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Abstract. Hilar dissection is an important and delicate stage in partial
nephrectomy during which surgeons remove connective tissue surround-
ing renal vasculature. Potentially serious complications arise when vessels
occluded by fat are missed in the endoscopic view and are not appro-
priately clamped. To aid in vessel discovery, we propose an automatic
method to localize and label occluded vasculature. Our segmentation
technique is adapted from phase-based video magnification, in which
we measure subtle motion from periodic changes in local phase infor-
mation albeit for labeling rather than magnification. We measure local
phase through spatial decomposition of each frame of the endoscopic
video using complex wavelet pairs. We then assign segmentation labels
based on identifying responses of regions exhibiting temporal local phase
changes matching the heart rate frequency. Our method is evaluated with
a retrospective study of eight real robot-assisted partial nephrectomies
demonstrating utility for surgical guidance that could potentially reduce
operation times and complication rates.

1 Introduction

Approximately 30,000 new cases of kidney cancer, generally renal cell carci-
noma, are detected each year in the U.S. alone. Kidney resection, also known
as a nephrectomy, is the only known e↵ective treatment for this type of local-
ized cancer [1]. Robot-assisted partial nephrectomy (RAPN) refers to nephron-
sparing techniques performed with surgical robots in which only the cancerous
cells are excised while the kidney is reconstructed to retain functionality.

The intraoperative aspect of RAPN procedures can be organized into five
stages [2]: 1) Bowel mobilization; 2) Hilar dissection and control; 3) Identification
and demarcation of tumor margins; 4) Resection of tumor; and 5) Reconstruction
of the kidney (renorrhaphy). Hilar dissection stands out as a daunting stage
that requires significant expertise since improper clamping due to overlooked
accessory renal vessels can cause significant bleeding during resection [3].

Hilar dissection is a delicate procedure during which the surgeon dissects
through the Gerota’s fascia and removes the connective tissue that surrounds



the renal artery (RA) and vein (RV). This task is complex due to the variability
in patient vasculature and the amount of perinephric fat which surrounds the
kidney. Access to the hilum grants the surgeon control over the flow of blood
into and out of the kidney, which is very important as warm ischemia is required
during the excision of the tumor to minimize internal hemorrhaging.

In some cases, accessory vessels that branch o↵ from the RA or the abdomi-
nal aorta are accidentally missed as they lie hidden behind a thick layer of per-
inephric fat. In one study of 200 laparoscopic partial nephrectomy cases by world
leading surgeons, seven incidents of intraoperative bleeding were reported as a
result of inadequate hilar control, two of which were directly caused by missed
accessory vessels [4]. Although the number of incidents is low, other studies have
observed the existence of accessory vessels in up to 35% of patients [5,6]. If the
surgeon’s level of experience is limited, the incidence of bleeding may be much
higher. The implications are many, aside from obvious complications that would
arise from internal hemorrhaging, bleeding may also jeopardize the surgical out-
come by occluding the surgeon’s view as the tumor is being resected.

Surgeons often make use of preoperative medical images in identifying trou-
blesome accessory vessels [7]. Even with a detailed scan and segmented pre-op
plan, surgeons are still burdened with the task of mentally transferring this ab-
straction onto the surgical site during the operation. Reducing the di�culty of
navigation has been attempted by state-of-the-art approaches that used multi-
modal registration to align the preoperative surgical map of the vessels onto the
surgeon’s endoscopic view [8]. Such techniques have to date not been extensively
validated in clinical practice, possibly because they require very delicate selection
of parameters, use of invasive fiducials, or are computationally complex to the
extent that the algorithms cannot perform in real-time. Recent methods favor
the use of hardware solutions such as near infrared flourescence imaging [9] or al-
gorithmic methods that only use color intensity information from the endoscope
for enhancing RAPN by highlighting vasculature based on perfusion models [10].
Hardware solutions are not widely accessible as they are cost restrictive and both
methods fail to identify vessels that are hidden under a layer of fat.

Our work is motivated by the need for an automated guidance system that
can work in parallel to the techniques mentioned above to reduce the complica-
tions and the time required to perform hilar dissection by assisting the surgeon
in localizing hidden accessory vessels. Our proposed system aims at highlighting
occluded vessels by analyzing the complementary temporal motion characteris-
tics of the scene as acquired by the endoscope. Our method is inspired by video
magnification techniques developed for natural scenes [11,12], where an Eulerian
approach to analyzing flow within a video sequence can be used to magnify peri-
odic motions that are nearly invisible to the human eye. An extension of [11] was
very recently implemented in the context of robot-assisted surgery [13]. In our
case, we adapted the phased-based video magnification [12] to detect and label
subtle motion patterns instead of magnifying them. Our method is evaluated
with a retrospective study of eight RAPN cases to show its potential utility for
surgeons.
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Fig. 1: Overview of our proposed method: (a) First frame of a synthetic input video
composed of one circle that pulsates (top) and another that remains stationary (bot-
tom). (b) Steerable filter bank with illustrated impulse responses are used to decompose
the information inside each frame into (c) magnitude and local phase at di↵erent scales
and orientations. (d) The phase information of all frames of the video is temporally
filtered using an ideal bandpass filter centered on the frequency of the pulsating circle.
(f) A spatiotemporal median filter is applied to (e) the magnitude weighted response
of the filtered phases to remove phase noise. (g) The filtered results are then combined
and (h) added back to the input as an overlay. A spatiotemporal cross section of the
video illustrates four pulsations across 30 frames of the synthetic video.

2 Methods

The goal is to highlight occluded vasculature near the renal hilum. These regions
in the video exhibit periodic pulsatile motion within a narrow temporal passband
centered around the heart rate. This sub-pixel motion is faintly visible on the
surface of the occluding adipose tissue. We can relate the position p of such a
region at time t to its original position P , at time t = 0, with the displacement
vector u(P, t) such that p = u(P, t) + P . By analyzing the vector u with respect
to time, for a dense set of regions starting at every pixels in the first frame of
acquisition, we can label regions that exhibit the desired behaviour.

Dense tracking of pixels in an image through time is computationally expen-
sive, more so when the motions occur at the subpixel level [14]. To overcome
this limitation, our proposed segmentation method (Fig. 1) relies on Eulerian
motion processing techniques to label regions that pulsate like a vessel.

The Eulerian motion magnification work [11] relies on the first-order approx-
imation of changes in intensities to estimate motion. Analysis in [11], demon-
strated that this approximation is susceptible to noise at high spatial frequencies,
especially at spatial locations where the curvature of change in intensity is high.
A recent study demonstrated that a second order approximation of the change
in intensity using the Hessian matrix is less susceptible to errors and provides a
metric for attenuating noise locally [13]. Even with a second order approxima-
tion, these gradient based methods are prone to error in salient regions. We have
chosen to estimate this local motion from the change in instantaneous phase



of complex sinusoid decomposition of each image using the more recent phase-
based motion processing [12] technique as it has been proven to be more robust
to high frequency noise and, by extension, non-Lambertian specular highlights
that are abundant in endoscopic video.

Our extension to their method can be described in the same 1D intuitive
manner proposed by Wadhwa et al [12], without loss of generality, as follows.
Given a frame of video (Fig. 1a), represented as an intensity function f(p) that
maps an intensity value to a given particle at position p, is decomposed into
spatial sub-bands (Fig. 1b)

f(p) = f(P + u(P, t)) =
1X

!=�1
A!e

i!(P+u(P,t)) (1)

with each sub-band representing a complex sinusoid S!(p, t) = A!e
i!(P+u(P,t))

at spatial frequency !, the local phase (Fig. 1c) is defined as !(P + u(P, t)).
The motion vectors u(P, t) can be extracted from a temporal sequence of

local phase measurements using a DC balanced bandpass filter (Fig. 1d); the
filter response of the temporal bandpass filter is denoted by B!. If the passband
is wide enough, we can compute the displacement vector entirely at each sub-
band such that B!(p, t) = !u(P, t). If the passband of the filter is tuned to the
typical heart rate of a patient, we can isolate components of the local motion
that are synchronous with the heart rate and vascular pulsation.

We adapt our method to generate fuzzy segmentation labels from the com-
puted local motion. Local phase changes, B!, are first attenuated in regions
where the magnitude response A! of the spatial sub-band is weak by computing
the product between the bandpassed phases and the normalized magnitude of the
spatial filter response vectors to obtain Q! = Â!B! (Fig. 1e). Local phase mea-
surements are wrapped between the interval (�⇡,⇡] so Q! will contain impulse
noise. We remove noise from the product Q! using a spatiotemporal median
filter (Fig. 1f). This denoised product Q̃! is finally incorporated into a voting
scheme (Fig. 1g) using magnitude weighted averaging to obtain fuzzy labels

H(p, t) =

P1
!=�1bA!Q̃!

2⇡! � T c
P1

!=�1 A! + ✏
, (2)

where T is an optional noise compensation term representing the maximum
response that can be generated from noise alone and ✏ is a small number to avoid
division by zero. The resulting sequence of fuzzy labels H may be displayed as
an overlay or separately to highlight this pulsatile motion (Fig. 1h).

3 Results

Video sequences from eight real RAPN interventions were used for validation. All
endoscopic video data were acquired by a da Vinci Si surgical system (Intuitive
Surgical, California, USA). HD (1080i) videos were resized to 480 ⇥ 270 pixels.
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Fig. 2: Manual segmentation of each RAPN case, number of accessory vessels in paren-
thesis, showing kidney (brown), tumor/cyst (green), veins (cyan), and arteries (red).

Sixteen complex steerable filter pairs were used (four orientations at four scales)
with one filter per octave using publicly available code [15]. The passband of
the temporal filter was set between 60 to 120 beats per minute and the noise
threshold T was set to zero. Average runtime of our unoptimized MATLAB code
to process a four second clip (120 frames) was 65 seconds.

In order to provide a framework for validation, we compare the segmentations
obtained through our guidance system against manually localized vasculature.
To achieve this, we segmented the kidney, tumor/cyst, inferior vena cava, ab-
dominal aorta, RA, RV, and accessory vessels (Fig. 2) using a semi-automatic
segmentation algorithm [16]. The resulting meshes were manually aligned onto
the first frame of each endoscopic scene (Fig. 3a) using a rigid transformation.
Anatomical landmarks such as the contour of the kidney or visible parts of the
vessels were used to guide the registration process. Our best estimate of the
ground truth is presented in Fig. 3b. Small observable discrepancies between
the aligned model and the endoscopic view are attributed to non-rigid deforma-
tions of the organs and vasculature caused by deformation during insu✏ation,
retraction, or the mobilization of organs during the dissection.

In our experiments, it was observed that although venous and arterial struc-
tures pulsate at the same frequency, their pulsations are not in-phase. The mo-
tion of the inferior vena cava and RV typically succeeds that of the RA and
abdominal aorta by an average of six frames. The results in Fig. 3 illustrate this
phenomenon in two frames of the segmented video. Compared to the reference
in Fig. 3b, the motions highlighted in Fig. 3c correspond to the cyan structures
(venous) and Fig. 3d corresponds to the red structures (arterial).
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Fig. 3: Exemplar video frames with the proposed automatic localization of veins and
arteries in the scene. (a) The first frame of the sequence, (b) manually localized venous
(cyan) and arterial (red) structures, and segmentation of (c) veins and (d) arteries.

From the results we can further observe that, in Case 1, the small RA is cor-
rectly identified at the hilum. The mislabeling of the RA in Case 2 is attributed
to retraction by the surgical instrument. The small accessory RA to the left of
RV is also identified in Case 3. In Case 4, the suprarenal vein is misaligned due
to mobilization of the spleen. Case 5 illustrates that retraction has shifted the
abdominal aorta up. Branching of RA is detected on both sides of RV in Case
6 and the pulsation of heavy vascular region has casued the tumor to pulsate in
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Fig. 4: Left: ROC of all cases. Right: median (red) and mean (green) of all ROC. Mean
area under all ROC is 0.76 with a standard deviation of 0.08.

the centre of the frame. False positives are observed in Case 7 due to the motion
of the tools in the scene. Ideally, surgical instruments should remain motion-
less during the acquisition of the video. The last case posed a big challenge as
the vasculature is heavily occluded by the bowel and many false positives are
detected in fluid filled cavities to the left of the cyst.

To validate our labels quantitatively, the segmentations were binarized (at a
fixed threshold throughout the sequence) and combined across the frames of the
video. This resulting binarized image was then compared to the binarized version
of the reference manual segmentation in Fig. 3b, combining all vasculature into
a single mask. Fig. 4 illustrates the segmentation performance of all cases, at
di↵erent threshold values, via their receiver operating characteristics (ROC).

4 Conclusion

We have described a novel method for localizing and labelling regions in endo-
scopic video that contain occluded vessels. Our method extends Eulerian phase-
based video motion processing techniques to detect and label small motions
that are barely visible on the surface of the perinephric fat. To the best of our
knowledge, we are the first to attempt the challenging task of localizing occluded
vasculature in endoscopic video without the use of additional hardware or pre-
oretative scans. We validated our novel method qualitatively in a retrospective
in vivo study to verify its application in a clinical setting. Conservative quanti-
tative validation of our method demonstrates that it is suitable for integration
alongside existing techniques (as an additional cue) that use other visible fea-
tures such as color, shape and texture. In the future, we plan to extend this
method by developing an adaptive estimation for noise and optimizing the code
to operate in real-time. We are actively exploring the use of obtained segmen-
tations as an additional data term for guiding automatic non-rigid registration
of preoperative surgical models with endoscopic video in the context of RAPN.
Finally, we aim to assess its applicability to other surgical interventions.
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