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A B S T R A C T

Continual Learning (CL) enables neural networks to learn new tasks while retaining
previous knowledge. However, most CL methods fail to address bias transfer, where
spurious correlations propagate to future tasks or influence past knowledge. This bidi-
rectional bias transfer negatively impacts model performance and fairness, especially
in medical imaging, where it can lead to misdiagnoses and unequal treatment. In this
work, we show that conventional CL methods amplify these biases, posing risks for
diverse patient cohorts. To address this, we propose BiasPruner, a framework that
mitigates bias propagation through debiased subnetworks, while preserving sequential
learning and avoiding catastrophic forgetting. BiasPruner computes a bias attribu-
tion score to identify and prune network units responsible for spurious correlations,
creating task-specific subnetworks that learn unbiased representations. As new tasks
are learned, the framework integrates non-biased units from previous subnetworks to
preserve transferable knowledge and prevent bias transfer. During inference, a task-
agnostic gating mechanism selects the optimal subnetwork for robust predictions. We
evaluate BiasPruner on medical imaging benchmarks, including skin lesion and chest
X-ray classification tasks, where biased data (e.g., spurious skin tone correlations) can
exacerbate disparities. Our experiments show that BiasPruner outperforms state-of-
the-art CL methods in both accuracy and fairness. Code is available at: BiasPruner.

1. Introduction

In domains such as medical imaging, data evolves contin-
uously due to the emergence of new disease classes, shifting
imaging protocols, and population variability, leading to dis-
tributional shifts that challenge model generalization (Fayyad
et al., 2024b; Fayyad, 2023; Bayasi et al., 2022). Recent ef-
forts have explored data synthesis and model adaptation to
mitigate these effects (Fayyad et al., 2025; Du et al., 2023).
Still, deep neural networks (DNNs) face the critical challenge
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of catastrophic forgetting (Lewandowsky and Li, 1995), where
new learning can overwrite prior knowledge. Continual Learn-
ing (CL) addresses this by enabling models to balance adap-
tation (plasticity) and retention (stability) (Wang et al., 2023a;
Bayasi, 2025). Towards this, a variety of CL techniques have
been proposed in the literature, including replay-based tech-
niques, which retain and replay subsets of past data to re-
inforce prior knowledge (Perkonigg et al., 2021a; Kiyasseh
et al., 2021); regularization-based approaches, which constrain
parameter updates to preserve previously learned representa-
tions (Lenga et al., 2020; Bayasi et al., 2024b); and architecture-
based methods, which dynamically modify network structures
by expanding or specializing components to accommodate new
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Fig. 1. Illustration of forward and backward bias transfer in CL across three tasks (T=3). The central panel depicts a biased dataset where skin tone serves
as a spurious attribute a (i.e., lighter skin tones are correlated with malignant conditions, while darker skin tones are associated with benign lesions). In
this case, the true label is represented as y, and the predicted label is represented as ŷ. The bias propagates forward to subsequent unbiased datasets
(forward bias transfer), affecting predictions (ŷ) even in the absence of explicit bias in the data. Furthermore, bias can retroactively influence predictions
in previously learned unbiased tasks (backward bias transfer), altering the model’s output. These dual effects of bias transfer highlight how spurious
correlations undermine fairness and reliability in continual learning models.

tasks (Elkhayat et al., 2025; González et al., 2022; Bayasi et al.,
2023, 2021).

Although previous CL methods have shown success, they of-
ten fail to address a more realistic and challenging scenario:
the presence of dataset bias. This bias arises from the imbal-
anced distributions of sensitive attributes, such as ethnicity, age
or gender that are inadvertently correlated with disease classes
in the training data. In such cases, models may unintentionally
rely on spurious correlations tied to these attributes (Larrazabal
et al., 2020; Luo et al., 2022), performing well only when these
biases coincidentally match true disease prevalence in the tar-
get population (Larrazabal et al., 2020; Luo et al., 2022; Brown
et al., 2023). However, relying on such biased information
can have detrimental consequences, leading to unfair and bi-
ased decisions. For example, models trained on predominantly
lighter skin tones may struggle to detect melanoma in individ-
uals with darker skin tones, significantly compromising both
performance and generalization on test data that lack these cor-
relations (Brown et al., 2023).

In CL, the challenge of spurious correlation learning is in-
tensified by bias transfer, where biases learned in one task (a
specific subset of data with its own objectives and characteris-
tics) persist and affect subsequent tasks, even when later tasks
are based on unbiased data (Salman et al., 2022). Due to the se-
quential nature of CL, this effect accumulates over time, as re-
cent mathematical analyses highlight (Busch et al., 2024). Stan-
dard CL methods exacerbate this issue by retaining unintended
biases (e.g., skin tone bias), leading to forward bias transfer
(where early task biases influence future tasks) and backward

bias transfer (where new task training amplifies prior biases).
As illustrated in Fig. 1, this bidirectional bias transfer reinforces
spurious correlations, compromising both fairness and reliabil-
ity. Moreover, naive debiasing strategies applied to the current
task can inadvertently erase essential knowledge from previous
tasks, causing catastrophic forgetting and further complicating
bias mitigation in CL.

In our recent work (Bayasi et al., 2024a), we introduced
BiasPruner, the first CL framework that mitigates both catas-
trophic forgetting and bias propagation by identifying and prun-
ing biased network units. By constructing task-specific, de-
biased subnetworks, BiasPruner prevents spurious correla-
tions from carrying over to future tasks while preserving essen-
tial knowledge for continual learning. In this extended jour-
nal version, we take a necessary step back to establish, for
the first time, direct empirical evidence of bias transfer in CL
for medical imaging classification tasks. While prior work
has focused predominantly on catastrophic forgetting and over-
all knowledge retention, the specific challenge of bias accu-
mulation across sequential tasks has been largely overlooked.
Through carefully controlled experiments, we reveal how spu-
rious correlations not only persist from earlier tasks but can in-
tensify in subsequent training, even when later tasks themselves
are unbiased. This analysis provides clear scientific motivation
for debiasing continual learners and underscores why methods
like BiasPruner are critical for achieving both fairness and re-
liability in real-world medical applications.

We evaluate BiasPruner on three medical imaging classifi-
cation benchmarks, including datasets for skin lesion and chest
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X-ray classification, each with a unique bias attribute. The re-
sults demonstrate that BiasPruner consistently outperforms
state-of-the-art CL methods in both classification performance
and fairness. Notably, BiasPruner achieves these results with-
out relying on explicit bias annotations, addressing a critical
challenge in medical contexts where identifying dataset biases
is both costly and constrained by privacy considerations (Luo
et al., 2022). To the best of our knowledge, this is the first work
in the medical domain to systematically explore bias transfer
in CL and propose a practical CL framework that effectively
balances performance and fairness across sequential tasks.

2. Related Work

2.1. Continual Learning in the Medical Domain
The primary goal of CL is to develop methods that allow a

network to learn new tasks while retaining knowledge of pre-
vious tasks. In other words, it aims to enable the network to
continually adapt to new information without completely eras-
ing or degrading its performance on earlier tasks; i.e., without
catastrophic forgetting (Wu et al., 2024a; Kumari et al., 2023).
Generally speaking, CL methods in the medical domain can
be grouped into three categories: replay-based, regularization-
based, and architecture-based methods.

Replay-based CL methods utilize a memory buffer to store
samples from old tasks, which are replayed during learning.
For instance, iCaRL (Rebuffi et al., 2017) selects represen-
tative samples based on their proximity to class prototypes,
with successful applications in histopathology tumor classifi-
cation (Kaustaban et al., 2022) and disease classification (De-
rakhshani et al., 2022). Advanced sample selection methods
include using binary segmentation samples based on gradient
contributions (Bera et al., 2023), storing unique samples (Hof-
manninger et al., 2020), and leveraging active learning to priori-
tize informative samples during domain shifts (Perkonigg et al.,
2021b). In contrast, generative replay methods address privacy
concerns in medical applications by using generative models to
synthesize pseudo-representations of past tasks. Examples in-
clude CCSI, which employs class-specific synthesis to generate
images (Ayromloua et al., 2024); a style-oriented replay mod-
ule that captures domain-specific adjustments (Li et al., 2022);
and GarDA, which integrates appearance transfer and stochas-
tic generators (Chen et al., 2023). Recent advances in diffusion
models, such as text-to-image synthesis (Byun et al.), demon-
strate remarkable potential for maintaining past performance
while adapting to new tasks in medical applications.

Regularization-based CL methods avoid the need for stored
examples by introducing regularization terms in the loss func-
tion or adjusting learning rates to penalize large parameter up-
dates, thereby mitigating catastrophic forgetting. These meth-
ods often utilize a frozen copy of the old model to moni-
tor parameter changes when adapting to new tasks. For in-
stance, Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) uses the Fisher information matrix to assess parame-
ter importance, proving effective in medical imaging (Baweja
et al., 2018). In brain MRI segmentation, parameter regulariza-
tion has facilitated transfer learning from high-quality to lower-
quality datasets (van Garderen et al., 2019). Zhang et al. (Zhang

et al., 2023a) proposed a joint importance matrix for contin-
ual segmentation, selectively regularizing parameters critical to
shape and semantic consistency. Liu et al. (Liu et al., 2023) in-
troduced a divergence-aware dual-flow module for incremental
learning, incorporating pseudo-label training and self-entropy
regularization to balance task rigidity and plasticity. Wu et
al. (Wu et al., 2024b) developed MAda, a multi-modal adaptive
algorithm for medical image super-resolution, aligning weight
spaces to optimize task consistency. Finally, Roy et al. (Roy
et al., 2023) proposed L3DMC, a distillation method in mixed-
curvature spaces, embedding low-dimensional representations
into a higher-dimensional RKHS to preserve prior knowledge
during new task learning.

Architecture-based CL methods isolate task-specific knowl-
edge by assigning distinct sets of parameters to each task, pre-
venting knowledge interference and forgetting (Wortsman et al.,
2020; Kang et al., 2022; Yan et al., 2021; Abati et al., 2020;
Wang et al., 2023b). These methods either maintain a fixed-size
architecture (Bayasi et al., 2024c) or expand dynamically to ac-
commodate new tasks, which is more common in the medical
literature. For instance, Zhang et al. (Zhang et al., 2023b) pro-
posed adding lightweight, task-specific heads for new organs
and tumors, incorporating CLIP embeddings to retain seman-
tic information. Ji et al. (Ji et al., 2023) introduced a unified
segmentation model for 143 whole-body organs, employing a
fixed encoder and incrementally adding decoders for new tasks.
Mousser et al. (Mousser et al., 2022) presented the Incremental
Deep Tree framework, which grows hierarchically like a tree
by adding branches for new tasks, along with a replay buffer
to address catastrophic forgetting. Xie et al. (Xie et al., 2023)
proposed a minimalist approach by freezing most of the net-
work and training only batch normalization layers, enabling
task adaptation without major architectural changes. While
these architecture-based methods primarily aim to mitigate for-
getting, they may inadvertently amplify or transfer dataset bi-
ases, particularly when subnetworks are constructed through
pruning or expansion without considering the underlying data
distributions. BiasPruner fills this gap by introducing bias-
aware pruning, explicitly designed to reduce spurious correla-
tions and prevent bias transfer during continual learning.

2.2. Debiased Representation Learning in Continual Learning

Dataset bias is a long-standing and active area of research
in machine learning, with numerous methods proposed for mit-
igating spurious correlations and improving fairness in static
settings (Du et al., 2022; Nam et al., 2020; Bayasi et al., 2025).
However, these approaches typically assume access to the en-
tire dataset upfront, rely on explicit bias annotations, or require
global rebalancing strategies, all are assumptions that do not
hold in CL, where data arrives sequentially, prior data may be-
come inaccessible, and privacy constraints often prohibit replay
or annotation-based methods.

In the context of CL, bias and fairness remain largely un-
derexplored. Biased representations and unfair predictions can
propagate through tasks, a phenomenon we refer to as bias
transfer. Attempts to address this challenge in computer vision
are emerging but limited. For example, He et al. (He, 2024;



4 Bayasi et al. /Medical Image Analysis (2025)

Bayasi et al., 2013) addressed inter- and intra-task imbalances
using gradient reweighting but overlooked biases from inher-
ent or acquired data characteristics (Angwin et al., 2022). Xu
et al. (Xu et al., 2024) proposed CLAD, which tackles imbal-
anced forgetting with class-aware disentanglement to enhance
accuracy. FairCL (Truong et al., 2023) focused on class imbal-
ance in semantic segmentation, while FSW (Park et al., 2024)
introduced fairness-aware sample weighting to mitigate unfair
catastrophic forgetting. However, these approaches are unsuit-
able for medical applications due to their reliance on replay
buffers, which conflict with privacy regulations, or their need
for bias annotations, which are costly and often unavailable.
BiasPruner takes a fundamentally different approach by di-

rectly addressing bias transfer in CL through structural debias-
ing of the model itself. While LfF (Nam et al., 2020) lever-
ages sample difficulty signals (estimated using the generalized
cross-entropy (Zhang and Sabuncu, 2018) loss) to mitigate bias
in static learning by distinguishing between easy (potentially
biased) and hard (potentially unbiased) examples, BiasPruner
applies this concept in a novel way: using these difficulty sig-
nals to guide the structural pruning of biased network units.
This enables the construction of task-specific subnetworks that
actively suppress spurious correlations from propagating across
tasks. To the best of our knowledge, BiasPruner is the first to
adapt this idea for bias mitigation in a continual learning setup.

3. Medical Benchmark Datasets

To investigate the effects of bias in CL, we curated three pub-
licly available medical imaging datasets. These datasets were
selected based on the following criteria: (1) the presence of po-
tential spurious correlations between bias attributes and disease
labels, which enables a controlled study of bias transfer; (2) suf-
ficient class diversity to simulate realistic incremental learning
scenarios; and (3) public availability of images and annotations
to ensure reproducibility. The selected datasets are:

• Fitzpatrick17K (FITZ) (Groh et al., 2021), a dermatol-
ogy dataset consisting of 16,012 clinical images across 114
class labels. Each image is annotated with a Fitzpatrick
skin tone score (I–VI), where I represents the lightest tone
and VI the darkest. Previous studies have reported spuri-
ous correlations between skin tone and diagnosis, such as
the underdiagnosis of melanoma in individuals with darker
skin tones (Barros et al., 2023; Du et al., 2022; Bevan and
Atapour-Abarghouei, 2022).

• HAM10000 (HAM) (Tschandl et al., 2018), another der-
matology dataset consisting of 8,678 images across 7 class
labels, with accompanying patient metadata. Previous
studies have identified age-related biases in skin lesion
classification, where older patients are more likely to re-
ceive certain diagnoses, leading to disparities in model per-
formance (Khan et al., 2025; Li et al., 2021).

• NIH ChestX-Ray14 (NIH) (Wang et al., 2017), a chest
X-ray dataset consisting of 19,993 images across 14 class
labels, with patient gender annotations (male or female).

Prior work has demonstrated gender disparities in chest
X-ray interpretation, with models frequently performing
worse on female patients due to data imbalances and sys-
temic biases in medical imaging (Glocker et al., 2023; Lar-
razabal et al., 2020).

In this paper, we utilize the three datasets (FITZ, HAM, and
NIH) in two different ways. First, in Section 4, which fo-
cuses on the empirical study, we use a controlled subset of
each dataset, selecting four classes per dataset that exhibit the
strongest bias correlations. This controlled setup allows for
a more focused analysis of bias transfer in continual learn-
ing. More details on this selection process are provided in
Section 4.1.2. In contrast, Section 6 presents the main exper-
iments and results, where we use the full datasets—including
all classes and bias attributes—without restrictions. This setup
reflects a more realistic continual learning scenario and ensures
comprehensive evaluation.

4. Empirical Analysis of Bias Transfer in Continual Learn-
ing for Medical Imaging

In this section, we present a comprehensive empirical anal-
ysis of bias transfer in CL for medical image classification.
Specifically, we examine the forward bias transfer, where bi-
ases from earlier tasks propagate to subsequent ones, and the
backward bias transfer, where biases from later tasks adversely
affect performance on prior tasks. Using the three datasets de-
scribed in Section 3, our experiments reveal that spurious cor-
relations in the training datasets significantly impair CL perfor-
mance. Moreover, our analysis establishes a clear relationship
between bias transfer and the stability-plasticity trade-off in-
herent to CL methods: algorithms that prioritize stability tend
to exacerbate forward bias transfer, whereas those enhancing
plasticity are more prone to backward bias transfer.

4.1. Preliminaries and Experimental Design

4.1.1. Problem Formulation
We consider a realistic CL scenario in which dataset biases

are present. In our formulation, a model f is trained sequen-
tially over T tasks (i.e., t = 1, 2, . . .). For each task Tt, the
training data consists of samples denoted by the tuple (xi, yi, ai),
where xi is the input (e.g., a medical image), yi ∈ Yt is the asso-
ciated class label, and ai ∈ A represents a bias attribute that may
spuriously correlate with the label yi. Our study is conducted
within the class-incremental learning (CIL) paradigm, where
class labels are mutually exclusive across tasks (i.e., Yi∩Y j = ∅

for i , j). For analytical clarity, we assume a single bias at-
tribute is present across all tasks unless noted otherwise.

4.1.2. Controlled Experimental Setup
We design a controlled experimental framework using the

FITZ, HAM, and NIH datasets. First, we binarize the bias at-
tributes in FITZ and HAM. In FITZ, we group skin tones I, II,
and III as light skin tones (a = 1) and the remaining tones as
dark (a = 0), similar to (Pundhir et al., 2024). In HAM, pa-
tients aged ≥ 60 are assigned a = 1, while those aged < 60 are
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Fig. 2. Samples from Task 1 with a biased setup in FITZ, HAM, and NIH. Each row corresponds to a specific class within the task. Colored boxes highlight
images that share the same bias attribute (e.g., red boxes in FITZ indicate light skin tones). In an unbiased setup, each row would display an equal number
of images with and without colored boxes, representing a balanced distribution across bias groups.

Table 1. Sample distribution across bias groups (a = 0, a = 1) for biased
and unbiased tasks. Each cell represents the number of samples per group,
where y is the class label and a is the bias attribute. In biased tasks, the
imbalance is controlled by β, reducing the sample count in one group while
maintaining 200 samples in the other. Unbiased tasks correspond to β =
1.0, ensuring balanced distributions.

y = 0 y = 1
a = 0 200 β × 200
a = 1 β × 200 200

assigned a = 0, similar to (Fan et al., 2021). In NIH, the gender
attribute is already binary, with a = 0 for male and a = 1 for fe-
male. Next, we select a subset of four classes per dataset using
Cramér’s correlation, which quantifies the association between
the bias attribute and class labels. We specifically choose the
four classes with the highest Cramér’s correlation, as they are
more likely to exhibit bias transfer effects. These four classes
are then divided across two tasks (T = 2) to simulate a two-task
CL setup. While this controlled setup simplifies the problem
(e.g., binarized bias attributes, two tasks, binary classification
per task), Section 6 extends our experiments to more complex
settings, validating our findings under realistic continual learn-
ing scenarios.

Following (Brown et al., 2023; Banerjee et al., 2023), we cre-
ate biased and unbiased versions of each task by adjusting the
sample distribution across bias groups. In the biased condition,
the correlation between the bias attribute and the class label is
amplified by removing a fraction β (with 0.1 ≤ β ≤ 0.5) of
samples from the opposing group, while unbiased tasks main-
tain balanced distributions (i.e., β = 1.0). Table 1 details the
sample distributions, and Fig. 2 shows representative examples
from the biased sets. For evaluation, all test sets are curated to
be unbiased.

4.1.3. Baselines and Continual Learning Methods
Baselines. We investigate bias transfer by analyzing two com-
mon baseline approaches: Joint, where a single model is as-
sumed to have access to all tasks’ data simultaneously, serv-
ing as an upper bound by eliminating forgetting; and SeqFT
(Sequential Fine-Tuning), where a single model is fine-tuned
on new tasks sequentially without mechanisms to retain prior

knowledge, often leading to catastrophic forgetting and poten-
tial bias shifts.
CL Methods. We evaluate four widely recognized CL meth-
ods, each representing a different approach to mitigating forget-
ting. LwF (Learning without Forgetting) (Li and Hoiem, 2017)
is a regularization-based method that retains knowledge from
previous tasks by distilling predictions from an older model
into the new one. EWC (Elastic Weight Consolidation) (Kirk-
patrick et al., 2017) is another regularization technique that pre-
vents significant changes to important weights by penalizing
updates based on their importance to prior tasks. ER (Experi-
ence Replay) (Chaudhry et al., 2019) is a replay-based method
that stores a subset of past data and replays it during training
to maintain knowledge across tasks. In ER, we use Reservoir
Sampling (Vitter, 1985) to efficiently manage the buffer as new
tasks arrive. Finally, PackNet (Mallya and Lazebnik, 2018)
follows a fixed-size subnetwork-based architecture approach,
where a portion of the network is pruned after each task based
on weight magnitude, allowing the remaining parameters to be
allocated to new tasks while preserving previous knowledge.

Each of these CL methods has its own hyperparameters,
such as regularization strength, exemplar memory size, or prun-
ing ratio, which in turn control the stability-plasticity trade-
off. This trade-off determines which task’s bias is propagated
throughout learning. Specifically, when a CL method prioritizes
stability (e.g., EWC with high regularization), it retains past
knowledge but also transfers bias from earlier tasks to future
ones. In contrast, when a method emphasizes plasticity (e.g.,
ER with larger buffers), it adapts more effectively to new tasks
but allows bias from the current task to retroactively influence
past tasks. To explicitly indicate the stability-plasticity trade-
off of each method in our results, we append (s) for stability-
focused variants and (p) for plasticity-focused variants. For ex-
ample, EWC (s) refers to a version of EWC with a high regular-
ization strength, leading to greater stability, whereas EWC (p)
represents a lower regularization strength, allowing for greater
plasticity.

4.1.4. Evaluation Metrics
Besides classification accuracy (ACC), we utilize two other

metrics, discussed below, to evaluate bias transfer in CL. Each
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Fig. 3. Analysis of bias transfer in two-task CL on FITZ (top), HAM (middle) and NIH (bottom). We evaluate performance using ACC (higher is better),
DCA (lower is better), and DPR (higher is better). In each benchmark, the top row examines forward bias transfer on the unbiased Task 2 (T2) when Task
1 (T1) is either unbiased (blue) or biased (red), whereas the bottom row analyzes backward bias transfer on the unbiased T1 when T2 is either unbiased
(blue) or biased (red). Stability-focused (s) and plasticity-focused (p) variants of CL methods highlight the role of the stability-plasticity trade-off in bias
transfer.

is computed per class, and the final value is obtained by averag-
ing across all classes within a task.
Difference in Classification Accuracy Across Bias Attributes
(DCA) reflects the degree of bias of a model; i.e., it quantifies
the disparity in classification accuracy between the two groups
defined by a. For a given class y, it is calculated as:

DCA = |Accuracya=0,y − Accuracya=1,y| , (1)

where Accuracya=i,y represents the accuracy for group a = i for
a specific class y. In Eq. 1, DCA closer to 0 indicates a fairer
model.
Demographic Parity Ratio (DPR) evaluates whether the like-
lihood of a positive prediction is independent of the sensitive
attribute a. For each class y, DPR is calculated as:

DPR =
P(ŷ = 1| a = 0, y)
P(ŷ = 1| a = 1, y)

, (2)

where P(ŷ = 1| a = i, y) is the probability of predicting the
positive class for group a = i within class y. In Eq. 2, DPR
closer to 1 indicates a fairer model.

4.2. Case 1: Forward Transfer of Bias

To assess how bias from T1 influences T2 in a CL scenario,
we evaluate both baseline and CL methods by systematically
varying the bias level in T1 while maintaining T2 as unbiased.
The results on FITZ in the top row of Fig. 3 demonstrate the
significant impact of early-stage bias in T1 on T2.

Our findings reveal two key insights. First, bias definitively
transfers from T1 to T2, evidenced by consistent performance
degradation across all metrics. With SeqFT, when bias in
T1 increased from 0% (unbiased) to 50% (biased), T2’s ACC

decreased by 15.5 percentage points (72.1% → 56.6%), DPR
dropped by 0.29 (0.98→ 0.69), and DCA increased by 0.12 (0.13
→ 0.25%). This confirms that biases from earlier tasks sys-
tematically propagate to subsequent learning objectives. Sec-
ond, CL methods prioritizing stability facilitate greater bias
transfer than their plasticity-focused variants. EWC (s) with
stronger regularization demonstrated a 0.11 higher DCA on T2
compared to its plasticity-oriented counterpart (EWC (p)) when
T1 contained bias. Similarly, ER (s) with larger memory buffers
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showed a DPR value lower than the small-buffer variant (ER (p))
under identical conditions. These findings align with CL the-
ory: stability-focused approaches effectively preserve knowl-
edge from previous tasks to mitigate catastrophic forgetting, but
this preservation mechanism operates indiscriminately, retain-
ing both task-relevant knowledge and harmful biases embedded
within the learned representations.

4.3. Case 2: Backward Transfer of Bias

Now, we turn our attention to the backward transfer of bias,
where we examine how bias from T2 affects the previously
learned T1. Specifically, we evaluate both baseline and CL
methods by varying the bias level in T2 while maintaining T1
as unbiased. The results on FITZ (bottom row of the top sec-
tion in Fig. 3) highlight how the introduction of bias in later
tasks (i.e., T2) impacts earlier performance (i.e., T1). We omit
the results for PackNet, as it freezes the parameters updated in
previous tasks, thereby preserving the original predictions for
T1 and preventing any backward transfer effects.

From the results, we notice that the bias in T2 has a negative
influence on T1. Furthermore, we observe a trend opposite to
that of forward bias transfer. For example, plasticity-focused
methods facilitate greater backward transfer of bias compared
to stability-oriented approaches. When T2 bias increased from
0% to 50%, T1’s ACC decreased by 20.6 percentage points (from
67.3% to 46.7%) for EWC (p), while EWC (s) showed a 12.7
percentage point reduction. Therefore, CL methods prioritiz-
ing plasticity allow greater modification of parameters impor-
tant for previous tasks, thereby enabling bias from new tasks
to retroactively influence earlier knowledge. These findings
demonstrate that bias mitigation strategies must consider not
only forward but also backward transfer effects. We observe a
similar trend on the HAM and NIH benchmarks, shown in the
middle and bottom of Fig. 3, respectively.

5. Methodology

Our findings show that conventional CL methods inad-
vertently transfer biases across tasks, highlighting the need
for a debiasing-aware approach. To address this, we intro-
duce BiasPruner1, a novel CL method that enables sequen-
tial learning without forgetting previously acquired knowledge
while actively debiasing each task to minimize bias transfer. An
overview of the proposed method is presented in Fig. 4.

5.1. Intuition and Overview

Existing CL methods primarily focus on minimizing or elim-
inating forgetting to retain knowledge across tasks. In contrast,
we propose a fundamentally different perspective: rather than
viewing forgetting as a limitation, we strategically leverage it
to actively ‘forget’ biases during the learning process. Our pro-
posed method, BiasPruner, achieves this by selectively prun-
ing network units that contribute to biased feature learning.

1A preliminary version of this work was presented at MICCAI 2024 (Bayasi
et al., 2024a)

This approach offers three key advantages. First, by pruning
biased units, BiasPruner preserves valuable network capac-
ity, providing room for future tasks without the risk of catas-
trophic forgetting. Second, the pruning process naturally results
in a subnetwork with reduced bias, enhancing performance not
only on the current task but also in subsequent tasks, thanks
to the forward transfer of debiased knowledge across subnet-
works. Third, backward bias transfer is entirely eliminated, as
each task-specific subnetwork is frozen once created, prevent-
ing interference with future tasks.

The proposed BiasPruner employs a fixed-size network ar-
chitecture f , which learns a debiased subnetwork for each task.
Notably, BiasPruner does not require any prior knowledge
of dataset bias during training, i.e., the model processes each
task’s training data Dt, consisting of pairs (xt, yt) with spu-
rious correlations, without explicit bias labels. Furthermore,
BiasPruner assumes no access to previous task data, mean-
ing the network is only provided with the training data relevant
to the current task, and cannot revisit or rely on data from ear-
lier tasks. To construct a debiased subnetwork, BiasPruner
uses a bias score to assess the contribution of each network unit
to the learning of biased features. Units with high bias scores
are pruned to form a task-specific debiased subnetwork, while
the remaining pruned units are made available for learning new
tasks. At inference, BiasPruner identifies the optimal subnet-
work for predictions on a given data in a task-agnostic setup;
i.e., information about the task origin of a test image is unknown
or unavailable.

5.2. Forming a Debiased Subnetwork

BiasPruner creates a task-specific, debiased subnetwork, ft,
through a three-step process involving bias-aware pruning, bias
scoring, and fine-tuning to selectively remove biased units and
improve model fairness.

5.2.1. Bias-Aware Pruning
First, we selectively prune the network by removing the units

most responsible for learning the bias encoded in Dt. Specif-
ically, we identify and eliminate the top γ% of units based on
their bias scores (discussed next), which include feature maps
and their corresponding filters. This leaves (1−γ)% of the units
to form the subnetwork ft. The result is a pruned subnetwork
that eliminates units heavily influenced by spurious features and
biases in Dt.

5.2.2. Bias Scoring
The bias score St

c,n for each unit n in the biased network is
computed based on its contribution to learning biased features
for a given class c. To achieve this, we start by intentionally
biasing the network using the generalized cross-entropy (GCE)
loss (Zhang and Sabuncu, 2018), formulated as:

LGCE(p(x; θ), y) =
1 − py(x; θ)q

q
, (3)

where q ∈ (0, 1] controls the degree of bias amplification. This
loss function encourages the network to prioritize easier sam-
ples in training dataset Dt by up-weighting the probability of



8 Bayasi et al. /Medical Image Analysis (2025)

Fig. 4. An overview of the proposed method. (Top) BiasPruner learns sequentially in a continual learning setting, allocating a debiased subnetwork
for each task to mitigate bias transfer and avoid forgetting. Each task might be biased, with the same source of bias (e.g., color) affecting all tasks. The
debiased subnetwork for Task 1 is shown in green, while the debiased subnetwork for Task 2 is shown in purple. (Bottom) BiasPruner identifies a debiased
subnetwork through bias-aware pruning and fine-tuning. Bias-aware pruning removes units with the highest bias scores, identified by first training the
network with generalized cross-entropy loss to amplify bias and then measuring activation differences across two groups (easy vs hard samples). This
ensures that the remaining subnetwork retains more robust, unbiased features. The pruned subnetwork is then fine-tuned to enhance generalization.

correct predictions on these samples. Consequently, the net-
work tends to learn spurious correlations rather than robust fea-
tures. This deliberate biasing serves a strategic purpose: it high-
lights which network components overfit to these misleading
patterns, allowing us to precisely identify and prune the ele-
ments responsible for bias.

After intentionally biasing the network, we partition Dt into
two distinct groups for each groundtruth class c to systemat-
ically identify which units contribute most to learning biased
features for each class:

1. The biased sample set Et
c contains samples (xi, yi) that the

biased network correctly classifies with high confidence
(probability py,i ≥ τ). These represent Easier samples that
likely contain spurious correlations.

2. The unbiased sample set H t
c contains samples (xi, yi) that

the biased network misclassifies despite high confidence.
These represent Harder samples that require more robust
feature learning.

Formally, these sets are defined as:

Et
c = {i | yi = ci & py,i ≥ τ} , H

t
c = {i | yi , ci & py,i ≥ τ} .

(4)
Using these partitions, we calculate a bias score St

c,n for each

unit n relative to class c by analyzing the unit’s ReLU activation
patterns:

St
c,n =

1∣∣∣Et
c

∣∣∣ ∑
i∈Et

c

Var
(
an

i
)
−

1∣∣∣H t
c

∣∣∣ ∑
i∈H t

c

Var
(
an

i
)
, (5)

Here, Var
(
an

i

)
represents the variance of feature map an

i
across its spatial dimensions (w, h). The final unit-based bias
score S̄t

n is computed by averaging across all class-specific
scores. Units showing stronger activation responses to biased
samples (Et

c) compared to unbiased samples (H t
c) receive higher

bias scores, effectively identifying them as primary contributors
to spurious learning in the network.

5.2.3. Fine-Tuning the Pruned Subnetwork
After pruning γ% of the units, we fine-tune the resulting sub-

network ft to improve its performance on harder-to-learn sam-
ples while minimizing performance drops due to pruning. To
specifically reduce the risk of reintroducing bias during this
phase, we introduce a weighted cross-entropy (WCE) loss func-
tion to fine-tune ft on Dt over a few epochs:

LWCE(x) =W(x) · LCE ( f (x), y) , (6)
where W(x) = exp (α · LGCE(x)) . (7)
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Table 2. Summary of the medical imaging benchmarks used for evaluating BiasPruner, detailing the number of images, class distribution, task splits, and
dataset-specific biases

Dataset Number of images Classes Tasks Classes per task Dataset bias
FITZ 16,012 114 6 {19, 19, 19, 19, 19, 19} Skin tone (I, II, III, IV, V, VI)
HAM 8,678 7 3 {2, 2, 3} Age (age≥60, age<60)
NIH 19,993 14 3 {4, 5, 5} Gender (male, female)

Fig. 5. Bias distribution across the different tasks in FITZ, HAM and NIH.

α ∈ (0, 1) is a trainable parameter. This weighted loss ad-
justs the contribution of each sample during fine-tuning by up-
weighting harder-to-learn samples (with larger GCE loss val-
ues), which are more likely to correspond to unbiased repre-
sentations, and down-weighting easier (potentially biased) sam-
ples. By doing so, the fine-tuning phase not only restores accu-
racy but also actively discourages the network from reinforcing
spurious correlations.

5.3. Debiased Task-Specific Knowledge Transfer and Adapta-
tion

When learning a new task, BiasPruner prunes the full orig-
inal network f to create a new task-specific debiased sub-
network. This subnetwork includes both free units and pre-
assigned subnetworks from previous tasks. To maintain pre-
viously acquired knowledge, the subnetworks associated with
prior tasks remain frozen during training, while only the free
units undergo parameter updates to accommodate the new task
requirements. By leveraging the debiased subnetworks from
earlier tasks, BiasPruner ensures that the transfer of knowl-
edge does not introduce forward bias, thus enabling seamless
adaptation without the risk of propagating previously learned
biases.

5.4. Task-Agnostic Inference: Handling Unknown Task Identi-
ties at Test Time

During inference, BiasPruner handles a more challenging
yet realistic scenario where the task identity of a test image is
unknown. Given a test batch Xtest, we employ a task prediction
strategy based on the maximum output response (Dekhovich
et al., 2023). Specifically, the task t∗ is predicted as:

t∗ = arg max
t=1,2,...,T

s∑
i=1

maxφt

(
θt
(
xtest

i

))
, (8)

where φt represents the fully connected layer of the t-th subnet-
work. After selecting the task t∗, the final prediction ŷ is made
based on the corresponding subnetwork:

ŷ = ft∗
(
Xtest
)
. (9)

6. Experiments and Results

6.1. Preliminaries
To evaluate BiasPruner, we use three medical imaging

benchmarks discussed in Section 3: FITZ, HAM and NIH. Un-
like the controlled experimental setup in Section 4.1.2, our eval-
uation follows a more realistic setting with no constraints. We
use all images from each dataset, covering all classes, and di-
vide them into T tasks with non-overlapping classes (T = 6 for
FITZ, T = 3 for HAM, and T = 3 for NIH). Additionally, for
FITZ, we retain all six Fitzpatrick skin tone levels and report
results for each, rather than binarizing them as done in our em-
pirical study. Refer to Table 2 for benchmark details and Fig. 5
for the bias distribution across tasks in each benchmark.

For classification performance, we evaluate BiasPruner us-
ing both accuracy (ACC) and the F1-score (F). We report accu-
racy per sensitive attribute (e.g., male, female) as well as over-
all accuracy (overall). For fairness, we use the Demographic
Parity Ratio (DPR; Eq. 2), as previously described. In this sec-
tion, we also introduce the Equal Opportunity Difference (EOD),
which measures whether the true positive rate is independent of
the sensitive attribute a. Specifically, for each class y, EOD is
calculated as:

EOD = P(ŷ = 1| a = 0, y = 1) − P(ŷ = 1| a = 1, y = 1) , (10)

where P(ŷ = 1| a = i, y = 1) represents the probability of cor-
rectly predicting the positive class for group a = i. A lower ab-
solute EOD value indicates a fairer model, with EOD = 0 meaning
equal true positive rates across groups. Following standard CL
evaluation, all metrics are reported at the end of learning (i.e.,
after training on all T tasks) and averaged across all tasks.

In addition to the baselines (Joint, SeqFT) and CL meth-
ods (EWC, PackNet) discussed in our empirical study (Sec-
tion 4.1.2), we also compare BiasPruner against other
architecture-based CL methods: SupSup (Wortsman et al.,
2020) learns a unique, sparse subnetwork (or supermask) for
each task while keeping a randomly initialized backbone fixed,
leveraging parameter superposition to prevent interference;
WSN (Kang et al., 2022) similarly isolates tasks by identifying
a winning subnetwork for each task during training, but differs
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Table 3. Classification performance and fairness on FITZ. Best results marked in bold (excluding Exp. E). Higher is better for all metrics except EOD. Our
method is highlighted in gray.

Exp Method F
ACC

DPR EODType-I Type-II Type-III Type-IV Type-V Type-VI overall

Comparison against Baselines

A
JOINT 0.256 0.269 0.304 0.335 0.309 0.365 0.245 0.324 0.137 0.298
SeqFT 0.188 0.187 0.261 0.299 0.254 0.214 0.192 0.221 0.051 0.721

Comparison against CL Methods

B

EWC 0.325 0.254 0.356 0.355 0.401 0.412 0.244 0.324 0.212 0.342
PackNet 0.433 0.366 0.402 0.445 0.447 0.479 0.319 0.414 0.154 0.425
SupSup 0.451 0.254 0.298 0.441 0.452 0.436 0.410 0.425 0.162 0.431
WSN 0.462 0.371 0.415 0.458 0.469 0.482 0.328 0.421 0.165 0.437
DER 0.439 0.282 0.310 0.429 0.440 0.450 0.399 0.416 0.158 0.430
CCG 0.448 0.360 0.399 0.451 0.460 0.475 0.325 0.418 0.161 0.434
CBA 0.455 0.267 0.305 0.438 0.445 0.442 0.406 0.428 0.159 0.432

Comparison against CL with Bias Mitigation Methods

C

EWC+S 0.308 0.264 0.357 0.324 0.411 0.417 0.385 0.341 0.228 0.311
EWC+W 0.321 0.251 0.356 0.334 0.392 0.401 0.398 0.346 0.216 0.298

PackNet+S 0.495 0.434 0.485 0.494 0.565 0.562 0.584 0.501 0.184 0.248
PackNet+W 0.527 0.405 0.477 0.480 0.529 0.546 0.524 0.472 0.144 0.246
SupSup+S 0.466 0.418 0.467 0.432 0.554 0.561 0.534 0.492 0.182 0.221
SupSup+W 0.457 0.425 0.451 0.448 0.530 0.561 0.544 0.508 0.178 0.254

WSN+S 0.503 0.440 0.492 0.488 0.562 0.568 0.579 0.506 0.186 0.252
WSN+W 0.532 0.415 0.481 0.472 0.535 0.552 0.530 0.478 0.148 0.249
DER+S 0.482 0.423 0.476 0.459 0.550 0.558 0.521 0.497 0.180 0.243
DER+W 0.475 0.429 0.462 0.443 0.525 0.550 0.510 0.485 0.175 0.250
CCG+S 0.498 0.437 0.486 0.480 0.559 0.564 0.572 0.503 0.185 0.251
CCG+W 0.525 0.410 0.473 0.466 0.532 0.549 0.523 0.474 0.147 0.247
CBA+S 0.489 0.428 0.479 0.468 0.553 0.560 0.529 0.499 0.181 0.246
CBA+W 0.480 0.432 0.465 0.450 0.528 0.551 0.515 0.483 0.176 0.251

Our Proposed Fair CL Method
D BiasPruner 0.540 0.457 0.502 0.435 0.551 0.563 0.584 0.512 0.331 0.202

Comparison against a Bias Mitigation Method
E FairDisCo 0.542 0.479 0.523 0.468 0.571 0.574 0.615 0.548 0.474 0.192

from SupSup by actively optimizing the subnetwork weights;
DER (Yan et al., 2021) takes a different approach by dynami-
cally expanding the network’s capacity when new tasks arrive,
enabling representational growth to accommodate new knowl-
edge; CCG (Abati et al., 2020) introduces conditional channel
gating to selectively activate or deactivate channels for each
task, allowing for task-specific execution paths through the net-
work; Finally, CBA (Wang et al., 2023b) focuses on mitigating
the accumulation of representation bias over time by learning
task-wise feature adaptations, rather than relying on architec-
tural isolation or expansion.

6.2. Implementation Details
We use ResNet-50 (He et al., 2016) as the backbone for fea-

ture extraction and a unified classifier for all tasks during in-
ference. Following standard practice, we preprocess all im-
ages by resizing, normalizing pixel values using dataset-specific
mean and standard deviation, and applying random horizontal
flipping for augmentation. For dataset partitioning, we allo-
cate 70% of the data for training, 20% for validation, and 10%
for testing. We set q = 0.7 in LGCE, consistent with prior
works (Zhang and Sabuncu, 2018; Nam et al., 2020) that rec-
ommend this value for effective separation of easy and hard ex-
amples. The confidence threshold is set to τ = 0.7, a commonly
used value in conformal prediction frameworks (Angelopoulos
and Bates, 2021; Fayyad et al., 2024a; Graham-Knight et al.,
2024), which performed robustly across our experiments. The
pruning ratio is fixed at γ = 0.6, selected based on prelimi-
nary runs to balance fairness and accuracy across tasks. For
fine-tuning with LWCE, we train the pruned subnetwork for 20
epochs and select the checkpoint with the highest average ACC
and EOD on the validation set. To ensure robustness, we report

average results across three random task orders, mitigating the
impact of task ordering on performance. All experiments are
conducted on a single NVIDIA TITAN V GPU (24GB).

6.3. Evaluation on Non-Binary Bias: FITZ
We begin by reporting the results on the FITZ dataset (Ta-

ble 3), which presents a more challenging scenario due to the
non-binary bias, with six distinct categories of bias levels. In
comparison to the baseline methods (Exp. A), BiasPruner
demonstrates superior performance in both accuracy and fair-
ness. Specifically, BiasPruner achieves a classification ac-
curacy (overall) of 0.512 and significantly reduces fairness
disparities, as indicated by the improved EOD score of 0.202,
outperforming all baselines.

In Exp. B, we compare BiasPruner with several CL
methods, including both regularization-based (e.g., EWC)
and architecture-based (e.g., PackNet, SupSup, WSN, DER,
CCG, CBA) approaches. Among these, the architecture-based
methods generally achieve better classification accuracy than
regularization-based methods, particularly for specific sub-
groups. However, this improvement often comes at the ex-
pense of fairness. This fairness degradation is largely due to
how these methods operate: they prune or mask parts of the
network to free capacity for new tasks. Such pruning deci-
sions are made agnostic to subgroup-specific features, which
risks eliminating units or connections that are critical for cer-
tain underrepresented groups, thereby exacerbating disparities
in model performance. While some of these architecture-based
methods (e.g., SupSup, CCG) show competitive performance
on certain metrics, their fairness measures (e.g., DPR, EOD)
remain suboptimal. By contrast, BiasPruner achieves a better
balance between accuracy and fairness. Although BiasPruner
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Table 4. Classification performance and fairness on HAM and NIH. Best results marked in bold (excluding Exp. J). Higher is better for all metrics except
EOD. Our method is highlighted in gray.

Exp Method
HAM NIH

F
ACC

DPR EOD F
ACC

DPR EOD
<60 ≥60 overall M F overall

Comparison against Baselines

F
JOINT 0.755 0.781 0.665 0.738 0.239 0.320 0.282 0.306 0.259 0.285 0.706 0.325
SeqFT 0.431 0.372 0.404 0.416 0.201 0.558 0.219 0.251 0.217 0.231 0.246 0.544

Comparison against CL Methods

G

EWC 0.788 0.773 0.804 0.772 0.561 0.360 0.398 0.428 0.405 0.417 0.562 0.264
PackNet 0.824 0.807 0.799 0.808 0.620 0.302 0.434 0.47 0.444 0.458 0.588 0.284
SupSup 0.831 0.788 0.845 0.822 0.625 0.296 0.448 0.451 0.441 0.445 0.571 0.293
WSN 0.838 0.799 0.849 0.829 0.628 0.300 0.455 0.463 0.449 0.452 0.582 0.289
DER 0.819 0.794 0.835 0.812 0.615 0.298 0.442 0.456 0.440 0.448 0.574 0.292
CCG 0.827 0.802 0.842 0.821 0.623 0.301 0.450 0.468 0.447 0.454 0.585 0.287
CBA 0.834 0.790 0.847 0.826 0.630 0.299 0.453 0.460 0.445 0.450 0.579 0.290

Comparison against CL with Bias Mitigation Methods

H

EWC+S 0.834 0.821 0.832 0.827 0.575 0.172 0.412 0.434 0.416 0.421 0.567 0.259
EWC+W 0.791 0.778 0.784 0.781 0.544 0.168 0.418 0.441 0.423 0.432 0.569 0.251

PackNet+S 0.839 0.849 0.817 0.829 0.613 0.181 0.419 0.44 0.425 0.434 0.640 0.211
PackNet+W 0.814 0.877 0.819 0.842 0.549 0.189 0.443 0.462 0.456 0.459 0.704 0.192
SupSup+S 0.849 0.802 0.811 0.817 0.639 0.204 0.432 0.456 0.448 0.451 0.662 0.204
SupSup+W 0.846 0.797 0.809 0.803 0.536 0.213 0.458 0.481 0.463 0.474 0.731 0.184

WSN+S 0.853 0.812 0.818 0.827 0.641 0.196 0.437 0.448 0.440 0.446 0.656 0.208
WSN+W 0.844 0.819 0.822 0.834 0.545 0.203 0.462 0.474 0.467 0.470 0.718 0.190
DER+S 0.847 0.808 0.812 0.819 0.633 0.193 0.429 0.443 0.435 0.439 0.648 0.210
DER+W 0.840 0.814 0.815 0.824 0.532 0.201 0.452 0.465 0.459 0.463 0.710 0.194
CCG+S 0.851 0.816 0.820 0.825 0.637 0.198 0.435 0.450 0.443 0.447 0.654 0.207
CCG+W 0.842 0.822 0.825 0.831 0.540 0.205 0.460 0.472 0.466 0.469 0.722 0.191
CBA+S 0.849 0.810 0.815 0.821 0.644 0.194 0.433 0.445 0.438 0.442 0.650 0.209
CBA+W 0.838 0.817 0.818 0.828 0.535 0.202 0.455 0.468 0.461 0.465 0.715 0.193

Our Proposed Fair CL Method
I BiasPruner 0.860 0.851 0.852 0.858 0.642 0.127 0.488 0.525 0.484 0.507 0.821 0.188

Comparison against a Bias Mitigation Method
J FairDisCo 0.873 0.876 0.904 0.893 0.682 0.113 0.486 0.545 0.512 0.538 0.855 0.150

Table 5. Classification (overall) and fairness (DPR) results of BiasPruner from ablation studies. Best results are marked in bold. The results for the
default configuration of BiasPruner (from Tables 3 and 4) are highlighted in gray.

Exp GCE Bias-aware Pruning WCE KT FITZ HAM NIH
overall↑ DPR↑ overall↑ DPR↑ overall↑ DPR↑

D,I ✓ ✓ ✓ ✓ 0.512 0.331 0.858 0.642 0.507 0.821
K × ✓ ✓ ✓ 0.498 0.254 0.834 0.579 0.501 0.779
L ✓ × ✓ ✓ 0.508 0.328 0.842 0.637 0.498 0.814
M ✓ ✓ × ✓ 0.481 0.247 0.792 0.576 0.468 0.754
N ✓ ✓ ✓ × 0.504 0.324 0.851 0.630 0.496 0.803

also uses pruning to manage network capacity across tasks, it
does so in a bias-aware manner. Our approach actively pre-
serves those parameters that contribute to fair representation
across different subgroups, resulting in consistently strong per-
formance across both accuracy and fairness metrics.

Exp. C extends this analysis by combining existing CL meth-
ods with external bias mitigation techniques; specifically, the
widely adopted Resampling (S) and Reweighting (W) algo-
rithms. The Resampling Algorithm adjusts the training distri-
bution by oversampling minority subgroups and undersampling
majority subgroups for each combination of skin tone and la-
bel, providing the model with more balanced exposure. The
Reweighting Algorithm, on the other hand, modifies the con-
tribution of each training example during optimization to coun-
teract the effects of imbalance. These pre-processing strategies
help improve fairness metrics to some extent, but their effec-
tiveness is limited because they do not directly address how
the internal network structure evolves during continual learn-
ing. BiasPruner stands apart because its bias mitigation is in-
tegrated within the learning dynamics of continual learning. In-
stead of relying on data-level adjustments alone, BiasPruner
constructs a debiased subnetwork during task learning. This
ensures that capacity is preserved for features that are essential

to underrepresented groups. As a result, BiasPruner consis-
tently outperforms both CL methods and their bias-mitigation-
augmented counterparts in most cases, particularly in balancing
high overall accuracy with improved fairness.

Finally, in Exp. E, we compare against FairDisCo (Du et al.,
2022), a non-CL bias mitigation technique specifically designed
for medical applications, which relies on bias annotations dur-
ing training. To ensure a fair comparison, we allow FairDisCo
to learn each task independently and report the average perfor-
mance across all tasks (Exp. E). Despite not using bias anno-
tations, BiasPruner demonstrates performance that is slightly
lower but still comparable to FairDisCo, reinforcing its ability
to mitigate bias effectively without relying on external bias an-
notations.

6.4. Evaluation on Binary Bias: HAM and NIH

In Table 4, we present the results on the HAM and NIH
benchmarks, each associated with a binary bias attribute: age
in HAM and gender in NIH. As with the FITZ benchmark,
we compare the performance of BiasPruner against baselines,
existing CL methods, augmented CL methods, and FairDisCo.
BiasPruner (Exp. I) consistently outperforms these methods
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Fig. 6. Bias quantification through AUC for detecting sensitive attributes in frozen models pre-trained for diagnostic tasks. BiasPruner demonstrates low
AUC values, indicating minimal embedding of sensitive attributes and thus reduced bias in its learned representations.

Fig. 7. The overall (red-ish) and DPR (blue-ish) performance of BiasPruner and other methods over all the seen tasks after each training step in the
continual learning sequence, where Ti refers to the ith task.

(Exp. F , Exp. G, Exp. H , Exp. J) in both classification accu-
racy and fairness.

6.5. Ablation Studies
We conduct a series of ablation studies to assess the contribu-

tion of each component in BiasPruner (Table 5). In Exp. K ,
we replace the generalized cross-entropy (GCE) loss with stan-
dard cross-entropy (CE) loss to evaluate its effect on perfor-
mance. In Exp. L, we substitute our bias-based pruning strat-
egy with random pruning to isolate the impact of bias-driven
pruning. Exp.M involves fine-tuning the debiased subnetworks
using CE loss without weighting, testing the effectiveness of
the weighting mechanism in the debiasing process. Finally, in
Exp. N , we examine the role of knowledge transfer (KT) by
prohibiting any overlap between the subnetworks of the dif-
ferent tasks, effectively simulating the absence of knowledge
transfer. Our results reveal that each modification results in a
decline in both classification accuracy and fairness compared
to BiasPruner. Specifically, Exp. M shows that fine-tuning
without weighting (CE loss only) leads to the poorest perfor-
mance in both metrics, as it increases the likelihood of subnet-
works relearning bias. Furthermore, we find that knowledge
transfer between debiased subnetworks (Exp. N) significantly
improves both performance and fairness in BiasPruner.

6.6. Analysis of Model Biases
We conduct a detailed analysis to evaluate how different

training strategies impact the degree of bias embedded in
learned representations. To do this, we train multiple versions
of BiasPruner itself: once using standard Cross-Entropy (CE)

loss, once using Generalized Cross-Entropy (GCE) loss, and
once using our proposed weighted cross-entropy (WCE). For
comparison, we also evaluate a set of architecture-based CL
methods from prior work, including WSN, DER, CCG, CBA.

First, we train all the models on diagnostic tasks from the
FITZ, HAM, and NIH benchmarks. After training, we freeze
the feature extractors of each model and train a separate clas-
sifier on top to predict sensitive attributes such as skin tone,
age, and gender. Higher detection accuracy of these sensitive
attributes indicates that the model has encoded more bias in its
feature representations. As shown in Fig. 6, the BiasPruner

trained with CE or GCE loss retain substantial amounts of bias
in their learned features, with detection accuracies for sensitive
attributes consistently above chance (0.63–0.83). The bias is
particularly high for the GCE-trained variant, as GCE encour-
ages the network to rely on shortcut features to improve clas-
sification accuracy. The other CL competitors similarly exhibit
considerable bias retention. By contrast, our proposed WCE-
based BiasPruner significantly reduces the presence of sensi-
tive attribute information in the learned features, yielding de-
tection accuracies close to random chance (0.49–0.67). These
results demonstrate that combining BiasPruner with a bias-
aware loss function provides strong protection against spurious
correlations, which is important to enhance fairness in CL.

6.7. Sequential Analysis

As depicted in Fig. 7, we conduct a sequential analysis to
evaluate the performance of BiasPruner over the course of
a CL process. This analysis tracks the model’s performance
step by step across the FITZ, HAM, and NIH benchmarks,
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measuring both overall and DPR at each stage. The re-
sults clearly demonstrate that BiasPruner consistently outper-
forms other methods throughout the learning sequence. By ob-
serving performance over time, we highlight the advantage of
BiasPruner in adapting to new tasks while maintaining both
high classification accuracy and fairness. Unlike other meth-
ods, which may show performance degradation or imbalance
between groups as the model progresses, BiasPruner manages
to maintain a balance, improving task performance without ex-
acerbating fairness disparities.

7. Conclusion and Future Work

In this paper, we introduced BiasPruner, a novel contin-
ual learning (CL) framework that addresses the challenge of
bias transfer in sequential medical image classification. Unlike
conventional CL methods that often overlook this issue and in-
advertently preserve or propagate dataset biases, BiasPruner
leverages intentional forgetting to actively mitigate spurious
correlations. By identifying and pruning network units that
contribute to biased feature representations, BiasPruner con-
structs task-specific debiased subnetworks that retain essential
knowledge while discarding spurious associations. While no
pruning strategy can fully guarantee the removal of all bias or
redundancy, BiasPruner effectively prioritizes the removal of
the most biased units and complements this with fine-tuning to
adapt retained units toward learning robust, unbiased features.
Our experiments across diverse medical imaging benchmarks
demonstrated that BiasPruner consistently achieves superior
classification accuracy and fairness, outperforming both recent
CL methods and CL methods combined with external bias
mitigation strategies. Importantly, these improvements were
achieved without requiring explicit bias annotations, address-
ing practical challenges in real-world medical datasets where
such annotations are often unavailable.

Despite these contributions, two important directions re-
main for future research. First, while BiasPruner effectively
mitigates individual spurious correlations (e.g., skin tone or
gender), real-world data often contain multiple, intersecting
sources of bias. Addressing such scenarios remains challeng-
ing due to the lack of public datasets with comprehensive and
reliable annotations across multiple sensitive attributes. Con-
structing or curating such datasets, or developing robust meth-
ods capable of debiasing in the absence of full bias information,
presents an exciting avenue for future work. Approaches like
multi-bias attribution scores or generative modeling of missing
bias labels may prove promising.

Second, the current implementation of BiasPruner incurs
an inference overhead proportional to the number of tasks, as it
evaluates each task-specific subnetwork to determine the opti-
mal prediction. While this design choice stems from our com-
mitment to handling the more realistic task-agnostic scenario,
where test-time task identities are unknown, scaling to larger
numbers of tasks may introduce latency challenges in certain
deployments. Future work should explore strategies such as
lightweight task-routing networks, shared or hierarchical sub-
networks to minimize redundant computations, and post-hoc
consolidation of subnetworks to improve efficiency.
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