound
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Table 3: Comparing the performance of competing methods with/without the proposed loss function vs. the proposed

method for PET multi-organ segmentation

Methods Jaccard Dice FPR FNR

a
3D U-Net [8] 0.55± 0.16 0.69± 0.16 0.41± 0.31 0.30± 0.15

3D U-Net Combo 0.68± 0.18 0.79± 0.15 0.18± 0.09 0.21± 0.17

b
3D V-Net [9] 0.52± 0.17 0.67± 0.16 0.89± 0.90 0.13± 0.09

3D V-Net Combo 0.55± 0.17 0.70± 0.15 0.64± 0.46 0.16± 0.11

c
3D SegNet 0.41± 0.20 0.56± 0.21 0.66± 0.78 0.32± 0.28

3D SegNet Combo 0.55± 0.19 0.69± 0.17 0.37± 0.38 0.28± 0.17

d Ahmadvand et al. [32] 0.41± 0.18 0.53± 0.23 0.35± 0.77 0.37± 0.82

e
PCE 0.34± 0.15 0.49± 0.18 0.67± 0.42 0.48± 0.14

PWCE 0.45± 0.20 0.60± 0.19 0.46± 0.23 0.37± 0.22

f

PD 0.67± 0.09 0.80± 0.07 0.43± 0.19 0.06± 0.04

PDCE 0.73± 0.10 0.84± 0.07 0.09± 0.06 0.21± 0.11

PCombo 0.73± 0.13 0.84± 0.10 0.07± 0.02 0.22± 0.14

or normal metabolic activity in PET might cause false positives. Our evaluation is divided into 2

parts. First, in subsection 5.1, we compare, both qualitatively and quantitatively, the performance

of all the competing methods to the proposed method on the test data, for multi-organ segmentation240

from PET scans. We test different modification/variants of the proposed loss with the proposed

architecture, i.e., cross entropy optimization (PCE, weighted cross entropy (PWCE), Dice optimiza-

tion (PD), Dice + cross entropy optimization (PDCE), and the proposed loss (PCombo). DCE refers

to simply integrating Dice and traditional cross entropy losses, whereas, Combo refers to combining

the weighted version of cross entropy with Dice. Second, in subsection 5.2, we perform similar245

experiments to subsection 5.1 for single organ segmentation from two more different modalities,

i.e., MRI and ultrasound scans.
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PET (coronal) GT Ahmadvand et al. [32] 3D SegNet 3D U-Net [8] 3D V-Net [9] PD PDCE PCombo

Figure 3: Comparing multi-organ localization-segmentation-classification results of the proposed vs. competing

methods. Each row shows a sample patient data.
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5.1. Performance of the proposed vs. competing methods on multi-organ PET segmentation

We treat the multi-class case as binary, i.e., the one-hot multi-label encoding for the both the

predicted and ground truth volumes containing several objects are flattened and the Combo loss is250

computed. In this case, similar to binary segmentation, balancing the false positives and negatives

improves segmentation. As reported in Table 3, the proposed architecture with proposed loss

(PCombo) outperforms all competing methods with 57%± 24%, 38%± 18%, 86%± 5% in Jaccard,

Dice and FPR, respectively. Comparing rows of section a in Table 3, we note that: Modified 3D

U-Net improves with our proposed loss (Combo) relatively by 23.6%, 14.5%, 56%, and 30% in255

Jaccard, Dice, FPR, and FNR, respectively. Comparing rows of section b, we note that: 3D V-Net

improves with our proposed loss relatively by 5.8%, 4.5%, and 28%, in Jaccard, Dice, and FPR,

respectively. Section c shows that 3D SegNet improves with our proposed loss by relatively 34.1%,

23.2%, 44%, and 12.5% in Jaccard, Dice, FPR, and FNR, respectively. Comparing PCE vs. PWCE

in section e of Table 3 shows that WCE helps. Comparing PD vs. PCombo shows that the proposed260

Combo loss improves the results. Although the results and formulation of Dice + original cross

entropy (i.e., DCE) and Combo loss are close, it is important to note that, in the Combo loss

formulation, we weight the two terms of the original cross entropy so we can enforce the intended

trade-off between FP and FN.

As shown in Figure 3, although 3D U-Net, 3D V-Net, and the extended version (3D) of SegNet265

are able to locate the normal activities (bright areas in the image because of absorbing radio-tracer.

The look very similar to abnormalities) and segment them, two issues are visible: a) misclassification

of organs: the competing methods were not successful in distinguishing the organs from each other,

as sometimes the brain (red) has been labeled as bladder (black); b) the competing methods tend

to produce false positives i.e., wrongly labeling some background voxels as an organ (or one organ270

as another) or missing an organ (false negative). As shown in the figure, PD still produces false

positives, but no misclassification of organs. PCE shows clearer segmentations, however, as we

penalize the false positives more with the proposed loss we obtain much clearer outputs (last

columns: PCombo). The performance of the proposed method was evaluated for each specific organ

and reported in Table 4.275

Over all the organs, Dice scores for the proposed method (proposed architecture + Combo loss)

ranges from 0.58 to 0.91. We show the worst, an in-between and the best results in terms of Dice

score in Fig. 5. Although the left case in the figure seems to be the worst result in terms of Dice
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GT 3D SegNet 3D SegNet Combo 3D U-Net [8] 3D U-Net Combo 3D V-Net [9] 3D V-Net Combo

Figure 4: Competing methods’ results before and after adding proposed loss function.

Table 4: Organ-specific quantitative results of the proposed method for PET dataset. BR, HR, LK, RK, and BL refer

to different organs i.e., brain, heart, left kidney, right kidney, and bladder, respectively. The numbers in parentheses

in front of each organ show the average percentage number of voxels which belong to that organ in whole volumes.

Jaccard Dice FPR FNR

BR (∼ 0.64%) 0.74± 0.20 0.83± 0.16 0.06± 0.04 0.21± 0.22

HR (∼ 0.14%) 0.65± 0.15 0.78± 0.12 0.11± 0.07 0.29± 0.15

LK (∼ 0.08%) 0.68± 0.08 0.81± 0.06 0.19± 0.15 0.20± 0.07

RK (∼ 0.09%) 0.68± 0.10 0.81± 0.07 0.09± 0.07 0.26± 0.11

BL (∼ 0.09%) 0.69± 0.12 0.81± 0.09 0.04± 0.05 0.28± 0.14

score, it is a difficult case with several missing organs. However, the proposed method has been

able to handle multiple missing organs to a high extent. Note that some organs c an be physically280

absent from a patient body, as in renal agenesis or radical (complete) nephrectomy, but in PET

scans, there might be more ”missing” organs (similar to the left case in Fig. 5) simply because of

lack of radiotracer uptake in these organs thus they do not appear in PET. Although, in training,

Dice score improvement compared to 3D V-Net is small, as shown in Figure 4, in test, proposed loss

helped 3D V-Net in terms of reducing organ misclassification and false positives. Looking at both285

Table 3 and Fig. 4, 3D U-Net and 3D SegNet achieved higher performance when incorporating the

proposed loss.
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Figure 5: Sample segmentations by the proposed method. First row shows ground truth segmentations and second

row shows the proposed method results. From left to right: worst (Dice = 0.58), in-between (Dice = 0.76), and best

(Dice = 0.91)

5.2. Performance of the proposed vs. competing methods on single organ segmentation from MRI

and ultrasound

For MRI and ultrasound datasets, we observed that all the methods are more prone to false290

negatives than false positives, so we weigh more the false negative term of the proposed loss (i.e.,

increase β to 0.9). As reported in Table 5, similar to results in Section 5.1, the Combo loss

function improved 3D U-Net and 3D V-Net by 4.6% and 1.13% in Dice and 43.8% and 16.7%in

FNR, respectively, for MRI prostate segmentation. Similarly, 3D U-Net and 3D V-Net results were

improved by 8.23% and 3.4% in Dice and 33.3% and 16.7%in FNR, respectively, for ultrasound left295

ventricular myocardial segmentation.

As can also be seen in Table 5, the proposed loss also helps reduce the variance of the segmen-

tation results.

We also compared the proposed loss function with the recently introduced Focal loss func-

tion [14]. Our integrative loss function outperformed Focal loss after both were applied to different300

networks (Table 5). We applied Focal loss to the best performing competing method for each

dataset i.e., 3D V-Net for MRI and 3D U-Net for ultrasound dataset. For Focal loss, we tested
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Table 5: Comparing performance of competing methods with/without proposed ( Combo) loss function vs. proposed

method for MRI prostate and ultrasound left ventricular myocardial segmentation. The average percentage of voxels

belonging to organ in whole volumes are 1.01% and 0.6% for left ventricle and prostate in ultrasound and MRI

volumes, respectively.

Methods Dice FPR FNR

M
R

I

3D U-Net [8] 0.87± 0.07 0.0004± 0.0004 0.16± 0.12

3D U-Net Combo 0.91± 0.05 0.0005± 0.0005 0.09± 0.08

3D V-Net [9] 0.88± 0.05 0.0006± 0.0004 0.12± 0.08

3D V-Net Focal 0.87± 0.04 0.0002± 0.0002 0.19± 0.07

3D V-Net Combo 0.89± 0.05 0.0006± 0.0005 0.10± 0.08

ProposedArc Combo 0.90± 0.04 0.0007± 0.0006 0.08± 0.07

U
lt

ra
so

u
n

d

3D U-Net [8] 0.85± 0.05 0.0020± 0.0006 0.12± 0.12

3D U-Net Combo 0.92± 0.05 0.0007± 0.0003 0.08± 0.09

3D U-Net Focal 0.88± 0.11 0.0004± 0.0005 0.17± 0.15

3D V-Net [9] 0.84± 0.04 0.0020± 0.0008 0.12± 0.08

3D V-Net Combo 0.87± 0.03 0.0020± 0.0005 0.10± 0.04

ProposedArc Combo 0.92± 0.05 0.0006± 0.0004 0.09± 0.10
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several different values for α and γ, but as suggested by the authors we obtained better results with

α = 0.25 and γ = 2.0. Note that there is no correspondence between the alpha used in the Focal

loss paper (the weight assigned to the rare class) and the one we use in Combo loss equation (the305

weight that controls the contribution of Dice and cross entropy terms). For the MRI dataset, the

proposed Combo loss outperformed Focal loss by 2.3% and 47.4% in Dice and FNR, respectively,

when both were used in 3D V-Net. For the ultrasound dataset, Combo loss outperformed Focal

loss by 10.8% in Dice. In Figure 6, we plot both Dice and Hausdorff distance (HD) of the Combo

loss vs. competing methods. As shown in the figure, the proposed method outperforms the com-310

peting methods in terms of Dice score. Comparing both Dice and Hausdorff distance values of the

competing methods, after applying Combo loss (i.e., U C, and V C) in Figure 6, the range of the

values are smaller, i.e., less outliers compared to when they use original loss (i.e., U and V).

Among the competing methods, U-Net applies cross entropy loss while V-Net leverages Dice

loss. To show the direct contribution of the Combo loss, we replace the original loss functions in315

U-Net and V-Net with Combo (Table 5). As reported in Table 5, after replacing cross entropy loss

of U-Net with Combo loss, the Dice scores improve from 0.87 to 0.91 and 0.85 to 0.92 for MRI and

ultrasound datasets, respectively. Similarly, when replacing the Dice loss function of V-Net with

the proposed Combo loss, the segmentation results improve from 0.88 to 0.89 and 0.84 to 0.87 for

MRI and ultrasound datasets, respectively.320
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Figure 6: Dice and Hausdorff distance (HD) of the competing methods vs. the proposed Combo loss for the ultrasound

dataset. In the figure, U, U F, U C, V, V C, and P C refer to 3D U-Net, 3D U-Net Focal, 3D U-Net Cmbo, 3D

V-Net, 3D V-Net Combo, and ProposedArc Combo, respectively.

Parameter α controls the contribution of Dice and cross entropy terms while parameter β in
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the second term, i.e., cross entropy, controls the trade-off between false positives and negatives. As

a key contribution of the paper is providing the means to explicitly control output balance, i.e.,

false positives and negatives, we tested several different values for parameter beta to see how the

final results are affected by β and we fix parameter α that controls the trade-off between Dice and325

cross entropy to 0.5. In Figure 7, we show the different Dice and HD results obtained from different

β values, which control false positives and false negatives. As expected, we note that the final

segmentations are affected by the choice of parameter beta and the best results in terms of higher

Dice and lower Hausdorff distance were obtained for β = 0.7 and β = 0.6 for ultrasound and MRI

datasets, respectively. As HD is sensitive to outliers, there are sometimes relatively large values in330

the HD results (i.e., second column in the figure)
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Figure 7: Dice and Hausdorff distance (HD) with various parameter β values. First and second rows show ultrasound

and MRI results, respectively.
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6. Conclusion

In this paper, we proposed a curriculum learning based loss function to handle input/class-

imbalance and output imbalance (i.e., enforcing the trade-off between false positives and false

negatives). Note that enforcing a desired trade-off between false positives and false negatives can335

be seen in Tables 3 and 5). Noting the change in FPR and FNR values of 3D U-Net, 3D V-Net,

and 3D Seg-Net when they apply Combo loss, we see that FPR or FNR is severely decreased when

the models are penalized for FP or FN, respectively (for PET data i.e., Table III, the Combo

loss penalizes FP and for MRI and ultrasound data i.e., Table V, it penalizes FN). The proposed

loss function resulted in improved performance in both multi- and single-organ segmentation from340

different modalities. The proposed loss function also improved the existing methods in terms of

achieving higher Dice and lower false positive and false negative rates. In this work, we applied

the proposed loss function to a multi-organ segmentation problem, but it can simply be leveraged

for other segmentation tasks as well. The key advantage of the proposed Combo loss is that it

enforces a desired trade-off between the false positives and negatives (which results in cutting out345

post-processing) and avoids getting stuck in bad local minima as it leverages Dice term. The Combo

loss converges considerably faster than cross entropy loss during training. Similar to Focal loss, our

Combo loss also has two parameters that need to be set. In this work, we used cross-validation to

set the hyperparameters (including α and β of our proposed loss). Future work can explore using

Bayesian approaches [33, 34].350
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