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Abstract. Renal cell carcinoma (RCC) is the seventh most common
cancer worldwide, accounting for an estimated 140,000 global deaths an-
nually. An important RCC prognostic predictor is its ‘stage’ for which the
tumor-node-metastasis (TNM) staging system is used. Although TNM
staging is performed by radiologists via pre-surgery volumetric medi-
cal image analysis, a recent study suggested that such staging may be
performed by studying the image features of the RCC from computed
tomography (CT) data. Currently TNM staging mostly relies on labori-
ous manual processes based on visual inspection of 2D CT image slices
that are time-consuming and subjective; a recent study reported about
∼25% misclassification in their patient pools. Recently, we proposed a
learnable image histogram based deep neural network approach (ImHist-
Net) for RCC grading, which is capable of learning textural features di-
rectly from the CT images. In this paper, using a similar architecture,
we perform the stage low (I/II) and high (III/IV) classification for RCC
in CT scans. Validated on a clinical CT dataset of 159 patients from the
TCIA database, our method classified RCC low and high stages with
about 83% accuracy.

1 Introduction

Renal cell carcinoma (RCC) is the 7th most common cancer in men and 10th
most common cancer in women [1] accounting for an estimated 140,000 global
deaths annually [2]. The natural growth pattern varies across RCC, which has led
to the development of different prognostic models for the assessment of patient-
wise risk [3]. Clinical RCC staging is vital for proper treatment planning and
thus considered one of the important prognostic predictors of cancer specific
survival [4].

The American Joint Committee on Cancer (AJCC)/Union for International
Cancer Control (UICC) specifies the criteria for tumor-node-metastasis (TNM)
staging of each cancer depending on the primary tumor size (TX, T0-4); number
and location of lymph node involvement (NX, N1-2); and metastatic nature, i.e.
tumor spreading to other organs (M0-1) [3,5]. Clinical guidelines require clini-
cians to assign TNM stages prior to initiating any treatment [5]. AJCC TNM
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is currently a manual process that includes two separate staging processes, per-
formed before treatment planning and during/after surgery, to reflect the time-
sensitive staging mechanism [3]. Clinical staging is performed prior to treatment
by expert radiologists via physical examination, CT image measurements, and
tumor biopsies. Clinically determined TNM stages (e.g. T or M) are designated
with prefix ‘c’ (i.e. cT and cM). Pathological staging on the other hand is based
on the resected tumor pathology results either during or after surgery [5], and
designated with prefix ‘p’ (i.e. pT and pM). Radiologists also use the TNM de-
scription to assign an overall ‘Anatomical stage’ from 1 to 4 using the Roman
numerals I, II, III, and IV [3], see Table 1. Accurate clinical staging of RCC

Table 1. Staging of RCC (AJCC TNM classification of tumors).

Stage I T1 (Tumor ≤7 cm) N0 M0
Stage II T2 (Tumor >7 cm but limited to kidney) N0 M0
Stage III T1-2, T3 (Tumour extends up to Gerota’s fascia) N1, Any M0
Stage IV T4, Any (Tumour invades beyond Gerota’s fascia) Any M0-1

is vital for appropriate management decisions [6]. Partial nephrectomy (PN),
also known as nephron-sparing surgery, is typically preferred for T1 and T2 tu-
mors [3]. After studying 7,138 patients with T1 kidney cancer, Tan et al. [7]
suggested that treatment with PN was associated with improved survival. In a
similar study on pT2 tumor patients, Janssen et al. [4] showed that patients hav-
ing PN had a significantly longer overall survival. Radical nephrectomy (RN),
which refers to complete removal of kidney with/without the removal of the
adrenal gland and neighboring lymph node, is generally reserved for T3 and T4
tumors [6].

The pre-surgery clinical tumor staging often suffers from misclassification er-
rors. For example, in a recent study, Bradley et al. [6] reported 23 disagreement
cases between cT and pT stages of 90 patients. The study further reported that
5 patients were miscassified with cT3 but later down-staged to pT2, while 6 pa-
tients were misclassified with cT2 but later up-staged to pT3 for the same patient
cohort (∼12%). In another study on 1,250 patients who underwent nephrectomy,
Shah et al. [8] reported 11% (140 patients) upstaging of tumors from cT1 to pT3.
In addition, there was tumor recurrence in 44 patients (31.4% of the pT3 up-
staged cases), where most of these patients initially had PN. These alarming
findings suggest that PN is associated with better survival in low stage tumors
(T1 and T2), while RN is associated with reduce recurrence in high stage (T3
and T4) tumors. However, high stage tumors (T3-4) are often misclassified as
low stage (T1-2) in the clinical staging phase. In addition, we see in the rows 1-3
of Table 1 that the tumor criterion is not well defined for stages T1, T2, and T3.
In contrast, anatomical stages I-IV defines better discrimination among tumor
stages (see Table 1).
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For accurate staging of RCC before treatment planning, contrast-enhanced
abdominal CT is considered essential [3]. Although tumor staging is believed to
be dependent on the tumor size, by studying the pT stages of 94 kidney samples,
Bradley et al. [6] argued that stages > T3 does not always correlate with tumor
size and suggested to use CT image features to improve tumor staging.

Supervised deep learning using convolutional neural networks (CNN) have
gained popularity for automatic feature learning and classification. However,
the learned features of a classical CNN tend to ignore diffuse textural features
that are often important for applications such as our tumor staging problem.
Very recently, we proposed ImHistNet, a deep neural network for end to end
texture-based image classification [9]. In [9] we showed ImHistNet to be capa-
ble of learning complex and subtle task-specific textural features directly from
images completely avoiding any pre-segmentation of the RCC as the learnable
image histogram can stratify tumor and background textures well.

In this paper, we propose automatic low stage (I-II) and high stage (III-IV)
RCC classification using ImHistNet. We demonstrate that RCC stages can be
determined from the CT textural features of the tumor. Our approach learns
a histogram directly from the CT data and deploys it to extract representative
discriminant textural tumor features to correlate to RCC stages.

2 Materials and Methods

2.1 Data

We used CT scans of 159 patients from the TCIA database [10]. These patients
were diagnosed with clear cell RCC, of which 95 were staged low (I-II) and 66
were staged high (III-IV). The images in this database have variations in CT
scanner models, contrast administration, field of view, and spatial resolution. The
in-plane pixel size ranged from 0.29 to 1.87 mm and the slice thickness ranged
from 1.5 to 7.5 mm. We divided the dataset for training/validation/testing as
77/3/15 and 48/3/15 for stage low and stage high, respectively. Note that typi-
cal tumor radiomic analysis comprises [11]: (i) 3D imaging, (ii) tumor detection
and/or segmentation, (iii) tumor phenotype quantification, and (iv) data inte-
gration (i.e. phenotype + genotype + clinical + proteomic) and analysis. Our
approach falls under step-iii. The input data to our method are thus 2D image
patches of size 64×64 pixels, taken from kidney+RCC (i.e. both mutually inclu-
sively present) bounding boxes. We do not require any fine pre-segmentation of
the RCC rather only assume a kidney+RCC bounding box, generated in step-ii.
Given data imbalance where samples for stage high are fewer than for stage low,
we allowed more overlap among adjacent patches for the stage low dataset. The
amount of overlap is calculated to balance the samples from both cohorts.

2.2 Learnable Image Histogram for RCC Stage Classification

Learnable Image Histogram: Our learnable image histogram (LIH) [9] strat-
ifies the pixel values in an image x into different learnable and possibly over-
lapping intervals (bins of width wb) with learnable means (bin centers βb). The
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feature value hb(x) : b ∈ B → R, corresponding to the pixels in x that falls in
the bth bin, is estimated as:

hb(x) = Φ{Hb(x)} = Φ{max(0, 1− |x− βb| × w̃b)}, (1)

where B is the set of all bins, Φ is a global pooling operator, Hb(x) is a piece-
wise linear basis function that accumulates positive votes from the pixels in x
that fall in the bth bin of interval [βb − wb/2, βb + wb/2], and w̃b is the learn-
able weight related to the width wb of the bth bin: w̃b = 2/wb. Any pixel may
vote for multiple bins with different Hb(x) since there could be an overlap be-
tween adjacent bins in our learnable histogram. The final |B| × 1 feature values
from the learned image histogram are obtained using a global pooling Φ over
each Hb(x) separately. This pooling can be a ‘non-zero elements count’ (NZEC),
which matches the convention of a traditional histogram, or can be an ‘average’
or ‘max’ pooling, depending on the task-specific requirement. The linear basis
function Hb(x) of the LIH is piece-wise differentiable and can back-propagate
(BP) errors to update βb and w̃b during training. Readers are referred to the
original manuscript on the ImHistNet [9] for details.
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Fig. 1. Multiple instance decisions aggregated ImHistNet for stage classification.

Design of LIH using CNN Layers: The LIH is implemented using CNN
layers as illustrated in Fig. 1. The input of LIH is a 2D image, and the output
is a |B| × 1 histogram feature vector. The operation x− βb for a bin centered at
βb is equivalent to convolving the input by a 1× 1 kernel with fixed weight of 1
(i.e. with no updating by BP) and a learnable bias term βb (‘Conv 1’ in Fig. 1).
A total of B = |B| number of similar convolution kernels are used for a set of
B bins. Then an absolute value layer produces |x − βb|. This is followed by a
set of convolutions (‘Conv 2’ in Fig. 1) with a total of B separate (non-shared
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across channels) learnable 1×1 kernels and a fixed bias of 1 (i.e. no updating by
BP) to model the operation of 1− |x− βb| × w̃b. We use the rectified linear unit
(ReLU) to model the max(0, ·) operator in Eq. 1. The final |B| × 1 feature val-
ues hb(x) are obtained by global pooling over each feature map Hb(x) separately.

ImHistNet Classifier Architecture: The classification network comprises ten
layers: the LIH layer, five (F1-F5) fully connected layers (FCLs), one softmax
layer, one average pooling (AP) layer, and two thresholding layers (see Fig. 1).
The first seven layers contain trainable weights. The input is a 128×128 pixel
image patch extracted from the kidney+RCC slices. During training, randomly
shuffled image patches are individually fed to the network. The LIH layer learns
the variables βb and w̃b to extract representative textural features from image
patches. In implementing the proposed ImHistNet, we chose B = 128 and ‘av-
erage’ pooling at Hb(x). We set subsequent FCL (F1-F5) size to 4096×1. The
number of FCLs plays a vital role as the overall depth of the model has been
shown to be important for good performance [12]. Empirically, we achieved good
performance with five FCL layers. Layers 8, 9 and 10 of the ImHistNet are used
during the testing phase and do not contain any trainable weights.

Training: We trained our network by minimizing the multinomial logistic loss
between the ground truth and predicted labels (1: stage low, and 0: stage high).
We employed a Dropout unit (Dx) that drops 20%, 30%, and 40% of units in
F2, F3 and F4 layers, respectively (Fig. 1) and used a weight decay of 0.005. The
base learning rate was set to 0.001 and was decreased by a factor of 0.1 to 0.0001
over 250,000 iterations with a batch of 128 patches. Training was performed on
a workstation with Intel 4.0 GHz Core-i7 processor, an Nvidia GeForce Titan
Xp GPU with 12 GB of VRAM, and 32 GB of RAM.

RCC Stage Classification: After training ImHistNet (layers 1 to 7) by es-
timating errors at layer 7 (i.e. Softmax layer), we used the full configuration
(from layer 1 to 10) in the testing phase. Although we used patches from only
RCC-containing kidney slices during training and validation, not all the RCC
cross-sections contained discriminant features for proper grade identification.
Thus our trained network may miss-classify the interrogated image patch. To
reduce such misclassification, we adopt a multiple instance decision aggregation
procedure similar to our work in [13]. In this approach, we feed randomly shuffled
single image patches as inputs to the model during training. During inference,
we feed all candidate image patches of a particular kidney to the trained network
and accumulate the patch-wise binary classification labels (0 or 1) at layer 8 (the
thresholding layer). We then feed these labels into a P ×1 average pooling layer,
where P is the total number of patches of an interrogated kidney. Finally, we
feed the estimated average (Eavg) from layer 9 to the second thresholding layer
(layer 10), where Eavg ≥ 0.5 indicates the stage ’low’, and stage ’high’ otherwise
(see Fig. 1).
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3 Results and Discussion

Fig. 2. Automatic RCC stage classification performance comparison. Acronyms used
- HE: hand engineered, SVM: support vector machines.

We compared our RCC stage classification performance in terms of accuracy
(%) to a wide range of methods in Fig 2. To our knowledge, there is no automatic
and/or machine learning-based approach for RCC stage classification. Therefore,
we compare the RCC staging performance of different methods by implementing
those in our own capacity. Note that for all our implementations, we trained
models with shuffled single image patches, and used multiple instance decision
aggregation per kidney during inference. We fixed our patch size to 128×128
pixels across all contrasted methods except ResNet-50.

First, in order to compare performance to that of traditional hand-engineered
(HE) feature based machine learning approaches, we evaluated an SVM employ-
ing a conventional image histogram of 16 and 64 bins. Fig. 2 shows a resulting
poor performance at 53% accuracy. Next, to contrast the performance of SVM
against DNN, we fed the conventional histogram (16 and 64 bins) features to a
DNN of 5 FCL with weight sizes (4096×1)-(4096×1)-(4096×1)-(4096×1)-(2×1).
We chose this FCL configuration for fairer comparisons since our ImHistNet
contains the same. Fig. 2 shows that the FCL with conventional histogram per-
formed the worst achieving a 50% accuracy. Next, we used ResNet-50 with trans-
fer learning in order to test the performance of high performing modern CNN
(see Fig. 2). We used full kidney+RCC slices of size 224×224 pixels as input. As
mentioned in Sect. 1, a classical CNN typically fails to capture textural features,
which is evident from our results where ResNet-50 performed poorly in learning
the textural features of RCC, resulting in 60% accuracy. Finally, we show the
performance of our proposed method in Fig. 2 where ImHistNet achieved the
highest accuracy (83%) among all contrasted methods.
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4 Conclusions

We proposed a powerful automatic RCC stage classification method that uses
a learnable image histogram based deep neural network framework we recently
proposed for tumor grading. Our approach learns a histogram directly from the
image data and deploys it to extract representative discriminant textural image
features. We also used multiple instance decision aggregation to further robus-
tify binary classification. Our proposed ImHistNet outperformed competing ap-
proaches for this task including including SVM classification, deep learning with
hand crafted traditional histogram features, as well as currently top perform-
ing deep CNNs. ImHistNet appears to be very well-suited for radiomic studies,
where learned textural features using the learnable image histogram can aid in
improving diagnosis accuracy.

Acknowledgement: We thank NVIDIA Corporatoin for supporting our re-
search through their GPU Grant Program by donating the GeForce Titan Xp.
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