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Abstract
The endoplasmic reticulum (ER) comprises smooth tubules, ribosome-studded
sheets, and peripheral sheets that can present as tubular matrices. ER shaping pro-
teins determine ER morphology, however, understanding their role in tubular matrix
formation requires reconstructing the dynamic, convoluted ER network. Existing
reconstruction methods are sensitive to parameters or require extensive annotation
and training for deep learning. We introduce nERdy, an image processing based
approach, and nERdy+, a D4-equivariant neural network, for accurate extraction
and representation of ER networks and junction dynamics, outperforming previous
methods. Comparison of stable and dynamic representations of the extracted ER
structure reports on tripartite junction movement and distinguishes tubular matri-
ces from peripheral ER networks. Analysis of live cell confocal and STED time series
data shows that Atlastin and Reticulon 4 promote dynamic tubular matrix forma-
tion and enhance junction dynamics, identifying novel roles for these ER shaping
proteins in regulating ER structure and dynamics.
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1 Main
The endoplasmic reticulum (ER) is the largest membrane-bound organelle, spanning
the cytoplasm from the nucleus to the plasma membrane as a continuous membrane
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network. The ER serves as a major site of protein synthesis, folding, and sorting, as
well as various cellular functions including stress response, Ca2+ storage, and lipid
metabolism [1]. The peripheral ER forms an extended tubular network connected to
more densely labeled sheet-like regions; relative expression of the sheet-inducing lumenal
spacer protein CLIMP-63 and membrane curvature-inducing Reticulon 4 determines the
abundance of peripheral ER tubules and sheets, as well as thickness of the tubules and
sheets [2–5]. The Atlastin (ATL) GTPase promotes the homotypic fusion of ER tubules
and the formation of tripartite junctions in peripheral ER tubular networks [6, 7].
LunaPark localizes to tripartite ER junctions and interacts with Atlastin and Reticulon
4 to regulate the extent of the tubule and junction formation [8, 9]. Atlastin regulation
of ER junction dynamics, but not LunaPark, has been shown to impact microtubule
organization [10]. While LunaPark stabilizes junctions on the order of minutes [11], ER
network dynamics can be far more rapid [12–15].

High-speed studies using STED and single molecule super-resolution microscopy
showed that Reticulon 4 and CLIMP-63 control the size and dynamics of lumenal
nanodomains along peripheral ER tubules [13, 14, 16]. Identification of CLIMP-63 as
a sheet-inducing ER shaping protein was based in large part on the identification of
sheet-like structures in the cell periphery by diffraction-limited confocal microscopy [3].
However, subsequent analysis by grazing incidence SIM combined with light sheet
imaging, increasing both the spatial and temporal resolution, showed that peripheral
sheets are actually composed of a dense matrix of tubules [15]. The tubular matrix
corresponds to the convoluted tubular networks observed by electron microscopy (EM)
for smooth ER and known as the site of viral replication [17–19]. Deep learning analysis
of 3D super-resolution microscopy identified the tubular matrix as a distinguishing
feature of ER in Zika infected cells [20]. However, understanding dynamic ER behavior
in peripheral tubular networks versus denser tubular matrices requires measures to
accurately reconstruct ER networks, define the distinct peripheral ER regions, and
capture junction dynamics.

Several methods have been developed to analyze the ER structure. The morphol-
ogy of plant ER structure has been recreated using a network and graph-theoretical
approach, however, these approaches do not address the dynamic rearrangement of ER
networks [21–25]. A study of lumenal particle dynamics suggests that exploration time
can be a measure of ER network connectivity [26]. ER dynamics and curvature proper-
ties were analyzed using point tracking, contour tracking, and Fourier decomposition
methods [27]. Some other methods such as phase-congruency analysis were used for the
segmentation of tubules and sheets (cisternae) [28]. In [29], the authors developed a
deep residual-network model, ER-net, for the segmentation of ER. In follow-up work,
ERnet-v2 [30], the authors used a Swin Transformer-based model to extract tubules,
sheets, and sheet-based-tubules (SBTs) from the ER structure and provided quantita-
tive measures to understand the topology of the ER network in a supervised manner.
Garcia et al. [31] developed a pipeline to quantitatively measure the areas of rough
and smooth ER to assess the impact of different pharmacological perturbations on ER
morphology. Analysis of ER dynamics is non-trivial because of the low signal-to-noise
ratio and highly variable fluorescence intensity distribution over space and time [32].
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Here, we provide two approaches for the reconstruction and analysis of ER structure.
Our first approach, nERdy, employs classical image and graph processing algorithms
for geometrical structure analysis [33], offering a computationally efficient solution
with minimal parameter tuning. Our second approach, nERdy+, is an equivariant
encoder-decoder neural network that enhances the accuracy of ER structure extraction,
eliminating the need for parameter tuning in morphological image processing operations.
The equivariant architecture naturally captures data symmetries and transformations,
improving robustness against perturbations and enhancing generalization. Notably, our
analysis of junction dynamics reveals that the ER shaping proteins Reticulon 4 and
Atlastin, boost the dynamics of Isolated peripheral ER junctions and facilitate the
formation of tubular matrices. Comparative evaluations against ERnet and ERnet-v2,
conducted on manually annotated ground truth image sequences, demonstrate that both
nERdy and nERdy+ significantly outperform ERnet-v2 in segmentation metrics as well
as graph metrics.

2 Results
2.1 Dataset details
To study the impact of ER shaping proteins on peripheral ER networks, we conducted
high-speed confocal time-lapse imaging (25 Hz, 100 frames) of peripheral regions of
interest (ROIs) in COS-7 and HeLa cells. Both COS-7 and HeLa cells were trans-
fected with the lumenal ER reporter, ERmoxGFP, as well as Reticulon 4, CLIMP-63,
and mCherry-tagged Atlastin. The COS-7 dataset encompasses a total of 117 time-
lapse series, obtained from three biological replicates. It includes 31 Control sequences
featuring ERmoxGFP, 26 sequences with dual-channel ERmoxGFP/Atlastin-mCherry,
and 31 sequences each for ERmoxGFP/CLIMP-63 and ERmoxGFP/Reticulon 4. Rep-
resentative images of the time-lapse series acquired are shown in Figure 1. The HeLa
dataset consists of a total of 119 time-lapse series with 39 Control sequences, 27 Atlastin
sequences, 25 CLIMP-63 sequences and 28 Reticulon 4 sequences. While the ER is
inherently a continuous network, time-lapse imaging of the ERmoxGFP labeled ER
showed frequent discontinuities in the network and irregularities across successive frames.
Time frames 25, 30, and 35 of ERmoxGFP label in a sequence from an Atlastin trans-
fected cell show the formation and breakage of tubules over time (Extended Data
Figure 1). We also utilize the STED time-lapse series (25 Hz, 100 frames) of COS-7 cells
transfected with ERmoxGFP alone or ERmoxGFP and either Reticulon 4-mCherry or
CLIMP-63-mCherry [13].

2.2 Computational Analysis
To analyze the dynamic ER network and junctions in these time-lapse series, we devel-
oped a computational pipeline encompassing: 1) Segmentation of tubular ER structure;
2) Extraction of junction dynamics from temporal frames via graph processing; 3) Classi-
fication of low movement (‘Isolated’) and high movement (‘Overlapping’) junction regions
within the ER structure.
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Fig. 1 Peripheral ER time-lapse confocal imaging. COS-7 cells were transfected with ERmoxGFP
(green) along with either CLIMP-63 (row 1), Reticulon 4 (row 2), or Atlastin (row 3) tagged with
mCherry (red; column 2), and peripheral regions of interest (ROI) imaged by time-lapse microscopy (25
Hz, 100 frames in total). The last column denotes the merge of both the ERmoxGFP and mCherry
channels. The bottom row displays the ERmoxGFP image of Control cells transfected with ERmoxGFP
as well as insets (boxed region) of an Atlastin-mCherry co-transfected cell at 10-frame intervals. Scale
bar: 3 µm
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2.2.1 Segmentation of tubular ER structure
nERdy: Image processing pipeline for network extraction
In nERdy (Figure 2A), we aim to extract the tubular ER structure from an input frame of
the time-lapse sequence. Our approach involved a series of operations to remove noise and
fine structures while preserving tubular integrity. These include intensity normalization,
histogram equalization, and morphological operations such as area opening, erosion, and
local thresholding (see Section 4 for details). We then applied the Jerman Enhancement
Filter with specific parameters [34] to amplify the tubular structure in the input. These
steps yield a segmented ER structure suitable for skeletonization and network analysis.
Our parameter configuration in morphological operations shows robustness across all
samples.

nERdy+: D4-equivariant encoder-decoder network for ER tubule
segmentation
To circumvent the manual parameter tuning and derive an ER structure representation
learned from the data, we developed nERdy+, a deep learning based approach. nERdy+
is an encoder-decoder neural network [35, 36] (Figure 2B) trained to produce segmenta-
tion probability maps for the input ER images. To learn robust data representation from
a small-scale labeled dataset (117 samples), we designed an equivariant architecture in
nERdy+. Equivariance ensures that a neural network’s response should change pre-
dictably according to the input transformations. Given the significant variability present
in ER images, equivariance plays a crucial role in learning the ER data representation.

We develop nERdy+ as an architecture equivariant to the Dihedral group (D4),
denoting mod π/2 rotations and reflections (mirrored around x=0), thus providing
eight views per input (Extended Data Figure 2). These symmetries guide the network
towards consistent responses, ensuring consistency despite transformations. The encoder
extracts hierarchical and rotationally invariant features, while the decoder reconstructs
outputs in accordance with D4-equivariant representations. The output is a probability
map, which undergoes the rolling ball algorithm [37] to remove low-intensity background
regions. Otsu thresholding is then applied to obtain a binary segmentation. nERdy+
outperforms state-of-the-art ER segmentation approaches [29, 30], delivering faithful
and accurate segmentations of the input ER structure.

2.2.2 Quantitative and Qualitative evaluation of nERdy+
In both confocal and STED data, manual annotation of 100 frames per time-lapse series
is not feasible. Thus, we obtain a stable representation of the ER structure sequence
via the projection of all input frames onto a single frame and calculate the mean inten-
sity values, termed as ‘Mean projection’. To train and evaluate nERdy+, we manually
annotated the network structure (skeleton) of the mean projection frames across both
confocal and STED time-lapse series. These ground truth skeletons are processed with
morphological dilation operation to obtain segmentation masks termed as ‘GT mask’.
(Figure 2B, see details in section 4.4). To train nERdy+, we utilized confocal data,
employing an 80-20 split for training and validation across the 117 annotated samples
along with 5-fold cross-validation. The trained model is later evaluated on completely
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Fig. 2 Pipelines for nERdy and nERdy+. Panel A: The input ER frame undergoes a set of morphological
operations including intensity normalization, histogram equalization, area opening, erosion, and local
thresholding, resulting in the preprocessed output displayed in ‘Pre-processing’. This preprocessed sample
undergoes the Jerman Enhancement filtering to obtain the tubular output. Panel B: For the example
input ER frame we acquire the manually annotated ground truth skeleton. To train nERdy+, a mask
is created using a morphological dilation operation applied on the ground truth skeleton (‘GT mask’).
After training, nERdy+ predicts a probability map for the given input. Post-processing with the Rolling
Ball algorithm and Otsu thresholding generates the final segmentation output shown as ‘Predicted
segmentation mask’. Scale bar: 3 µm
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unseen 35 annotated STED samples.

We compare the performance of nERdy and nERdy+ with three competing
approaches for ER segmentation: ERnet [29], ERnet-v2 [30], and AnalyzER [28]. We
obtain the segmentation maps for ERnet and ERnet-v2 using the publicly available
trained models. For AnalyzER, we obtain the segmentation maps using the default
set of parameters in the GUI while setting the ‘cisternae’ parameter off. This helps to
primarily extract the tubular structure from the input ER samples.

We perform method evaluation at two levels: segmentation and graph measures.
In segmentation, we compare the ‘GT mask’ with the predicted segmentation mask
(Figure 2B) of the ER structure. For graph measures, we convert both manually anno-
tated ground truth skeleton and extracted skeleton to a graph (see section 4.8) for
comparison. Our segmentation metrics include Intersection over Union (IoU), which is
also known as the Jaccard Index, Dice score, and F1-score. For two sets A and B rep-
resenting ground truth mask pixels and prediction mask pixels respectively, the Jaccard
Index is given as:

J(A,B) =
|A ∩B|
|A ∪B|

. (1)

The Dice score is given as:

Dice(A,B) =
2× |A ∩B|
|A|+ |B|

. (2)

and the F1 score is given as:

F1Score =
2× precision× recall

precision+ recall
, (3)

where precision is the ratio of correctly predicted segmentation mask pixels and all
predicted mask pixels, whereas recall is the ratio of correctly predicted segmentation
mask pixels and all the ground truth mask (‘GT mask’) pixels.

Precision =
TruePositives

TruePositives+ FalsePositives
. (4)

Recall =
TruePositives

TruePositives+ FalseNegatives
. (5)
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Fig. 3 Qualitative and quantitative evaluation of different segmentation methods. A) Comparison
between the different methods based on the segmentation results on one sample from confocal (row 1)
and STED (row 2) time-lapse series. The cyan overlay on the input ER represents the ground truth skele-
ton for both confocal and STED data of COS-7 cells. ‘GT mask’ illustrates the baseline segmentation for
the input samples obtained using morphological dilation of manually annotated skeletons. While ERnet
and ERnet-v2 show a wider segmentation compared to the baseline, nERdy and nERdy+ show precise
and superior segmentation for the input samples. Scale bar: 3 µm (Confocal), 0.75 µm (STED) B) Quan-
titative evaluation for both confocal data (N=21) and STED data (N=35). nERdy+ outperforms other
methods across all the metrics in confocal data, whereas in STED data, nERdy and nERdy+ show com-
parable performance. Statistical significance is calculated using a two-sided Mann-Whitney U test with
Bonferroni correction. P-value annotations are as follows, NS: p < 1.00e-02, *: 1.00e-02 < p ≤ 5.00e-02,
**: 1.00e-03 < p ≤ 1.00e-02, ***: 1.00e-04 < p ≤ 1.00e-03, ****: p ≤ 1.00e-04. C) Qualitative evalua-
tion of skeleton reconstruction. The performance is shown using an example from a confocal time-lapse
series across different methods. The ground truth skeleton graph (GT skeleton graph) displays edges in
green and nodes in yellow. In other cases, red edges represent the edges from the output of the selected
method, and blue spots depict the nodes from the selected method. The output edges and nodes are
overlaid on the ground truth graph for comparison. nERdy shows the highest precision for the location
of nodes and edges but misses a few edges. nERdy+ shows less precision for edge and node locations,
but captures a majority of the nodes and edges, leading to a more complete graph reconstruction. ERnet
and ERnet-v2 capture a majority of nodes and edges, but still lack precision compared to nERdy and
nERdy+. Scale bar: 3 µm

Figure 3A shows the qualitative performance of different methods. nERdy and
nERdy+ both outperform the other three competing methods across the three metrics,
with nERdy+ providing the highest scores (Figure 3B).
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In the case of confocal data (Figure 3B), nERdy+ outperforms previous methods
across all three metrics with a Dice score of 0.96 +/- 0.003, F1-score of 0.94 +/- 0.005
and Jaccard index of 0.88 +/- 0.01. nERdy provides the second best performance in all
the metrics, followed closely by ERnet. When testing the performance on STED data
(Figure 3B), we observe that nERdy+ provides the best metric values, followed closely
by nERdy. The superior performance of nERdy+ across both confocal and STED
data indicates its robustness and effectiveness in segmenting ER structure. The narrow
confidence intervals (e.g., +/- 0.003 for Dice score) suggest consistent performance of
nERdy+ across different data samples, highlighting its reliability.

In Lu et al. [30], the authors present a comprehensive set of metrics to evaluate the
quality of reconstructed graphs derived from ER images. These metrics include the total
number of edges, the total number of nodes, assortativity coefficient, clustering coeffi-
cient, number of components, the ratio of nodes, and the ratio of edges. The assortativity
coefficient measures the tendency of nodes to connect to nodes with similar degrees,
while the clustering coefficient quantifies how nodes tend to cluster together, providing
insights into small-scale structures. Additionally, the number of components indicates
graph connectivity, and the ratios of edges and nodes quantify subgraph properties. The
ratio of edges is defined as the number of edges in the largest subgraph divided by the
total number of edges in the graph. Similarly, the ratio of nodes is defined as the number
of nodes in the largest subgraph divided by the total number of nodes in the graph.

Here, we introduce two additional metrics for performance analysis: local efficiency
and density. Local efficiency measures the immediate exchange of information within
node neighborhoods, indicating well-connected neighborhoods. Density represents the
ratio of actual edges to possible edges in the graph, indicating network connectivity.
In our analysis, we calculate relative error compared to ground truth skeleton graphs.
Considering k samples in a set, the relative error is given as:

Error =

∑k
i=1 |GTi −Methodi|/GTi

k
. (6)

We find that nERdy+ exhibits the lowest error across the majority of metrics. For
confocal data (Extended Data Figure 3), nERdy+ outperforms other methods on 7 out
of 9 metrics. However, nERdy shows slightly better performance in the number of edges
metric, while ERnet shows the least error in the assortativity coefficient metric. ER
network can be considered as a collection of edges joined at the nodes, and thus accurate
reconstruction of both the edges and nodes is essential to understand the underlying
ER structure. In the case of STED data (Extended Data Figure 4), nERdy+ achieves
the lowest error in 5 out of 9 metrics, while nERdy excels in three metrics: number of
edges, assortativity coefficient, and clustering coefficient, showcasing its robust network
reconstruction capability. ERnet performs best in the number of components metric.

In Figure 3C, we present output skeleton graphs for a CLIMP-63 sample using dif-
ferent methods. Ground truth skeleton graph edges are depicted in green, and junctions
with degree greater than 2 are in yellow. Junctions obtained via each method are shown
in blue. AnalyzER and, to a lesser extent, ERnet-v2, display incorrect reconstruction in
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several ER regions, illustrated by the high visibility of ground truth edges in the over-
lay. In contrast, nERdy, nERdy+, and ERnet produce faithful network reconstructions,
with minor issues observed across different regions.

With segmentation, we assess the reconstruction capabilities of the methods, focus-
ing on their ability to accurately identify and delineate structures within the images.
On the other hand, graph measures provide additional insights into the structural
characteristics of the reconstructed networks, such as connectivity patterns, degree
distributions, and small-scale structures, offering a more comprehensive understanding
of the underlying ER network topology.

We note that ERnet-v2 consistently underperforms compared to nERdy+, nERdy,
and ERnet, mainly due to our data predominantly comprising tubules with minimal
sheet presence. In contrast, ERnet-v2 specializes in segmenting tubules, sheets, and
sheet-based tubules (SBTs).

2.2.3 Extraction of Junction Dynamics
We use the binary segmentation output from nERdy+ and perform skeletonization [38]
to represent the input object as one-pixel wide centerlines while preserving connectivity.
The skeletonized structure is then converted into a graph representation, where nodes
are identified based on 3-way bifurcation locations, corresponding to junctions in the
tubular structure (Figure 4A). The movement of the ER structure over time leads to the
emergence of dynamic junction locations in subsequent frames. As shown in Extended
Data Figure 5A, an example junction appears at four adjacent but different locations
in the first four frames, leading to the formation of a connected component (CC) after
four time steps. To visualize the overall movement of junctions, all junction locations are
plotted onto a single image, as illustrated in Figure 4B (‘Junction Projection’). Using the
connected components algorithm on the binary projection frame, we identify different
CCs within the input. This algorithm evaluates the connectivity of elements in the input,
assigning labels to pixels based on their connectivity to neighboring pixels. The labeling
process starts with 1 for the first component and increments for subsequent components,
while background pixels are labeled as zero. The distinct colors representing CCs, in the
‘connected components’ panel of the last column in Figure 4B, visually illustrate this
labeling process.

2.2.4 Classification of Junction Regions
In our analysis, we utilize the junction projection frame and apply the connected compo-
nents algorithm to identify regions associated with the movement per junction, referred
to as CCs. However, in certain regions of the ER structure, tubules may come into close
spatial proximity or overlap with each other, as illustrated in Extended Data Figure 5. In
the former case, we can retain individual CCs for the corresponding junctions (Extended
Data Figure 5B). For the latter case, we obtain an ‘Overlapping’ CC that encompasses
the collective movement (spread) of multiple junctions (Extended Data Figure 5C).
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Fig. 4 Junction dynamics extraction and classification. A) The input frame is processed with nERdy/
nERdy+ followed by skeletonization to get a skeleton. The skeleton is converted to a graph with edges
depicting the tubules of the ER and nodes depicting the junctions. B) Junctions obtained for each frame
in the sequence (‘Per frame junctions’) are projected onto a single frame ‘Junction Projection’. As the last
step, connected component labeling is performed for the junction projection to define junction movement
regions (CC) for the time-lapse series. C) Junction classification: Mean projection of the input sequence
provides a single frame view of the sequence and reference junctions (‘Ref. Junctions’) are obtained via
extracting the graph structure of the ‘Mean projection’ frame. CC outlines depict the boundaries of
the ‘Connected components’ in B. In ‘Ref. Junctions and CC outlines’, Magenta spots show the Ref.
Junctions and cyan boundaries show the CC outlines, and the overlay of reference junctions with the CCs
shows the extent of movement of junctions within a neighborhood. A single reference junction within a
CC is labeled as an Isolated CC (red CC and yellow junctions). Multiple reference junctions within a
CC are labeled as Overlapping CC (blue CC and white junctions). Scale bar: 3 µm
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The mean projection frame (Figure 4C) provides a global view of the underlying ER
network while accounting for the variable intensity distribution. Using this mean pro-
jection frame as input, we extract its graph representation and corresponding junctions
within the stable sequence, termed ‘Reference junctions’ (Figure 4C).

To further analyze the connected components (CC) obtained using the connected
components algorithm (Figure 4B), we overlay the CC outlines with the reference junc-
tions, as depicted in ‘Ref. Junctions and CC Outlines’ panel of Figure 4C. This visual
representation establishes a boundary for the movement of junctions along with their
corresponding reference junctions. Leveraging this combined view, we categorize the
CCs into the following categories, as explained in the ‘Junctions Distribution’ panel in
Figure 4C:
• Isolated CC: A CC with only one associated reference junction.
• Overlapping CC: A CC that contains multiple reference junctions.
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2.3 Atlastin induces dense tubular networks
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Fig. 5 Structural analysis of Isolated and Overlapping CC areas in peripheral ROIs of COS-7 cells.
A) Representative images of COS-7 cells transfected with different ER shaping proteins as indicated.
‘Reference junctions’ are labeled as Isolated (Red) or Overlapping (Blue) in column 1 per row. Column
two in each row shows the CCs labeled as Isolated (Red) and Overlapping (Blue). B) Number of Isolated
reference junctions across conditions, N(Control) = 1638, N(Reticulon) = 1207, N(Climp) = 1371,
N(Atlastin) = 1292. C) Variation in the mean of tubule length connecting two Isolated junctions per
time series. D) Ratio of the number of Overlapping and Isolated areas per time series across conditions.
E) Ratio of Overlapping and Isolated CC area per time series across conditions. For panel C), D) and
E), N(Control) = 31, N(Reticulon) = 29, N(Climp) = 31, N(Atlastin) = 26. Scale bar: 3 µm

Initially, we differentiated Isolated junctions from denser regions of Overlapping junc-
tions to assess the role of ER shaping proteins on tripartite junction formation between
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ER tubules. The number of reference junctions in Isolated CC regions show consistency
across conditions, with only Control and Reticulon 4 conditions showing a significant
albeit relatively small difference (Figure 5B), indicating comparable ROIs across condi-
tions.

To explore the correlation between tubule length and stable junction formation in the
ER, we computed the total tubule length per sequence for Control, Reticulon 4, CLIMP-
63, and Atlastin transfected cells, based on the mean projection frame (Figure 4C).
Tubule length is measured as the distance along the ER skeleton, obtained from the
graph representation of the input, where the edges in the graph represent the tubules.
Focusing on tubules connecting Isolated CC reference junctions (depicted as ‘Isolated-
Isolated tubules’), our analysis reveals that Atlastin induces the shortest tubule length in
the ER, followed by Reticulon 4 with slightly longer tubule length (Figure 5C). Statistical
analysis based on tubule length demonstrates significant differences between Atlastin
and CLIMP-63, as well as Atlastin and Reticulon 4 pairs, evident from the mean plot of
tubule length per time-series (Figure 5C).

2.4 ER shaping proteins regulated junction dynamics
To investigate junction dynamics, we analyzed the total movement of the junctions based
on connected components (CCs) in the projection frame (Figure 4C). In Figure 5A,
the first column of each row illustrates the reference junctions labeled as ‘Isolated’ (red
spots) and ‘Overlapping’ (blue spots) per group. The second column of each row shows
the total movement of Isolated CC (red) and Overlapping CC (blue) per condition.

To quantify the relationship between stable and dynamic regions within the input,
we examined the ratio of number of Overlapping and Isolated CCs (Figure 5D as well
as the ratio of areas for Overlapping and Isolated CCs (Figure 5E). Reticulon 4 and
Atlastin exhibit a significantly increased ratio of Overlapping CCs to Isolated CCs both
in terms of junction number and area, compared to Control and CLIMP-63 expressing
cells. CLIMP-63 displays a significantly lower ratio of junction number and area, indicat-
ing reduced junction dynamics but an increase over the Control condition, which shows
the highest stability across all conditions. These results suggest that the expression of
Atlastin and Reticulon 4 promotes dynamic, overlapping interactions of ER junctions
to a significantly larger extent than CLIMP-63 expression, which resembles the Control.
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Fig. 6 Structural analysis of Isolated and Overlapping CC areas in peripheral ROIs of HeLa cells. A) For
HeLa cells transfected with different ER shaping proteins, the following outputs are presented: Number
of Isolated reference junctions across conditions; Variation in the mean of tubule length connecting
two Isolated junctions per time series; Ratio of the number of Overlapping and Isolated areas per time
series across conditions; Ratio of Overlapping and Isolated CC area per time series across conditions.
N(Control) = 39, N(Reticulon) = 28, N(Climp) = 25, N(Atlastin) = 27. B) Representative image
of peripheral ROI of CLIMP-63 transfected HeLa cells. nERdy output, middle panel, shows reference
junctions of overlapping CCs as blue with with white rings and reference junctions of isolated CCs as
red with yellow rings. Many sheet-like structures (bottom panel) are identified as overlapping CCs. Scale
bar: 3 µm
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The extension of the analysis to HeLa cells showed that, consistent with COS-7 cells,
Reticulon 4 and Atlastin induced an increase in the number and area of Overlapping CCs
relative to Isolated CCs (Figure 6). However, CLIMP-63 increased the Overlapping to
Isolated CC ratio to a similar extent as Reticulon and Atlastin which was not observed
in COS-7 cells. We interpret this to reflect the increased spreading of COS-7 relative to
HeLa cells such that the selected peripheral ROIs include more sheets in HeLa cells than
in COS-7 cells.
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Fig. 7 Analysis of junction dynamics. A) Mean CC area is shown per time series, N(Control) = 31,
N(Reticulon) = 29, N(Climp) = 31, N(Atlastin) = 26. For both confocal and STED data, we observe the
highest CC area for Reticulon 4 suggesting more dynamic regions. In confocal, Atlastin follows Reticulon
4 showing high movement. CLIMP-63 shows low movement for junctions whereas Control shows the least
movement across the four conditions. These results are consistent for both confocal and STED data. B)
Correspondence of skeleton and image across consecutive time-frames for Overlapping CC in confocal
and STED data. Scale bar: 3 µm (Confocal), 0.75 µm (STED). C) Mean projections of peripheral ROIs
from confocal (CLIMP-63 expressing cell) and STED (Reticulon 4 expressing cell) time series in the
leftmost image are shown adjacent to sequential images at a frame interval of 5 frames each (t=[0, 5,
10, 15]) for a tubular matrix region within the ROI (inset, box). Dynamic movement of the tubule and
associated junctions (blue) can be more clearly visualized in the Overlapping CC of the STED time
series relative to the confocal series. Reference junctions are shown in red. Videos of the presented time
series can be seen in Supplemental Data videos. Scale bar: 3 µm (Confocal), 0.75 µm (STED).
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2.5 ER shaping proteins regulated tubular matrix dynamics
To validate that the Overlapping CCs induced by Reticulon and Atlastin are due to the
enhanced junction dynamics, we evaluated individual CC area as a measure of junction
dynamics. In Figure 7A, both Reticulon 4 and Atlastin transfected COS-7 cells exhibited
a significant increase in the area of individual Isolated and Overlapping CCs compared to
CLIMP-63 transfected cells and Controls. This increase in Isolated CC area suggests that
Reticulon 4 and Atlastin promote the dynamics of individual junctions. However, in the
Overlapping CCs of the confocal datasets, the skeleton-image correspondence is notice-
ably reduced (Figure 7B). To address this, we analyzed peripheral regions of interest
(ROIs) from Control, mCherry-Reticulon 4, and mCherry-CLIMP-63 transfected COS-7
cells obtained via 2D STED super-resolution microscopy [13]. Application of nERdy+ to
these STED datasets effectively reconstructed the ER network (Extended data Figure 4),
with high skeleton-image correspondence observed in the Overlapping CCs (Figure 7B).
As observed for analysis of the confocal data, transfection with Reticulon 4 increased
both Isolated and Overlapping CC areas relative to CLIMP-63 and Control conditions
(Figure 7A). Furthermore, ER tubule dynamics within the Overlapping CC can be more
clearly seen in the STED time-lapse series compared to the confocal time series, revealing
that the Overlapping CC of Reticulon 4-transfected COS-7 cells define tubular matrix
regions consisting of dynamic ER tubules (Figure 7C, see also Supplemental Data videos).

3 Discussion
The ER shaping proteins CLIMP-63 and Reticulon 4 were originally identified to pro-
mote the formation of peripheral ER tubules and sheets, respectively [2, 3]. The tubule
and sheet-forming ability of these proteins was based on confocal microscopy analy-
sis of the peripheral ER, and subsequent analysis using high-speed super-resolution
microscopy showed that some peripheral sheets were actually dynamic tubular matri-
ces [15]. Here, we develop novel approaches to define the ER network and focus on
junction dynamics to distinguish Isolated peripheral tubular regions from more dynamic
tubular matrices. We show that tubular matrix regions are enhanced by the Reticulon
4 and Atlastin ER shaping proteins and use super-resolution microscopy to show that
they are composed of dynamic tubules.

To segment the ER structure, we employ either a set of image processing steps
(nERdy) or train a model (nERdy+). Subsequently, we skeletonize the segmentation
output to derive a single-pixel-wide network representation of the ER. Our ground
truth includes manually drawn skeletons for the input ER frames, which we dilate to
create a ‘GT mask’ for training in the segmentation task. This shift improves contextual
understanding of the underlying ER structure, therefore avoiding potential nuances of
error in single-pixel-wide structure prediction. This refined GT mask faithfully captures
the overall ER structure.

Our first approach, nERdy, utilizes classical image processing techniques. It is pri-
marily motivated by AnalyzER [28] and addresses limitations seen in AnalyzER which
involves extensive parameter tuning at each step in their pipeline, particularly problem-
atic for larger experiments. The default parameters in AnalyzER’s GUI-based software
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do not faithfully represent ER networks in our data (Figure 3C). nERdy reduces the
number of adjustable parameters, offering improved performance on our test dataset
compared to AnalyzER.

nERdy involves a series of image processing steps designed to extract the tubular ER
structure from time-lapse sequences. While we have demonstrated the robustness of our
parameter configuration across our samples, we recognize that different imaging modal-
ities may require parameter adjustments. The intensity normalization and histogram
equalization steps are essential for enhancing contrast and standardizing intensity levels
across different frames and samples. For datasets with varying illumination conditions,
we suggest adjusting the normalization range to match the intensity distribution of the
new data. Histogram equalization parameters might need to be fine-tuned to avoid over-
enhancement of noise. A good practice is to visually inspect a few frames and adjust
the parameters accordingly. The morphological operations such as area opening, erosion,
and local thresholding help remove noise and fine structures while preserving tubular
integrity. In area opening operation, we suggest adjusting the minimum area threshold
based on the size of the smallest tubular structures to be preserved. For larger struc-
tures, the threshold can be increased to filter out smaller noise components. In erosion
operation, the structuring element size and shape can be modified based on the thickness
of the tubular structures. For thinner tubes, we suggest using smaller structuring ele-
ments. In local thresholding, the parameters should be set considering the local contrast
variations. Adaptive thresholding methods, such as Otsu or Sauvola, might be benefi-
cial for datasets with high variability. The Jerman Enhancement filter enhances tubular
structures by emphasizing line-like features. The scale and sensitivity parameters of the
Jerman Enhancement Filter should be adjusted according to the resolution and specific
characteristics of the tubular structures in the dataset. Higher resolutions might require
finer scales, while lower resolutions might need broader scales.

To utilize nERdy on a custom dataset, start with the default parameters provided
in our method and apply these to a subset of your data to evaluate the segmenta-
tion results. Based on the initial results, iteratively adjust one parameter at a time,
documenting the changes and their impacts to systematically approach the optimal
configuration. Use visual inspection of segmentation overlays on the original images
to validate performance, ensuring that the segmented structures align well with the
expected ER morphology. Consider using automated parameter tuning techniques, such
as grid search or random search, to explore a wider range of parameter values system-
atically. For high-resolution confocal microscopy, setting the scale parameters of the
Jerman Enhancement Filter to finer values and reducing the structuring element sizes
in morphological operations can be helpful. In contrast, for low-resolution widefield
microscopy, broader scales for the enhancement filter and larger structuring elements
might be more appropriate to capture the coarser details of the ER network.

Our deep learning model, nERdy+, demonstrates superior overall performance
across confocal and STED time-lapse series and protein conditions. However, it faces
limitations in specific graph measures, particularly noticeable in STED data due to
intricate annotations requiring four times the annotation time of confocal data. Given
the ease of acquisition and annotation convenience of confocal data, we focused our
training on it. Consequently, nERdy+ experiences a drop in performance when applied
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to STED data due to ‘domain shift’ [39, 40], a common issue in machine learning. Nev-
ertheless, nERdy still performs admirably in both confocal and STED data, showcasing
robustness even though its parameters are set based solely on confocal data.

In our study, we employed the Dice score, Jaccard Index, and F1-score to evaluate
the performance of our model. Each metric offers distinct advantages and insights. The
Dice score is particularly sensitive to the overlap between predicted and actual segments,
making it invaluable for tasks requiring precise boundary delineation in the case of ER
tubules. The Jaccard Index, or Intersection over Union, provides a balanced measure
that is less sensitive to class imbalance, making it suitable for overall accuracy of seg-
mented ER regions. The F1-score, combining precision and recall, is crucial for scenarios
where both false positives and false negatives have significant consequences, offering
a balanced view especially in the cases where ER structures may vary in density and
complexity. By utilizing these metrics together, we ensure a robust and comprehensive
assessment of our model’s performance, handling the challenges of ER segmentation.

Deep learning based approaches, ERnet [29] and ERnet-v2 [30], avoid the need to
calibrate parameters in image processing. nERdy+ aims to provide an efficient, adap-
tive, and more robust alternative to these methods. While deep learning based methods
typically excel with ample training data and ground truth, obtaining annotations for ER
segmentation, particularly concerning medial lines in ER skeletons, remains challenging.

The classical approach to learning representations from limited data involves data
augmentation techniques [41], such as rotation, which provides different orientations of
the input to share learnable neural network parameters across these variations. Although
this augmentation implies a form of equivariance, it may lead to learning only approxi-
mate equivariance when the network architecture has insufficient capacity, and thus the
invariance learned on the training set may not generalize equally well to a test set [42].
Data augmentation requires the generation of augmented samples, leading to increased
memory/storage footprint and compute cycles. In contrast, directly incorporating sym-
metry information of the data into the network architecture, rather than augmenting the
training data, can improve performance [43]. With nERdy+, we’ve introduced a method
based on equivariant neural networks, which significantly improves handling limited data
by preserving data symmetries.

A promising approach within the limited data context is few-shot learning [44],
allowing models to learn from a minimal number of instances per class. Future research
may explore synergies between equivariant networks and few-shot learning [45] for ER
analysis. However, in the absence of ground truth and training data, nERdy can provide
strong baseline performance. Recent approaches such as self-supervised learning [46] aim
to alleviate the dependency on large supervised training data and represent a promising
avenue for future research in ER segmentation.

The networks extracted across consecutive frames depict junction dynamics over
time. A mean projection frame, aggregating all networks, provides a comprehensive
snapshot of overall network movement. This frame highlights stable areas with higher
intensity and dynamic regions with lower intensity, offering a stable representation of
ER movement. However, tracking individual junctions poses challenges due to diverse
network representations in each frame and the proximity of junctions leading to overlap
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in (X,Y ) pixel locations over time. To address these challenges and study the junction
dynamics, we utilize both the stable view from the projection frame and the dynamic
view via changing junction locations from subsequent frames. This approach captures
nuanced protein dynamics and differences across conditions. The low-movement regions
are denoted as ‘Isolated CC’ and high-movement regions are denoted as ‘Overlapping
CC’. We observe that Isolated CCs maintain consistent sizes across confocal and STED
data, while Overlapping CCs show reduced size in STED data, underscoring the impact
of resolution on detecting ER dynamics.

Analysis of the peripheral tubular network, connecting Isolated CCs, reveals that
overexpression of Atlastin, and to a lesser extent Reticulon 4, most significantly reduces
mean tubule length between Isolated junctions. This is consistent with the established
role of these two ER shaping proteins in promoting the formation of peripheral ER
tubules and the tripartite junctions that connect them [2, 8, 9]. Of particular interest
was the dramatic increase in Overlapping CC regions induced by Atlastin and Reticulon
4. This supports a role for these ER tubule-forming proteins in the establishment not
only of the extended peripheral ER network but also of denser tubular matrices. These
effects were attributed to increased junction dynamics as the expression of Atlastin
and Reticulon 4 increased the area of Isolated CCs, reflective of the movement of
peripheral tripartite junctions. Mechanisms underlying ER junction dynamics involve
close interaction and interdependence between the ER network and the microtubule
cytoskeleton [10, 12, 47, 48]. Our data suggests that Atlastin and Reticulon 4 promote
junction dynamics leading to the formation of dense tubular matrices.

While intensity variations are present in the Overlapping CCs observed in confocal
time series (Figure 7B), defining these regions as either peripheral sheets or tubular
matrices proves challenging with confocal microscopy. Annotating ER tubules in these
regions, whether by nERdy or manual annotation, faces significant hurdles; the varied
junction distribution may reflect annotation challenges as much as tubule dynamics.
Extension of nERdy+ to STED super-resolution time-lapse series, where annotation of
ER tubules in individual frames is feasible (Figure 3A), clearly shows that Overlapping
CC regions are composed of dynamic tubules. Consistent with our confocal analysis,
Reticulon 4 induced the more extensive formation of tubular matrices than CLIMP-63
expression.

CLIMP-63 expression in COS-7 cells induces the extensive formation of ER
sheets [3, 13, 14]. In our experiments, CLIMP-63 overexpression led to a modest increase
in Overlapping CCs compared to the ability of Reticulon 4 and Atlastin to induce exten-
sive tubular matrices in COS-7 cells. Peripheral sheets identified by confocal microscopy
may include both extended sheets as well as tubular matrices that will be difficult to
distinguish by nERdy+. The inclusion of some sheets, alongside tubular matrices in
the peripheral ROIs studied may be responsible for the small increase in Overlapping
CCs relative to Control observed upon CLIMP-63 overexpression. Indeed, this became
evident upon analysis of HeLa cells in which CLIMP-63 induced more Overlapping CCs
than in COS-7 cells. This is likely due to the increased spreading of COS-7 cells such
that the peripheral ROIs studies do not include as many sheets. Dense tubular matrices
induced by Atlastin and Reticulon 4 would appear to be intermediate ER structures
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between the extended peripheral ER networks and more central CLIMP-63-dependent
ER sheets [49].

While super-resolution microscopy enables the visualization of dynamic tubular
matrices in cultured cells in this and other published studies [15], convoluted tubular
smooth ER networks have long been observed by EM in various tissues [49]. The demon-
stration here that Reticulon 4 and Atlastin promote tubular matrix formation supports
a role for these ER shaping proteins in regulating smooth ER network expression in
tissues. Together with earlier results showing that ER shaping proteins regulate the
dynamics of peripheral ER tubules and ER sheets [13, 14], these results highlight the
complex role of ER shaping proteins in the dynamic organization of the ER.

4 Methods
4.1 Cells and reagents: Plasmids
ERmoxGFP was a gift from Dr. Erik Snapp (Albert Einstein College of Medicine,
present Howard Hughes Medical Institute Janelia Research Campus, Virginia) (Addgene
plasmid # 68072), mCherry-CLIMP-63 from Dr. Tom Rapoport (Harvard University,
Massachusetts), mCherry-RTN4A and mCherry-ATL1 from Addgene (Addgene plasmid
#86683 and #86678, respectively).

4.2 Cells and reagents: Cell line
HeLa cell line was acquired from ATCC and authenticated by Short Tandem Repeat
(STR) profiling at the TCAG Genetic Analysis Facility (Hospital for Sick Kids, Toronto,
ON, Canada www.tcag.ca/facilities/geneticAnalysis.html). COS-7 cell line (CLS Cat#
605470/p532_COS-7, RRID:CVCL_0224) was acquired from ATCC and gifted from
Ann-Marie Craig (UBC). All cell lines were tested regularly for mycoplasma infection
by PCR (ABM, Richmond, BC, Canada).

COS-7 and HeLa cells were grown at 37°C with 5% CO2 in complete Dulbecco’s
Modified Eagle’s Medium (DMEM) (Thermo Fisher Scientific, USA) containing 10%
FBS (Thermo Fisher Scientific, USA) and 1% L-Glutamine (Thermo Fisher Scientific,
USA) unless otherwise stated. Plasmids were transfected in COS-7 cells with Effectene
(Qiagen, Germany) according to the manufacturer’s protocols for 22 hours. For live
cell imaging, 15K COS-7 or HeLa cells were plated in ibidi 8-well m-slides (cat. No:
80827) with #1.5H (170 µm ± 5 µm) D 263 M Schott glass and incubated for 24
hours. The next day, cells were transiently transfected with ERmox-GFP alone or with
mCherry-Climp63, -Reticulon-4A or -Atlastin using Lipofectamine-2000 (Invitrogen,
USA) following the manufacturer’s protocol and allowed to grow for an additional 24
hours in the incubator. Before imaging, complete DMEM medium was replaced with
DMEM live-cell imaging medium (Sigma, USA) without sodium bicarbonate and phenol
red, supplemented with 1% L-glutamine, 10% FBS, and 10% HEPES (Thermo Fisher
Scientific, USA). Imaging was conducted at 37◦C.
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4.3 Image acquisition
Confocal and gSTED imaging were performed with the 100X/1.4 Oil HC PL APO CS2
objective of a Leica TCS SP8 3X STED microscope (Leica, Germany) equipped with a
white light laser, HyD detectors, and Leica Application Suite X (LAS X) software. GFP
was excited at 488 nm (for confocal or STED) and depleted using the 592 nm depletion
laser (STED only). mCherry was excited at 584 nm. Both confocal and STED images
were deconvolved using Huygens Professional software (Scientific Volume Imaging, The
Netherlands). Time-gated fluorescence detection was used for STED to further improve
lateral resolution; ; estimated XY FWHM values obtained from the theoretical PSFs
for STED GFP images were 78 nm for 2D live analysis. Live cell time-lapse imaging
of GFP was conducted on select square ROIs in the periphery of the cell. The STED
time-lapse series dataset has been previously published [13].

4.4 Implementation details: nERdy
Network analysis of Endoplasmic Reticulum dynamics (nERdy) combines various mor-
phological operations. To begin, the input sample is normalized within the range of zero
to one, followed by Contrast Limited Adaptive Histogram Equalization (CLAHE; [50]).
CLAHE helps in improving the local area contrast within the image. Next, the mor-
phological area opening operation is performed with an area threshold value set to
two. This operation removes very small objects and restores the remaining objects to
their original size. Subsequently, an erosion operation is carried out using a 3×3 square
structuring element with a connectivity of one. The center pixel of the underlying input
is preserved if all the pixels in the 3×3 neighborhood belong to the foreground region.
This erosion step brings us closer to a thin version of the input tubular structure. As
a last step, local thresholding is performed using a block size of 3. Local thresholding
enhances the structure in the input while adaptively removing very low signal values.
The Jerman Enhancement [34] method analyzes the local intensity structure using the
Hessian matrix of the input. The relative eigenvalues of the Hessian matrix are used to
identify the regions with high vessel-like or tubular structures.

The morphological operations in nERdy and junction analysis routines were devel-
oped using Python and the image processing library, scikit-image [51]. Only in the case
of Jerman Enhancement Filter [34], we use the open source MATLAB code available
at https://github.com/timjerman/JermanEnhancementFilter and use the MATLAB
Engine API in python to integrate the tubular enhancement routine in our nERdy
pipeline.

4.5 Implementation details: Equivariance
Equivariance is a property of a mathematical operation whereby its output changes
predictably in response to the transformations applied to its input. For instance, rotat-
ing an image of a dog by 90 degrees should rotate the dog segmentation mask by 90
degrees as well. Considering an input x in R2 space (e.g., an XY coordinate), formally,
for a transformation T applied to the input x, and a function f representing the neural
network, equivariance can be expressed as:
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f(T (x)) = T (f(x)), (7)

where T (x) is the transformed input, f(x) is the network’s output for the original input
and T (f(x)) is the transformed output. Another property of interest is invariance,
formally denoted as:

f(T (x)) = f(x), (8)

where the transformation does not affect the output of the neural network. For example,
the class predicted for an image of a dog should not change to another class when the
image is rotated (the image remains an image of a dog). We illustrate the transformation
for a single ER frame in Supplemental Figure 2.

4.6 Implementation details: Dihedral group and G-convolutions
The traditional data augmentation approach encourages the model to learn symmetries
incurred by augmentation, but it does not ensure equivariance. In a standard convo-
lutional neural network (CNN), each convolutional layer consists of a set of learnable
kernels. Here, we adopt an equivariant approach relying on ideas from group theory,
specifically dihedral group Dn, to ensure that the model utilizes the symmetries during
training. A dihedral group is defined as the set of symmetries preserving the shape of
a regular polygon with n sides. Comprising rotations and reflections, Dn captures the
interplay between angular rotations and mirror symmetries intrinsic to these polygons.
The group has a total of 2n elements, corresponding to n rotations and n reflections.

In contrast to CNNs, the equivariant neural networks utilize group convolutions,
also known as G-convolutions, to learn equivariant feature maps [52]. Given a feature
map f , a group element g and Kg as the kernel associated with the group element g,
the group convolution operation is defined as:

(f ∗K)g(x) =
∑
h∈G

fh(x) ·Kh−1g(x), (9)

where fh(x) represents the feature map f transformed by the group element h, Kh−1g(x)
represents the kernel K transformed by the composition of group elements h−1 and g,
x denotes the spatial coordinates of the feature map.

With G-convolutions, the learnable kernels transform through the action of a group
G. Considering the D4 group in our experiments, the action involves rotation and reflec-
tion. Consequently, instead of having k individual kernels as in a convolutional layer, the
equivariant layer now encompasses |G| × k kernels, where |G| denotes the order of the
group. Each input is convolved with a set of kernels corresponding to each transforma-
tion in the D4 group. This ensures that the network captures consistent features across
different orientations of the input. Subsequently, after convolution, the feature maps are
transformed back to the original orientation, aligning them with the input. This process
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builds a single equivariant layer and continues in deeper layers by considering input fea-
ture maps rather than raw data. This approach enables the network to capture complex
patterns while preserving equivariance to the transformations.

4.7 Implementation details: nERdy+
We build the equivariant layers as suggested in [52] using the PyTorch framework.
Our architecture consists of six equivariant layers followed by a transposed convolution
layer (Supplemental Table 1). Following [52], we apply the group spatial max pooling
operation only once after the second equivariant convolution layer. This operation is
applied over each feature map. Following the last convolution layer (layer number 7),
the feature maps are concatenated along the channel dimension. This output is passed
to the transposed convolution operation which provides the probability map. nERdy+
has a total of 1,549,953 trainable parameters. We train nERdy+ using the binary cross
entropy loss function given as:

BinaryCrossEntropy(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)], (10)

where y represents the ground truth labels (‘GT mask’; Figure 2), ŷ represents the
predicted probabilities (‘Predicted segmentation mask’; Figure 2), N is the total num-
ber of samples (validation samples in confocal and STED data), and yi, ŷi are the ith

elements of y, ŷ, respectively. The transposed convolution operation provides output
as logits (raw model output) instead of probabilities and thus we apply the sigmoid
activation function over the prediction logits to obtain probabilities (implemented as
BCEWithLogitsLoss in PyTorch). The weights of the model are updated using Vec-
torAdam optimizer [53]. Adam [54] is a widely used optimizer in machine learning tasks,
but it provides per-coordinate moment updates. VectorAdam strives for rotation equiv-
ariance via considering the vector-valued structure of the model parameters. In our
experiments, the learning rate for VectorAdam is set to 8e−4, β1, which controls the
weight decay for first moment estimates, is set to 0.9, and β2, which controls the weight
decay for second moment estimates, is set to 0.999. In addition, an epsilon parameter
acts as a small positive constant added to the second moment estimates to avoid divi-
sion by zero. We set epsilon as 1e-8. We utilize NVidia GeForce GTX 1080 Ti GPU with
12GB of RAM for training. The batch size is set to 32 and the model is trained for 100
epochs. The model takes ∼1 second per epoch leading to a total time of 1.67 minutes
for training. The segmentation evaluation measures are implemented in Python.

4.8 Implementation details: Skeleton to Graph
A skeleton, here, is a single pixel-wide binary input. Initially, each pixel in the skeleton is
considered a node in the graph, and the 3-way bifurcation locations are identified based
on the degree (number of immediate connections) of each node. This results in a new
representation of the graph, where nodes with a degree of 3 or higher act as the new
nodes, and the pixels or nodes from the initial graph representation serve as the edge
coordinates connecting the new higher-degree nodes. The tubular connections between
these nodes form the edges of the graph, representing the tubules in the structure. For
skeleton-to-graph conversion, we use the sknw module from ImagePy library [55] and
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available at https://github.com/Image-Py/sknw. Similar to ERnet-v2 [30], the extracted
ER structure graphs are undirected and unweighted. Graph measures are obtained using
NetworkX package [56].

4.9 Statistics and Reproducibility
Statistical analyses were performed using a two-sided Mann–Whitney U test with Bon-
ferroni correction. P-values were reported as follows: ns: p > 0.05; ∗ : p ≤ 0.05; ∗∗ : p ≤
0.01; ∗ ∗ ∗ : p ≤ 0.001; ∗ ∗ ∗∗ : p ≤ 0.0001. Sample sizes (N) for each analysis are provided
in the figure legends. All experiments were conducted in three biological replicates, with
each replicate comprising at least seven independent cell regions. Replicates were defined
as independent cells or fields of view acquired under identical experimental conditions.
All experiments were reproducible across biological replicates.

5 Data availability
All datasets used to develop and test nERdy, nERdy+, and the findings presented in
this manuscript are publicly available at the figshare repository [57].

6 Code availability
The code for both nERdy and nERdy+ is available on GitHub at https://github.com/-
NanoscopyAI/nERdy.
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9 Extended Data

t=25 t=30

Mean projection framet=35

Extended Data Figure 1 ER network discontinuities in confocal data. For an ROI of COS7 cell
transfected with ERmoxGFP/ Atlastin, we observe a decrease in the signal (deformation) and an
increase in the signal (formation) representing the tubules at specified locations across three distinct
time steps. The ER structure is not continuous in individual frames but shows an intact nature in the
mean projection frame as the projection frame compensates for the near-zero intensity regions by
averaging over all frames. Scale bar: 3 µm
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Extended Data Figure 2 Illustration of the D4 group. The elements of the D4 group each are
rotated by π/2 radians and mirrored around x=0, resulting in a group order |D4| = 8. Example of
group action applied to a single ER frame. We add an L-shaped glyph in yellow to clarify the different
transformations applied over the input.
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Extended Data Figure 3 Quantitative evaluation of error in graph reconstruction across the
methods in confocal data (N = 21). The graphs are constructed using the segmentation output from
each method. For each method, we compare the output graph with the ground truth graph using
various graph properties and calculate the relative error. The error is normalized in 0-1. The properties
include: the number of nodes in the graph (NN), number of edges in the graph (NE), assortativity
coefficient of the graph (AS), clustering coefficient of the graph (CL), Number of connected
components in the graph (NC), ratio of number of nodes in the biggest subgraph and the number of
nodes in the graph (RN), ratio of number of edges in the biggest subgraph and the number of edges in
the graph (RE), global efficiency of the graph (GE) and density of the graph (D). For confocal
time-lapse series data, nERdy+ shows the smallest relative error for all the graph properties, whereas
AnalyzER shows the highest error across all graph properties. The wide confidence intervals in
AnalyzER suggest inconsistent performance across data samples and thus a lack of adaptability. ERnet
and nERdy show close performance on the majority of the properties with ERnet-v2 showing better
performance in properties such as density, and global efficiency.
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Extended Data Figure 4 Quantitative evaluation of error in graph reconstruction in STED data
(N = 35). nERdy shows the least relative error in 4 properties: number of nodes (NN), number of
edges (NE), assortativity coefficient (AS), and clustering coefficient (CL). ERnet-v2 shows the least
relative error in the number of components (NC), and global efficiency (GE). ERnet also shows the
least relative error in 2 metrics, namely, the ratio of edges (RE) and the ratio of nodes (RN).
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Extended Data Figure 5 Schematic of tubule movement and CC formation analysis. A) Movement
of tubules and junctions leads to the formation of junction movement region depicted as CC. At each
subsequent step, the new junction location (denoted in red) is incorporated in the connected
component (denoted using blue boundary). The total movement of a junction within a time series is
captured in the CC. B) We observe the movement of two individual tubules without any interaction
between them. These tubules form the Isolated CCs. C) Two spatially close tubules and their
interaction over time leading to Overlapping CCs.
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Layer Output shape Parameters
Input [1, 128, 128] 0

P4MConvZ2 [-1, 32, 8, 128, 128] 320

P4MConvP4M [-1, 32, 8, 128, 128] 73,760

Group Spatial Max pooling [-1, 32 8, 64, 64] 0

P4MConvP4M [-1, 64, 8, 64, 64] 147,520

P4MConvP4M [-1, 128, 8, 64, 64] 589,952

P4MConvP4M [-1, 64, 8, 64, 64] 589,888

P4MConvP4M [-1, 32, 8, 64, 64] 147,488

ConvTranspose2d [-1, 1, 128, 128] 1,025
Table 1 Architecture for nERdy+. The P4MConvZ2 layer takes
input and provides the P4M transformation (denoting four
rotations and mirroring/ reflection). P4MConvP4M layer takes the
transformed input and provides transformed output, where the
transformations are ruled by the specified group (D4 in this case).
Group Spatial Max Pooling performs pooling per feature map.
ConvTranspose2d layer applies transposed convolution operation
over the transformed input from the previous layer to provide the
final segmentation output.
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