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ABSTRACT

Diagnosing an unknown skin lesion is the first step to de-
termine appropriate treatment. We demonstrate that a lin-
ear classifier, trained on features extracted from a convolu-
tional neural network pretrained on natural images, distin-
guishes among up to ten skin lesions with a higher accu-
racy than previously published state-of-the-art results on the
same dataset. Further, in contrast to competing works, our
approach requires no lesion segmentations nor complex pre-
processing. We gain consistent additional improvements to
accuracy using a per image normalization, a fully convolu-
tional network to extract multi-scale features, and by pooling
over an augmented feature space. Compared to state-of-the-
art, our proposed approach achieves a favourable accuracy of
85.8% over 5-classes (compared to 75.1%) with noticeable
improvements in accuracy for underrepresented classes (e.g.,
60% compared to 15.6%). Over the entire 10-class dataset
of 1300 images captured from a standard (non-dermoscopic)
camera, our method achieves an accuracy of 81.8% outper-
forming the 67% accuracy previously reported.

1. INTRODUCTION

Skin cancers are commonly grouped into either melanoma or
non-melanoma skin cancers. Melanoma skin cancers have a
higher rate of mortality, while non-melanoma skin cancers
have a higher incidence rate. Early detection is important for
successful treatment and treatment can differ based on the
cancer type [1]. This makes systems to automatically classify
types of skin lesions a potentially useful screening tool for
initial referrals or as acting as an additional supporting/safety-
net expert system. As melanoma has a higher mortality rate
than non-melanoma skin cancer, distinguishing between can-
cer and noncancerous melanoma skin images has attracted
considerable research [2]. However, non-melanoma skin
cancer is the most common cancer in light skin populations
and, while it has a lower mortality rate than melanoma skin
cancer, it places a large burden on quality of life and health
care services [3]. Thus distinguishing among melanoma,
non-melanoma and other types of benign skin lesions are an
important component of a practical skin diagnosis tool and is
a focus of this work.
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Focusing on non-melanoma skin cancers, Ballerini et
al. [4] used a hierarchical K-nearest neighbors based ap-
proach to classify among 5-classes of skin lesions using
images captured with a colour camera. Leo et al. [5] ex-
tended this approach to classify 10-classes of skin lesions
that contained both melanoma and non-melanoma as well
as benign skin lesions. This dataset [4, 5] (Fig. 1) of non-
dermoscopic images is publicly available and allows us to
compare methods. Shimizu et al. [6] used a similar strategy
to classify among 4-classes of dermoscopic skin lesions that
included both melanoma and non-melanoma lesions. These
approaches [4, 5, 6] followed the similar pipeline of: pre-
process the image; segment the lesion; extract a candidate
set of conventional image and shape features; select a class
discriminate subset of these features; and, train a classifier.

In this work, we prefer to avoid lesion segmentations and
complex preprocessing as these are non-trivial steps where
errors can propagate (e.g., poor segmentations gives poor fea-
tures) and may require subjective human intervention. For ex-
ample, the skin lesion segmentation approach of Li et al. [7]
required manual initialization, post-processing, and utilized
depth information. Further, they report large variations in the
manual lesion segmentations done by dermatologists, which
may indicate segmentations are subjective. Thus, we focus
on a state-of-the-art image feature extractor, that does not re-
quire lesions’ segmentations nor complex preprocessing, in
the form of a pretrained fully-convolutional neural network.

Convolutional neural networks (CNNs) have emerged as
a powerful classification tool and are consistently used in
competitions such as the ImageNet challenge, which has re-
searchers compete to classify hundreds of different natural
objects [8]. CNNs not only give state-of-the-art results when
trained for a specific task, but experiments have shown that
the filters learned over the ImageNet dataset are generic and
useful for other image tasks that the CNN was not originally
trained for [9, 10, 11]. For example, Donahue et al. [9] used
the AlexNet [12] architecture trained on ImageNet and found
the responses from the first fully connected layer, FC6 (the
sixth network layer), used to train a linear classifier out-
performed conventional engineered features across a variety
of benchmarked datasets of natural objects. Very recently,
Codella et al. [10] used pretrained CNNs to extract deep
features from dermoscopy images to perform 2-class clas-
sification of two tasks (melanoma vs. non-melanoma and



Fig. 1. Dermofit images from each of the 10-classes randomly
sampled. The first 5-classes make up the 5-class experiments.

melanoma vs. atypical lesions) and found this approach to
outperform conventional low-level visual features.

We convert a CNN into a fully-convolutional neural net-
work (full-CNN) by converting the fully connected layers to
convolutional layers [13]. This is an efficient approach to
computing features over different spatial locations as it reuses
the common convolutions done early in the network and can
be used to compute features over multiple scales [13]. Aggre-
gating features over the spatial dimensions has shown to im-
prove predictive performance and the resulting feature vectors
generalize well to other natural object image tasks [11].

Using a pretrained CNN as a feature extractor rather
than training a CNN from scratch is attractive as it trans-
fers learning (i.e. filters) from other domains where more
training data is available, and avoids a time consuming train-
ing process. However, it is not obvious if the filters learned
in a CNN trained on natural images will generalize well to
those found on closeup skin images. Aside from recent der-
moscopic work [10], most CNN-based works [9, 11] have
focused on benchmarking similar natural objects. Thus we
investigate whether CNN filters trained on natural objects
generalize to multi-class (greater than two) classification of
non-dermoscopic (i.e. without requiring a dermoscope) skin
lesion images. We find that these features do generalize well
and outperform previously published results over the same
dataset, without the aid of the corresponding lesion segmen-
tations used in previous approaches. We improve on the stan-
dard CNN as a feature extractor approach by using per-image
normalization, a pretrained full-CNN to extract features from
multiple scales, and by pooling across an augmented feature
space, all of which yield classification improvements.

2. METHODS

Given a skin image x with a corresponding class label y rep-
resenting the skin lesion class, we want to extract image fea-
tures f = Φ(x) that discriminate well among the different
class labels. To extract image features, we use the architec-
ture of AlexNet [12] pretrained on the natural images found
in ImageNet [8]. To extract features at multiple scales, we
follow a similar approach to Sermanet et al. [13] to convert
the CNN to a full-CNN. We convert the fully connected lay-
ers of AlexNet to convolutional layers, where these pretrained
weights from the fully connected layers now act as convolu-
tional filters. These filters can now be convolved with larger
inputs (i.e. larger images) to efficiently extract responses at
different scales. A skin image is passed through the network,

and we extract the features from FC6 (now a convolutional
layer) as FC6 has been shown to generally yield generic fea-
ture vectors [9, 10]. The responses from FC6 (i.e. the deep
skin features) are used to train a logistic regression classifier
to classify the skin lesions. We compute features at differ-
ent scales by changing the size of the image. Thus, when
the image is larger than the CNN’s original receptive field,
we get a feature vector with a height and width dimension,
which corresponds to spatial locations in the larger input im-
age. In order to reduce dimensionality and to be invariant to
the spatial locations of the responses, we max-pool across the
spatial dimensions (see Eq. 2) to get a single feature vector
for the entire image.

Image normalization and preprocessing Typically, im-
ages are normalized by subtracting the averaged activity over
the training set to center the RGB values around zero [12].
As the CNN was trained over ImageNet images, we subtract
from our skin images the averaged pixel activity of the Im-
ageNet training images. We explore other normalization ap-
proaches. To provide some invariance to differences in light-
ing and skin tone, we hypothesis that subtracting the mean
RGB pixel values computed over each individual image (per-
image-mean) will improve the discriminant values in the re-
sulting feature vector. We report results over different image
normalization options in Table 1. Aside from resizing im-
ages, this is the only preprocessing we perform. We contrast
this simple preprocessing to other competing approaches that
require more complex preprocessing such as lesion segmen-
tation, and specular highlight removal [4, 5, 6].

Pooled deep features for augmented images A com-
mon approach to improve a CNN’s classification accuracy is
to augment the images [12]. As skin lesions can potentially
be imaged from a variety of camera rotations, we augment the
images using a rotation by 0, 90, and 270 degrees as well as
a left-right flip. Given the ith image x(i), we augment and re-
size it to produce a jth augmentation of the ith image x̃(i)j . We
normalize the augmented image and compute a feature vector
by extracting the responses at FC6. For example, normalizing
the image using the per-image-mean subtraction, we compute
an augmented feature vector as,

f̃
(i)

j = Φ(x̃
(i)
j − µ(x̃

(i)
j )) (1)

where µ(x) returns the mean value for each colour channel in
x, and Φ(x) extracts the FC6 responses.

These augmented feature vectors (Eq. 1) could be used as
additional samples to train a classifier and as additional im-
age views during testing. However, there are additional time
and memory costs associated with training and testing a clas-
sifier on more samples. Pooling across feature space creates a
single representative feature vector for all the augmentations
that allows us to keep the same time and memory benefits of
having a single feature vector per image. We use a similar
approach as [11], where instead of averaging across only left-
right flips, we pool across m augmentations. Combining the



max-pooling over the full-CNN’s spatial (height h and width
w) dimensions with the mean-pooling in augmented feature
space, we compute our augmented feature vector as,

f̂
(i)
k =

1

m

m∑
j

max
h,w

(
f̃
(i)
h,w,k,j

)
(2)

wheremaxh,w
(
f̃
(i)
h,w,k,j

)
computes the max spatial response

of the kth feature for the jth augmentation of image i. These
pooled augmented feature vectors summarize the augmenta-
tions of each image, while keeping the time and memory ben-
efits of using a lower number of training/testing samples.

3. RESULTS

We validate our approach on the Dermofit Image Library1.
This dataset is composed of 1300 skin images with cor-
responding class labels and lesion segmentations. There
are 10 lesion categories (Fig. 1) in this dataset: Actinic
Keratosis (AK), Basal Cell Carcinoma (BCC), Melanocytic
Nevus/Mole (ML), Squamous Cell Carcinoma (SCC), Se-
borrhoeic Keratosis (SK), Intraepithelial Carcinoma (IEC),
Pyogenic Granuloma (PYO), Haemangioma (VSC), Der-
matofibroma (DF), and Malignant Melanoma (MEL). As
Ballerini et al. [4] report detailed results and experiments
over 5 of these classes, we focus our comparison on these
5-classes (AK, BCC, ML, SCC, SK), but also benchmark
over the entire 10-class dataset to compare with Leo et al. [5].

To divide our data, we follow the approach of Ballerini
et al. [4], where we randomly split the dataset into three ap-
proximately equal sets with approximately the same distribu-
tion of class labels. We show cross validated results where
two sets are used to train and one is held out to test. For
ease of comparison, we report a single accuracy over all n
(n=960 for 5-class and n=1300 for 10-class) tested images,
1
n

∑n
i δ(ypred − ytrue) where δ(ypred − ytrue) returns 1 if

both the true and predicted labels are equal to each other, else
0. For a fair comparison, we compute results for [4] with this
measure of accuracy using their confusion matrix (Table 1
row a). To better indicate the performance per class, we re-
port the confusion matrix across all classes. Following [4],
we also report the results of grouping our 5-class predictions
into a 2-class problem. Specifically, we group our 5-class pre-
dictions for BCC, SCC and AK together to form a cancer and
potential risk lesion class and group our 5-class predictions
for ML and SK together to form a benign lesion class.

In all experiments, we train a logistic regression classifier
(using the default parameters) on deep features to classify the
skin lesions from a single scale. We use the Caffe [14] im-
plementation of AlexNet [12] to extract the CNN pretrained
feature vectors at FC6.

1https://licensing.eri.ed.ac.uk/i/software/
dermofit-image-library.html

Fig. 2. Confusion matrices for our proposed approach when
trained for the 5-class (left) and 10-class (right) problem.
Each cell shows the number of samples predicted to belong
to each class. Colours show per-class accuracy values nor-
malized across rows by the number of images in each class.

We start by examining the effect of normalizing the im-
ages prior to extracting features. We observe that on im-
ages resized to 227×227, subtracting the dermofit-mean-pixel
(subtract the mean response over our Dermofit training im-
ages) and the per-image-mean (row c,d) yield more accurate
results than subtracting the ImageNet-pixel (row b). Thus,
we leave out the ImageNet-pixel subtraction approach from
further experiments. We also experimented with subtracting
the mean ImageNet and mean Dermofit images, but neither
improved results. While we found improvements to the 5-
class problem when compared with [4], on this experiment
we reach slightly lower 2-class accuracy than previous work.

The next set of experiments (row e,f ) use features com-
puted at a higher resolution. Images are resized to 339×339
and 5×5×4096 dimensional feature vectors are extracted
from the full-CNN. We max-pool across the spatial domain
to get a single 4096 feature vector to train our classifier. We
find that the per-image-mean subtraction works slightly better
than the others and thus use it for the rest of the experiments.

We examine the effect of augmentation (row g,h) by
mean-pooling the augmented feature vectors across feature
space (Eq. 2) and find this yields consistent improvements
across both scales. We then examine the performance of
feature vectors computed at two scales by concatenating the
feature vectors (row i), yielding further improvements to ac-
curacy over a single scale. We concatenated the multi-scale
feature vectors (instead of pooling) in order to capture differ-
ences in lesion scales as all images are taken at roughly 50
cm [5] from the skin. Concatenating the pooled-augmented
feature vectors (row j) yields the highest results in both the
2- and 5-class accuracy. We highlight we improve accuracy
to 85.8% over the previous results of 75.1% without using
segmentations. We run our proposed approach over the full
10-class dataset without any further tuning (row l) and find
this generalizes well with an accuracy of 81.8%, outperform-
ing the 67% accuracy reported by Leo et al. [5] (row k).

These above experiments indicate that deep features do
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Table 1. Accuracy over all predictions. Rows with 1×1 in-
dicate images of size 227×227 are convolved with the full-
CNN and rows with 5×5 indicate images of size 339×339
were used. The plus sign (+) indicates concatenation of two
feature vectors. The aug column indicates if image augmenta-
tion was used. The norm column indicates how images were
normalized (e.g., subtracting the per-image-mean).

method aug. norm. 5-class 2-class

(a) [4] 7 lesion seg. 75.1% 92.7%

(b) 1×1 7 ImageNet-pixel 77.7% 90.6%
(c) 1×1 7 dermofit-pixel 81.3% 92.1%
(d) 1×1 7 per-image-mean 81.6% 92.2%
(e) 5×5 7 dermofit-pixel 81.3% 93.1%
(f) 5×5 7 per-image-mean 82.3% 91.9%
(g) 1×1 3 per-image-mean 82.9% 93.0%
(h) 5×5 3 per-image-mean 83.8% 94.7%
(i) 1×1 + 5×5 7 per-image-mean 84.3% 93.0%
(j) 1×1 + 5×5 3 per-image-mean 85.8% 94.8%

(k) [5] 7 lesion seg. 10-class = 67%
(l) 1×1 + 5×5 3 per-image-mean 10-class = 81.8%

generalize well to these skin images and outperform compet-
ing approaches [4, 5], despite our approach not using (nor
requiring) any lesion segmentations. We found this result sur-
prisingly remarkable as the pretrained CNN was optimized
for natural images with considerably different appearance
than closeup skin lesion images. A similar result was also
found in the recent work of Codella et al. [10] (who reported
2-class results over a dermoscopy dataset, in contrast to our
10-class results over a non-dermoscopy dataset), and our find-
ings further confirm the generalizability of pretrained CNNs
to the skin domain (as opposed to work showing generaliz-
ability on more natural images [9, 11]).

We note that reporting accuracy over all images hides
some large improvements to those classes with a small num-
ber of images. In particular, previous work reported 15.6%
accuracy for the AK class where here we improve it to 60%.
The confusion matrix for our full approach is shown in Fig. 2
showing a breakdown of accuracy by class. Finally, we high-
light that our approach is fast. For a single image, the features
can be extracted, augmented and classified within 0.4 seconds
using a GPU implementation.

4. CONCLUSIONS

We demonstrated how filters from a CNN pretrained on
natural images generalize to classifying 10 classes of non-
dermoscopic skin images, outperforming previously pub-
lished results. Our pipeline of using per-image-mean sub-
tracted images, pooled-multi-scale feature extraction, and
pooling across augmented feature space yielded consistent
improvements to classification accuracy.
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