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Abstract. Medical image segmentation exhibits intra- and inter-annot-
ator variability due to ambiguous object boundaries, annotator prefer-
ences, expertise, and tools, among other factors. Lesions with ambiguous
boundaries, e.g., spiculated or infiltrative nodules, or irregular borders
per the ABCD rule, are particularly prone to disagreement and are often
associated with malignancy. In this work, we curate IMA++, the largest
multi-annotator skin lesion segmentation dataset, on which we conduct
an in-depth study of variability due to annotator, malignancy, tool, and
skill factors. We find a statistically significant (p<0.001) association be-
tween inter-annotator agreement (IAA), measured using Dice, and the
malignancy of skin lesions. We further show that IAA can be accurately
predicted directly from dermoscopic images, achieving a mean absolute
error of 0.108. Finally, we leverage this association by utilizing IAA as
a “soft” clinical feature within a multi-task learning objective, yielding a
4.2% improvement in balanced accuracy averaged across multiple model
architectures and across IMA++ and four public dermoscopic datasets.
The code is available at https://github.com/sfu-mial/skin-IAV.

Keywords: dermatology · skin lesion segmentation· inter-rater variabil-
ity · multi-task learning.

1 Introduction

Medical image segmentation is a foundational task in modern healthcare, en-
abling precise quantitative analysis, the development of downstream diagnos-
tic or prognostic models, and treatment planning [4]. However, the process of
delineating structures in medical images, whether performed manually or semi-
automatically, is prone to variability, leading to intra- and inter-annotator differ-
ences. The sources of this variability are multifactorial, including, but not limited
to, ambiguous boundaries, varying interpretations of imaging characteristics, dis-
crepancies in annotation protocols, and differences in annotator experience or
skill levels. In clinical practice, lesions that lack well-defined boundaries and are
therefore often difficult to segment, such as spiculated or infiltrative nodules, are
often strongly associated with malignancy [16,37], suggesting that poorly-defined
boundaries may be associated with the underlying disease severity.

https://github.com/sfu-mial/skin-IAV
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Specific to skin image analysis, skin lesion segmentation (SLS) [7,18,30] can
play an important role in computing segmentation-based clinical features (e.g.,
irregular borders in the ABCD [22] rule), where the presence of certain clini-
cal features can be used to distinguish melanoma from benign lesions and en-
hance the interpretability of deep learning-based diagnosis methods [31,26]. How-
ever, reliably computing clinical features derived from lesion segmentations can
be challenging due to annotator segmentation variability. For example, irregu-
lar borders or psuedopods, which are clinical features strongly associated with
melanoma [21,44], can be difficult to delineate and may contribute to annota-
tor variability. Thus, in this work, we hypothesize that the level of annotator
(dis)agreement in SLS may itself be related to malignancy. Despite numerous
works on modeling annotation styles [47,2,41], segmentation selection or aggre-
gation [35,29,42], and studying variability in expert segmentations [24,13,34]
and non-expert annotations of clinical features [9,33], no prior research has for-
mally investigated if an association exists between the quantitative level of inter-
annotator segmentation agreement (IAA) and lesion malignancy.

Addressing this gap, we first formally examine whether a systematic rela-
tionship exists between IAA levels and lesion malignancy. Using a newly curated
dataset, IMA++, we demonstrate a significant association: malignant lesions ex-
hibit systematically lower levels of IAA compared to benign lesions. Based on
this observation, we treat the IAA as a type of clinical feature that quantifies
how ambiguous a lesion is to annotate, which may serve as a proxy for existing
clinical features (e.g., irregular border, pseudopods). Driven by this association,
our next contribution seeks to predict per-image IAA scores directly from the
dermoscopic image using deep regression models, avoiding the segmentation step
and allowing us to leverage this signal without requiring multiple annotations
during inference. Finally, motivated by multi-task learning’s ability to enhance
individual task performance [28,48], and following works that simultaneously pre-
dict diagnosis and associated clinical features, like the 7-point criteria to improve
diagnostic accuracy and interpretability [20,26,31], our approach views IAA as
a “soft” clinical feature. Unlike traditional multi-task methods that jointly pre-
dict the diagnosis with segmentation [38,45] or related clinical features such as
ABCD [33] (which can be ambiguous due to inter-annotator differences), we hy-
pothesize that training a model to learn the variability in human interpretation
implicitly captures complex morphological characteristics indicative of malig-
nancy, such as border irregularity and asymmetry, which are often difficult to
formalize or are influenced by annotator subjectivity.

To summarize, we make the following contributions: (1) We curate, to our
knowledge, the largest SLS dataset, IMA++, comprising 5111 masks from 15
unique annotators, and present the largest-scale study of intra- and inter-annota-
tor variability in this context. (2) We empirically demonstrate, using rigorous
statistical methods, that inter-annotator agreement (IAA) is significantly asso-
ciated with lesion malignancy in IMA++. (3) We show that IAA scores can be
predicted, with reasonably low error, directly from image content alone, without
requiring any segmentations at inference time. (4) We demonstrate, through ex-
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Fig. 1: Regression (M1), diagnosis-only (M2), and multi-task (MMT) models.

tensive evaluation on multiple datasets, that multi-task models jointly predicting
diagnosis and IAA outperform diagnosis-only models.

2 Methods

2.1 Agreement distribution shift across disease classes

Let (X ,Y,S) denote a dataset of N images {Xi}Ni=1, corresponding N diagnoses
{Yi}Ni=1, and N sets of multiple segmentation masks S = {{Sik}Ki

k=1}Ni=1, where
Ki ≥ 2 is the number of masks for Xi. Let Z = {Zi}Ni=1 be the set of cor-
responding inter-annotator agreement (IAA) scores, where Zi = g({Sik}) ∈ R
is computed per image based on the multiple segmentations, where g(·) uses
either overlap-based (e.g., Dice similarity coefficient) or boundary-based (e.g.,
Hausdorff distance) metrics.

First, we wish to rigorously evaluate if there exists a systematic difference
between the IAA scores for benign and malignant lesions. In particular, we ex-
amine the relationship between the probability of sampling a certain value from
the IAA distribution of benign versus malignant lesions. To this end, we apply
first-order stochastic dominance (FOSD) testing: a distribution fA(x) is said to
first-order stochastically dominate a distribution fB(x), if FA(x) ≤ FB(x)∀x,
with a strict inequality for some x, where FA(x) and FB(x) are the cumula-
tive distribution functions (CDFs) of fA(x) and fb(x), respectively; loosely put,
fA(x) is more likely to generate higher values of x than fB(x). This first-order
stochastic dominance is denoted as FA ⪰1 FB .

We define Zben and Zmal as the subsets of IAA scores Z corresponding to be-
nign and malignant lesions, respectively. We conduct two separate one-sided tests
of FOSD [6]: (1) testing whether malignant Dice scores stochastically dominate
benign scores, with the hypothesis Hmal⪰1ben : Fmal(x) ≤ Fben(x) ∀x, and vice
versa (2) testing whether benign scores stochastically dominate malignant, with
the hypothesis Hben⪰1mal : Fben(x) ≤ Fmal(x) ∀x. As a complementary analysis,
we also compare the two distributions using a Mann–Whitney U test [27].
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2.2 Image-based prediction of inter-annotator agreement

Next, we examine the ability to predict the IAA score for an image based on the
image content alone and without access to the corresponding segmentations dur-
ing inference. Given an image Xi, we predict the target Ẑi = M1(Xi; ΘF,ΘR),
where M1 = FR ◦ FF, ◦ denotes function composition, and FF and FR are the
feature-extracting backbone and the regression head, parameterized by ΘF and
ΘR, respectively (Fig. 1). The regression model M1 is trained by minimizing a
regression loss LR:

Θ∗
F,Θ

∗
R = argminΘF,ΘR

N∑
i=1

LR(Zi, Ẑi). (1)

2.3 Integrating inter-annotator agreement and diagnosis prediction

Given an image Xi, a typical image-based diagnosis model M2 predicts
Ŷi = M2(Xi; ΘF,ΘD), where M2 = FD ◦ FF, and FD is the diagnosis head pa-
rameterized by ΘD. The diagnosis model is optimized by minimizing a diagnosis
(classification) loss LD:

Θ∗
F,Θ

∗
D = argminΘF,ΘD

N∑
i=1

LD(Yi, Ŷi). (2)

Finally, inspired by previous works on multi-task learning in medical imag-
ing [48] and skin images in particular [46,20,38,45,1,33], we investigate whether
simultaneous prediction of IAA and diagnosis improves the accuracy of the lat-
ter. To this end, we train MMT to simultaneously predict Ŷi and Ẑi such that
(Ŷi, Ẑi) = MMT(Xi; ΘF,ΘD,ΘR), where MMT = (FR ◦FF,FD ◦FF) is a multi-
task prediction model with prediction heads for diagnosis (classification) and
IAA score (regression) that share the same backbone (Fig. 1). MMT is trained
by minimizing a (weighted) sum of the two tasks’ objectives:

Θ∗
F,Θ

∗
D,Θ

∗
R = argminΘF,ΘD,ΘR

N∑
i=1

[
α · LD(Yi, Ŷi) + (1− α) · LR(Zi, Ẑi)

]
, (3)

where α is a loss-weighting hyperparameter. Note that α = 0 and α = 1 are
equivalent to regression-only (M1) and diagnosis-only (M2) models, respec-
tively. More details about exact model architectures, losses (Eqns. 1, 2, 3),
datasets, training, and evaluation are discussed in the next section.

3 Results and Discussion

3.1 Datasets and analysis

A new curated dataset: Prior work on multi-annotator skin lesion segmenta-
tion has produced either (a) large datasets without annotator-level information
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BA C

Fig. 2: IMA++ dataset statistics: (A) number of segmentations per image, (B)
pairwise agreement metrics (Dice and Hausdoff distance), (C) intra- and inter-
factor agreement (meanstd. dev. of Dice) with p-value and Cohen’s d.

(e.g., Ribeiro et al. [34,35], Mirikharaji et al. [29]: 2223 images, 4647 total seg-
mentations) or, (b) small datasets with annotator or style metadata (e.g., Zepf
et al. [47]: 100 images, 300 total segmentations, 3 styles; Abhishek et al. [2]:
454 images, 1058 total segmentations, 10 unique annotators). In this work, we
curate and publicly release a new dataset from the ISIC Archive, called ISIC
MultiAnnot++ (IMA++ hereafter). It contains 2394 dermoscopic images
segmented by 15 unique annotators, where 2130 images have 2 masks, 209 im-
ages have 3 masks, 51 images have 4 masks, and 4 images have 5 masks, resulting
in a total of 5111 segmentation masks (Fig. 2). To the best of our knowledge,
IMA++ is the largest public multi-annotator skin lesion segmentation dataset
in terms of both mask and annotator counts.

Each mask contains information about the tool used: (T1) manual polygon
tracing by a human expert, (T2) semi-automated flood-fill with expert-defined
parameters, or (T3) a fully-automated segmentation reviewed and accepted by
a human expert; and the skill level of the manual reviewer: (S1) expert or (S2)
novice. We partition the images in IMA++ into training, validation, and testing
splits in the ratio of 70:15:15, stratified by malignancy, number of segmentations
per image, and Dice score range: low (< 0.5), medium, and high (> 0.8).
Calculation of IAA scores: All images and binary segmentations are resized
to 256 × 256. For each image Xi, we compute the Dice and Hausdorff distance
between all

(
Ki

2

)
unique pairs of segmentation masks (Fig. 2B shows the full dis-

tribution of pairwise scores). Although previous IAA studies have used Cohen’s
kappa [35] and Fleiss’ kappa [2], these metrics measure categorical agreement
and fail to capture spatial overlap between annotations; thus, we adopt the Dice
metric, which is standard in IAA studies in medical imaging [36,3,17]. For each
image, we average the pairwise Dice scores to obtain a single IAA score. Although
most lesions tend to exhibit high agreement between annotators ([344, 818] out
of 2394 images have Dice above [0.95, 0.90]), a notable subset shows poor agree-
ment (23 images have 0 Dice), highlighting the wide range of inter-annotator
agreement, and in line with the previous study by Ribeiro et al. [34].
Is malignancy associated with IAA? Fig. 2C reveals a notable difference in
IAA scores between benign and malignant lesions: benign lesions tend to exhibit
higher Dice scores (0.791 ± 0.215 vs. 0.753 ± 0.227). However, a comparison of
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Model Params
(M)

MACs
(G)

MAE MSE p-value
Benign Malignant Overall Benign Malignant Overall

VGG-16 14.72 15.36 0.1180.166 0.1340.188 0.1210.171 0.0270.059 0.0350.077 0.0290.064 1.54E-05
ResNet-18† 11.31 1.81 0.1030.158 0.1270.178 0.1080.162 0.0250.065 0.0320.062 0.0260.064 1.15E-08
ResNet-50 24.03 4.09 0.1240.175 0.1430.193 0.1280.180 0.0310.074 0.0380.081 0.0320.076 1.41E-37
MobileNetV2† 2.55 0.30 0.1030.157 0.1290.182 0.1090.163 0.0250.067 0.0330.070 0.0260.068 3.15E-15
MobileNetV3L 3.22 0.21 0.1060.156 0.1310.183 0.1110.162 0.0240.063 0.0330.070 0.0260.065 6.53E-09
DenseNet-121 7.22 2.83 0.1310.182 0.1410.191 0.1330.184 0.0330.074 0.0370.082 0.0340.076 5.21E-32
EfficientNet-B0 4.34 0.38 0.1100.164 0.1380.191 0.1160.170 0.0270.068 0.0360.076 0.0290.070 1.01E-15
EfficientNet-B1† 6.84 0.57 0.1070.165 0.1210.177 0.1100.167 0.0270.074 0.0320.088 0.0280.077 1.63E-07
ConvNeXt-T 28.02 4.47 0.1300.195 0.1550.207 0.1350.199 0.0390.103 0.0480.100 0.0410.102 2.62E-28
Swin-T 27.72 4.50 0.1310.188 0.1520.203 0.1350.192 0.0350.089 0.0430.092 0.0370.090 3.70E-37
SwinV2-T 27.78 5.96 0.1270.195 0.1550.207 0.1330.198 0.0390.105 0.0480.102 0.0410.104 6.02E-19
ViT-B/16 86.00 16.86 0.1220.179 0.1490.206 0.1280.186 0.0320.082 0.0440.102 0.0350.086 3.35E-22
ViT-B/32 87.65 4.37 0.1290.181 0.1490.202 0.1330.186 0.0330.080 0.0410.091 0.0350.083 5.94E-44

(a)
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Fig. 3: Predicting inter-annotator agreement (Dice) on the proposed IMA++
dataset. (a) Quantitative results (meanstd.dev.of MAE and MSE, and p-values
for 13 model architectures (M1). † denotes top 3 models by overall MAE. (b)
GradCAM++ saliency heatmaps from M1 (ResNet-18). Each image Xi shows
corresponding overlaid segmentations {Sik}Ki

k=1 and (ground truth IAA Zi, pre-
dicted IAA Ẑi) below the ISIC image ID.

means alone can be misleading if the underlying distributions differ in shape or
variance. To address this, we compared the full distributions of IAA scores for
benign and malignant lesions using the Mann-Whitney U test, which confirmed
that agreement is significantly higher for benign lesions (p < 0.01), suggesting
greater annotator consensus in those cases.

Our FOSD tests (Sec. 2.1), conducted using PySDTest [23], reinforce this
conclusion. Using 1,000 bootstrap resampling iterations at significance level α =
0.001, we rejected the hypothesis that malignant lesions stochastically dominate
benign ones (Hmal⪰1ben, p < 0.001), while the reverse hypothesis (Hben⪰1mal)
was not rejected (p = 0.923). Together, these results support that the distri-
bution of inter-annotator agreement for benign lesions first-order stochastically
dominates that for malignant lesions, indicating higher segmentation consensus
for benign cases. This is likely due to benign lesions often exhibiting more well-
defined, homogeneous boundaries, making them easier to segment consistently.
In contrast, malignant lesions tend to be more heterogeneous in appearance and
morphology, which likely contributes to higher annotation variability.
Impact of other annotation factors on IAA: In addition to malignancy,
Fig. 2C summarizes intra- and inter-factor-dependent IAA scores, along with cor-
responding Mann–Whitney U test p-values and Cohen’s d [12] effect sizes. As ex-
pected, and consistent with findings in other medical imaging modalities [14,17],
intra-annotator agreement is significantly higher than inter-annotator agree-
ment. We also observe that segmentations performed using the same annotation
tool tend to show higher agreement. Similarly, annotators with the same skill
level exhibit greater consistency, particularly in the case of malignant lesions. To
our knowledge, this represents the largest study of annotator variability in skin
lesion segmentation to date in terms of dataset size, substantially exceeding the
scale of prior work [24,13,32,40,34,35].
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Table 1: Comparing the diagnostic performance of M2 to MMT on IMA++ for
different values of α (Eqn. 3). α = 0.9 performs the best across all architectures.

ResNet-18 MobileNetV2 EfficientNet-B1

Bal. Acc. AUROC Bal. Acc. AUROC Bal. Acc. AUROC

Diagnosis Only

(M2)
0.7460.008 0.8350.003 0.7570.009 0.8430.004 0.7460.009 0.8270.001

Multi-

Task

Learning

(MMT)

α = 0.1 0.7110.009 0.7850.001 0.7480.003 0.8590.001 0.7440.016 0.8260.018

α = 0.2 0.7230.009 0.8220.002 0.7400.007 0.8570.035 0.7500.000 0.8530.002

α = 0.5 0.7500.004 0.8520.006 0.7850.006 0.8690.006 0.7380.010 0.8690.003

α = 0.8 0.7570.004 0.8520.001 0.7970.011 0.8790.002 0.7670.007 0.8730.001

α = 0.9 0.7650.002 0.8690.002 0.8050.004 0.8820.001 0.7720.009 0.8780.003

Other datasets: In addition to IMA++, we also conduct experiments on 4
other dermoscopic image datasets: PH2 [5], derm7pt [20], ISIC 2018 [10,39],
ISIC 2019 [11,39,19]. We use the standardized partitions for ISIC 2018, 2019,
and split PH2 and derm7pt into train:valid:test in 70:15:15 ratio stratified by
diagnosis.

All models were trained on an Ubuntu 20.04 workstation with AMD Ryzen 9
5950X, 32 GB RAM, NVIDIA RTX 3090 with Python 3.10.18 and PyTorch 2.7.1.
All reported metrics are meanstd. dev. over 3 runs with different seeds. All trained
models and code are available at https://github.com/sfu-mial/skin-IAV.

3.2 Image-based prediction of inter-annotator agreement

To directly predict IAA scores from images (Sec. 2.2), we evaluate 13 architec-
tures spanning CNNs and Transformers, covering a wide range of capacities in
terms of parameters and multiply-accumulate operations (MACs). Each model
uses the backbone as a feature extractor with a regression head: Linear(256) →
BatchNorm1D → ReLU → Dropout(0.5) → Linear(1). All models were trained
for 50 epochs using SGD (momentum = 0.9, weight decay = 1e-4, batch size
= 32, learning rate = 1e-2 decayed ×0.1 every 10 epochs). We use Smooth-L1

loss [15] as LR, selecting the model with the lowest validation MAE. Results are
reported in terms of MAE, MSE, and Mann–Whitney U test p-values (Fig. 3a).

All models achieve good predictive performance (MAE ∈ [0.10, 0.135]), sug-
gesting that IAA scores can be inferred from image content alone. Grad-CAM++
[8] visualizations (Fig. 3b) for the best model (ResNet-18) confirm saliency fo-
cused on the lesions and their boundaries. Notably, the third malignant example
shows the model correctly localizing the lesion and predicting a plausible IAA
(0.635), despite the “true” IAA being 0.0, highlighting label noise rather than
prediction error. For all subsequent analyses, we use the top 3 performing archi-
tectures: ResNet-18, MobileNetV2, and EfficientNet-B1.

https://github.com/sfu-mial/skin-IAV
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Table 2: Evaluating generalization performance on four other dermoscopic image
datasets with 3 model architectures (MMT with α set to 0.9 based on Table 1).

ResNet-18 MobileNetV2 EfficientNet-B1

Bal. Acc. AUROC Bal. Acc. AUROC Bal. Acc. AUROC

PH2 Diag. Only (M2) 0.9380.000 0.9880.000 0.9430.033 0.9880.007 0.8700.009 0.9790.002

Multi-Task (MMT) 0.9790.009 0.9920.000 0.9790.009 0.9990.002 0.9640.009 0.9840.004

derm7pt
Diag. Only (M2) 0.7340.009 0.8360.009 0.6540.007 0.8000.003 0.7560.037 0.8620.015

Multi-Task (MMT) 0.7480.005 0.8460.001 0.7920.012 0.8870.002 0.7740.011 0.8610.003

ISIC

2018

Diag. Only (M2) 0.7440.005 0.8930.002 0.7270.007 0.8720.000 0.7130.066 0.8680.002

Multi-Task (MMT) 0.7520.003 0.8980.001 0.7450.007 0.9030.003 0.7530.012 0.8850.047

ISIC

2019

Diag. Only (M2) 0.6700.004 0.8530.002 0.6230.004 0.8490.001 0.6570.009 0.8690.003

Multi-Task (MMT) 0.6980.008 0.8810.001 0.7160.023 0.8900.002 0.6670.006 0.8730.001

3.3 Integrating inter-annotator agreement and diagnosis prediction

Finally, we leverage this link between malignancy and inter-annotator agreement
and investigate whether jointly learning to predict IAA improves diagnostic per-
formance (Sec. 2.3) by comparing diagnosis-only models (M2) with multi-task
models (MMT). As before, we use Smooth-L1 loss for LR and focal loss [25] for
LD. The multi-task architecture shares a common backbone and employs two
heads: a regression head (as in Sec. 3.2) and a classification head (Linear(256)
→ BatchNorm1D → ReLU → Dropout(0.5) → Linear(nclasses)). To study the
impact of loss weighting, we vary α in Eqn. 3, assigning lower (α ∈ {0.1, 0.2}),
equal (α = 0.5), and higher (α ∈ {0.8, 0.9}) emphasis on the diagnosis loss
LD. All models are trained under the same setup as Sec. 3.2, except we se-
lect the model with the highest balanced accuracy on the validation set. We
report balanced accuracy and AUROC in Table 1. Across all architectures, we
find that α = 0.9 yields the best diagnostic performance. Moreover, multi-task
models (MMT) with equal or greater emphasis on LD (α ≥ 0.5) consistently
outperform diagnosis-only models (M2), confirming our hypothesis that inter-
annotator agreement prediction serves as a beneficial auxiliary task for diagnosis.

To assess generalizability, we fine-tune the M2 and MMT models (trained
on IMA++ with α = 0.9 for MMT) on external datasets: PH2, derm7pt, ISIC
2018, and ISIC 2019. Since these datasets lack multiple annotations and thus
have no IAA labels, we freeze the regression head of MMT before fine-tuning.
Fine-tuning is conducted for 15 epochs using SGD (momentum = 0.9, weight
decay = 1e-4, batch size = 32, learning rate = 1e-3 with ×0.1 decay every 3
epochs). Results in Table 2 show that MMT outperforms M2 across all datasets
and architectures, suggesting that the performance gains from learning to predict
IAA on IMA++ may be transferable to new datasets.

4 Conclusion

We studied the problem of inter-annotator agreement (IAA) for skin lesion seg-
mentation, and demonstrated, through agreement metrics and statistical tests,
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a clear relationship between IAA and malignancy. We showed that IAA can be
predicted from image content alone. Across five dermoscopic datasets, we further
showed that incorporating IAA prediction as an auxiliary task in a multi-task
diagnosis model improves performance over diagnosis-only models. To support
this study, we curated IMA++, the largest publicly available multi-annotator
skin lesion segmentation dataset, in terms of both the number of segmentations
and unique annotators. To our knowledge, this is the most extensive IAA study
in skin image analysis. Future work would assess how to test for null of non-
dominance against dominance [43], evaluate other boundary-based metrics such
as Hausdorff distance and boundary-F1 score, explore groupwise IAA measures
instead of the pairwise measures: Dice and Hausdorff distance, and examine how
inter-annotator variability impacts the ABCD score.
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